
Exploring the Potential of
LLMs for Code
Deobfuscation
David Beste, Grégoire Menguy, Mario Fritz, Antonio Emanuele
Cinà, Thorsten Holz, Thorsten Eisenhofer and Lea Schönherr

DIMVA ‘25 | 10th July 2025

https://blogs.vmware.com/security/wp-content/uploads/sites/26/2020/05/fig1_fn_blowfish_init_before_trim.png

2

• Obfuscation used by malware authors

• Need for deobfuscation

• Significant success of LLMs in code-related tasks

• Can LLMs aid deobfuscation in a universal way?

Motivation

Research Questions

3

1. Can LLMs deobfuscate state-of-the-art code obfusca-
tion transformations?

2. Can LLMs deobfuscate code in a real-world scenario
where multiple transformations are chained?

3. How much is memorization affecting the performance?

Methodology: Dataset

4

• Used Exebench dataset

 Dataset of millions of C functions crawled from GitHub

 According to software complexity metrics representative of real-world
code

 Includes test I/O pairs for correctness checks

• New deobfuscation dataset with around 30000 samples

Methodology: Obfuscation

5

• Tigress C obfuscator

 State-of-the-art C obfuscator

 Chose five transformations

• Alter different aspects of the code

• Transformations

 Encode Arithmetic

 Encode Branches

 Flatten

 Opaque Predicates

 Randomize Arguments

Methodology: Models and Baselines

6

• Fine-tuned two local open-source LLMs on these samples

• Performed a memorization test on hand-selected samples

• Evaluated on a test set and compared to GPT-4 in a zero-shot setting

• Also used Clang as a sanity check

Methodology: Pipeline

7

Methodology: Deobfuscation Performance Formula

8

• Comparison of original (𝐶ை௥௜௚), obfuscated (𝐶ை௕௙) and LLM deobfuscated
(𝐶஽௘௢௕௙) versions’ complexity

• Formula computes the “point” at which the LLM returned sample lays
between original and obfuscated

 0 -> Failure

 1 -> Complete Success

• Only semantically correct samples are evaluated

𝑃஽௘௢௕௙ = 1 −
𝐶஽௘௢௕௙ − 𝐶ை௥௜௚

𝐶ை௕௙ − 𝐶ை௥௜௚

Methodology: Complexity Metrics

9

• Metrics used: Halstead Program Length

 Halstead metrics has been shown to reflect human perceived program
difficulty

• Semantical correctness check (I / O samples)

Evaluation: By Transformation

10

Higher
values are
better

Methodology: Chained Transformations

11

• Single transformations and chains

 Five for training

 Seven for evaluation

Evaluation: Chained Correctness

12

Evaluation: Chained Deobfuscation Performance

13

Evaluation: Chained Deobfuscation Performance

14

Evaluation: Chained Deobfuscation Performance

15

16

• Training on public code makes LLMs prone to memorization

• Are deobfuscated samples memorized due to bias?

• Experiment: Change constants, then obfuscate again

• Check if LLM deobfuscates with the changed constants

 If not, sample likely memorized

Methodology: Memorization

Evaluation: Memorization

17

• Semantical plausibility unimportant, only if the LLM correctly identifies the
correct constants

• Results: Memorization was not a significant issue

void temp_init(double *temps)
{
int t ;
double dT ;

{
t = 0;
while (t < 10) {
dT = 5.0 / (double)10;
*(temps + t) = 5.0 - (double)t * dT;
t ++;

}
return;

}
}

void temp_init(double *temps)
{
int t ;
double dT ;

{
t = -2;
while (t < 28) {
dT = 49.37 / (double)848.88;
*(temps + t) = 22.88 - (double)t * dT;
t ++;

}
return;

}
}

Summary

18

• Trained and evaluated two LLMs for deobfuscation tasks

• Fine-tuning small coding models shows promising results for
deobfuscation

• Challenges with functional correctness -> larger models very likely to
reduce this problem

• Memorization was non-significant in our test -> Indication of genuine code
understanding capabilities of LLMs

• Thank you for your attention!

https://github.com/DavidBeste/llm-code-deobfuscation

Evaluation

19

