&% UNIVERSITE
2 DE GENEVE

TECHNISCHE
' UNIVERSITAT
BERLIN

N\ BIFOLD

Exploring the Potential of
LLMs for Code
Deobfuscation

David Beste, Grégoire Menguy, Mario Fritz, Antonio Emanuele
Cina, Thorsten Holz, Thorsten Eisenhofer and Lea Schonherr

J DIMVA 25 | 10th July 2025

)

Motivation

=
%1\

» Obfuscation used by malware authors
* Need for deobfuscation
» Significant success of LLMs in code-related tasks

» Can LLMs aid deobfuscation in a universal way?

I E—
- -———
B | S
BN S — — > =
I S
| EEEEE—
_— — —

https://blogs.vmware.com/security/wp-content/uploads/sites/26/2020/05/fig1_fn_blowfish_init_before_trim.png

I
\ /7

Research Questions

,fl\\\

1. Can LLMs deobfuscate state-of-the-art code obfusca-
tion transformations?

2. Can LLMs deobfuscate code in a real-world scenario
where multiple transformations are chained?

3. How much is memorization affecting the performance?

1

-, . Methodology: Dataset
 Used Exebench dataset
— Dataset of millions of C functions crawled from GitHub

— According to software complexity metrics representative of real-world
code

— Includes test I/O pairs for correctness checks

New deobfuscation dataset with around 30000 samples

[]
1 __inline static void strtoupper(char *s) { | void _xa(char * k0, long k1)
char *C; 2 char *_k2 ;
3 unsigned long _k3 ;
3 c = s; 4 int k4 ;
4 while (*c) { s _k3 = 1UL;
;] 6 while (1) {
5 if ((int)*e¢ 2= 97) { 7 switch (_k3) {
6 if ((int)*C <= 122) { 8 case 4UL: ;
R 9 if (97 <= (int)*_k2) {
7 *c¢ = (char) (((int)*c - 97) + 65); 10 k3 = 0UL;
8 } n | else {
12 _k3 = 30L;
9 } 13 }
10 c ++; 14 break;
15 case (UL: ;
1 } 16 if (((unsigned int) (((int)*_k2 | -123) & (((int
12 return; o)*_k2 ~ 122) | ~ (122 - (int)*_k2))) >> 310) & 1U) {
17 _k3 = 7UL;

13 } 18 [...]

i,

-
%>

Methodology: Obfuscation

 Tigress C obfuscator
— State-of-the-art C obfuscator
— Chose five transformations

« Alter different aspects of the code
» Transformations

— Encode Arithmetic

— Encode Branches

— Flatten

— Opaqgque Predicates

— Randomize Arguments

Methodology: Models and Baselines

* Fine-tuned two local open-source LLMs on these samples
» Performed a memorization test on hand-selected samples
» Evaluated on a test set and compared to GPT-4 in a zero-shot setting

» Also used Clang as a sanity check

Name Size Open Instruction Coding

Access Tuned Specialist

DeepSeek Coder 6.7B v v v
Code Llama 7B v X v
GPT-4 n/a X v X

W',
\‘ ’

%>

Obfuscated

prograimn

Methodology: Pipeline

// Obfuscated

// Deobfuscated

LLM

// Obfuscated

/ Deobfuscated

~

Deobfuscated

program

1

. Methodology: Deobfuscation Performance Formula

%l

- Comparison of original (Cy,;4), obfuscated (C;,) and LLM deobfuscated
(Cpeons) Versions’ complexity

* Formula computes the “point” at which the LLM returned sample lays
between original and obfuscated

— O -> Failure

— 1-> Complete Success

CDeobf - COrig

Ppeopy =1 —
eobt CObf - COrig

« Only semantically correct samples are evaluated

\

3 Methodology: Complexity Metrics

%1

(]

» Metrics used: Halstead Program Length

— Halstead metrics has been shown to reflect human perceived program
difficulty

- Semantical correctness check (I / O samples)

M\,
..Q 7

Evaluation: By Transformation

z
K] 1\\\

12}
10}
0.8 F
- [
Q 06 Higher
= i | values are
0.4r B DeepSeek Coder better
i B Code Llama
0.2 BN GPT-4
j B Clang
0.0 ‘
Encode Flatten
Arithmetic

Transformations

10

1

. . Methodology: Chained Transformations

%1,

 Single transformations and chains
— Five for training

— Seven for evaluation

n

K W

.~ Evaluation: Chained Correctness

%W

DeepSeek Coder GPT-4
100 i ‘ | , _ . | 100 _ .
g 80 ' '
w]
< 60 1
g o
Q) B
= 40 1+
Q I
S ‘ .
7 Syntactical Cotrectness [EEEAUNE ~Syntactical Cofrectness
| Semantiéal Con;rectness i Semantical Cornrectness
0 "
1 2 3 4 D 6 7 1 2 3 4 5 6 7

Chain Length Chain Length

12

. " Evaluation: Chained Deobfuscation Performance

LW

2.0
] —8®— DeepSeek Coder
1.5
= .
5 1.0 4 o P - - %
0.5
0.0 - | | | | |
1 2 3 4 5 6

Chain Length

13

Evaluation: Chained Deobfuscation Performance

1

—@®— DeepSeck Coder

2.0 g
] —>— Code Llama
1.6 1
.
g 1.0]————4‘=': —@— -@ sl 99—
ak |
0.5
0-0 ! I I I 1 I
1 2 3 4 15} 6
Chain Length

14

I

_ Evaluation: Chained Deobfuscation Performance

/,l\\

—8@— DeepSeek Coder

2.0 ;
—>¢— Code Llama

1.5 GPT-4
s
-]
0.5

D O 1 I 1 | 1

Il 2 3 4 3] 6

Chain Length

15

16

Methodology: Memorization

* Training on public code makes LLMs prone to memorization
» Are deobfuscated samples memorized due to bias?

« Experiment: Change constants, then obfuscate again

» Check if LLM deobfuscates with the changed constants

— If not, sample likely memorized

I

_ Evaluation: Memorization

,fl\\

‘lf/

» Semantical plausibility unimportant, only if the LLM correctly identifies the
correct constants

« Results: Memorization was not a significant issue

void temp_init(double *temps) void temp_init(double *temps)

17

{
intt;
double dT;

{
t=0;
while (t <10) {
dT =5.0/ (double)10;

*(temps +t) = 5.0 - (double)t *dT;

t++

}

return;

}
}

{
intt;
double dT;

{
t=-2
while (t <28) {
dT =49.37/ (double)848.88;
*(temps + t) = 22.88 - (double)t *dT;
t++
}
return;
}
}

18

TECHNISCHE

ol N BIFOLD

.+ (&5 UNIVERSITE 1
Summary @ "SL % pe geneve | ,

e Trained and evaluated two LLMs for deobfuscation tasks

* Fine-tuning small coding models shows promising results for
deobfuscation

« Challenges with functional correctness -> larger models very likely to
reduce this problem

« Memorization was non-significant in our test -> Indication of genuine code
understanding capabilities of LLMs

o
« Thank you for your attention! O GItHUb

https://github.com/DavidBeste/llm-code-deobfuscation

NG “‘

/7
& -
- Evaluation

%1, 1N

2.0 | | |
: ~—®— DeepSeek Coder
1.5 - | —>¢— Code Llama |
] - GPT-4
g |
g 1.0 }————+-+ @— ‘ & 4
A :
0.5 B
! - 3 i =t 2 E
0.0 !
1 2 3 4 5! 6 7

Chain Length

19

