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Motivation
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» Obfuscation used by malware authors
* Need for deobfuscation
» Significant success of LLMs in code-related tasks

» Can LLMs aid deobfuscation in a universal way?
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https://blogs.vmware.com/security/wp-content/uploads/sites/26/2020/05/fig1_fn_blowfish_init_before_trim.png
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Research Questions
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1. Can LLMs deobfuscate state-of-the-art code obfusca-
tion transformations?

2. Can LLMs deobfuscate code in a real-world scenario
where multiple transformations are chained?

3. How much is memorization affecting the performance?
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-, . Methodology: Dataset
 Used Exebench dataset
— Dataset of millions of C functions crawled from GitHub

— According to software complexity metrics representative of real-world
code

— Includes test I/O pairs for correctness checks

New deobfuscation dataset with around 30000 samples

[ ]
1 __inline static void strtoupper(char *s) { | void _xa(char * k0, long k1)
char *C; 2 char *_k2 ;
3 unsigned long _k3 ;
3 c = s; 4 int k4 ;
4 while (*c) { s _k3 = 1UL;
; ] 6 while (1) {
5 if ((int )*e¢ 2= 97) { 7 switch (_k3) {
6 if ((int )*C <= 122) { 8 case 4UL: ;
R 9 if (97 <= (int )*_k2) {
7 *c¢ = (char ) (((int )*c - 97) + 65); 10 k3 = 0UL;
8 } n | else {
12 _k3 = 30L;
9 } 13 }
10 c ++; 14 break;
15 case (UL: ;
1 } 16 if (((unsigned int ) (((int )*_k2 | -123) & (((int
12 return; o  )*_k2 ~ 122) | ~ (122 - (int )*_k2))) >> 310) & 1U) {
17 _k3 = 7UL;

13 } 18 [...]
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Methodology: Obfuscation

 Tigress C obfuscator
— State-of-the-art C obfuscator
— Chose five transformations

« Alter different aspects of the code
» Transformations

— Encode Arithmetic

— Encode Branches

— Flatten

— Opaqgque Predicates

— Randomize Arguments




Methodology: Models and Baselines

* Fine-tuned two local open-source LLMs on these samples
» Performed a memorization test on hand-selected samples
» Evaluated on a test set and compared to GPT-4 in a zero-shot setting

» Also used Clang as a sanity check

Name Size Open Instruction Coding

Access Tuned Specialist

DeepSeek Coder 6.7B v v v
Code Llama 7B v X v
GPT-4 n/a X v X
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Obfuscated

prograimn

Methodology: Pipeline

// Obfuscated

// Deobfuscated

LLM

// Obfuscated

/ Deobfuscated

~

Deobfuscated

program
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. Methodology: Deobfuscation Performance Formula
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- Comparison of original (Cy,;4), obfuscated (C;, ) and LLM deobfuscated
(Cpeons) Versions’ complexity

* Formula computes the “point” at which the LLM returned sample lays
between original and obfuscated

— O -> Failure

— 1-> Complete Success

CDeobf - COrig

Ppeopy =1 —
eobt CObf - COrig

« Only semantically correct samples are evaluated



\

3 Methodology: Complexity Metrics
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» Metrics used: Halstead Program Length

— Halstead metrics has been shown to reflect human perceived program
difficulty

- Semantical correctness check (I / O samples)



M\,
..Q 7

Evaluation: By Transformation
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. . Methodology: Chained Transformations
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 Single transformations and chains
— Five for training

— Seven for evaluation
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.~ Evaluation: Chained Correctness
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. " Evaluation: Chained Deobfuscation Performance

LW

2.0
] —8®— DeepSeek Coder
1.5
= .
5 1.0 4 o P - - %
0.5
0.0 - | | | | |
1 2 3 4 5 6

Chain Length

13



Evaluation: Chained Deobfuscation Performance
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_ Evaluation: Chained Deobfuscation Performance

/,l\\

—8@— DeepSeek Coder

2.0 ;
—>¢— Code Llama

1.5 GPT-4
s
- ]
0.5

D O 1 I 1 | 1

Il 2 3 4 3] 6

Chain Length

15



16

Methodology: Memorization

* Training on public code makes LLMs prone to memorization
» Are deobfuscated samples memorized due to bias?

« Experiment: Change constants, then obfuscate again

» Check if LLM deobfuscates with the changed constants

— If not, sample likely memorized
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_ Evaluation: Memorization
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» Semantical plausibility unimportant, only if the LLM correctly identifies the
correct constants

« Results: Memorization was not a significant issue

void temp_init(double *temps ) void temp_init(double *temps )
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{
intt;
double dT;

{
t=0;
while (t <10) {
dT =5.0/ (double )10;

*(temps +t) = 5.0 - (double )t *dT;

t++

}

return;

}
}

{
intt;
double dT;

{
t=-2
while (t <28) {
dT =49.37/ (double )848.88;
*(temps + t) = 22.88 - (double )t *dT;
t++
}
return;
}
}
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e Trained and evaluated two LLMs for deobfuscation tasks

* Fine-tuning small coding models shows promising results for
deobfuscation

« Challenges with functional correctness -> larger models very likely to
reduce this problem

« Memorization was non-significant in our test -> Indication of genuine code
understanding capabilities of LLMs

o
« Thank you for your attention! O GItHUb

https://github.com/DavidBeste/llm-code-deobfuscation
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