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• Obfuscation used by malware authors

• Need for deobfuscation

• Significant success of LLMs in code-related tasks

• Can LLMs aid deobfuscation in a universal way?

Motivation



Research Questions
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1. Can LLMs deobfuscate state-of-the-art code obfusca-
tion transformations?

2. Can LLMs deobfuscate code in a real-world scenario
where multiple transformations are chained?

3. How much is memorization affecting the performance?



Methodology: Dataset
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• Used Exebench dataset

 Dataset of millions of C functions crawled from GitHub

 According to software complexity metrics representative of real-world 
code

 Includes test I/O pairs for correctness checks

• New deobfuscation dataset with around 30000 samples



Methodology: Obfuscation
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• Tigress C obfuscator

 State-of-the-art C obfuscator

 Chose five transformations

• Alter different aspects of the code

• Transformations

 Encode Arithmetic

 Encode Branches

 Flatten

 Opaque Predicates

 Randomize Arguments



Methodology: Models and Baselines
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• Fine-tuned two local open-source LLMs on these samples

• Performed a memorization test on hand-selected samples

• Evaluated on a test set and compared to GPT-4 in a zero-shot setting

• Also used Clang as a sanity check



Methodology: Pipeline
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Methodology: Deobfuscation Performance Formula
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• Comparison of original (𝐶ை௥௜௚), obfuscated (𝐶ை௕௙) and LLM deobfuscated
(𝐶஽௘௢௕௙) versions’ complexity

• Formula computes the “point” at which the LLM returned sample lays 
between original and obfuscated

 0 -> Failure

 1 -> Complete Success

• Only semantically correct samples are evaluated

𝑃஽௘௢௕௙ = 1 −  
𝐶஽௘௢௕௙ − 𝐶ை௥௜௚

𝐶ை௕௙ − 𝐶ை௥௜௚



Methodology: Complexity Metrics
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• Metrics used: Halstead Program Length

 Halstead metrics has been shown to reflect human perceived program 
difficulty

• Semantical correctness check (I / O samples)



Evaluation: By Transformation
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Higher 
values are 
better



Methodology: Chained Transformations
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• Single transformations and chains

 Five for training

 Seven for evaluation



Evaluation: Chained Correctness
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Evaluation: Chained Deobfuscation Performance
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Evaluation: Chained Deobfuscation Performance
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Evaluation: Chained Deobfuscation Performance
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• Training on public code makes LLMs prone to memorization

• Are deobfuscated samples memorized due to bias?

• Experiment: Change constants, then obfuscate again

• Check if LLM deobfuscates with the changed constants

 If not, sample likely memorized

Methodology: Memorization



Evaluation: Memorization
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• Semantical plausibility unimportant, only if the LLM correctly identifies the 
correct constants

• Results: Memorization was not a significant issue

void temp_init(double *temps ) 
{ 
int t ;
double dT ;

{
t = 0;
while (t < 10) {
dT = 5.0 / (double )10;
*(temps + t) = 5.0 - (double )t * dT;
t ++;

}
return;

}
}

void temp_init(double *temps ) 
{ 
int t ;
double dT ;

{
t = -2;
while (t < 28) {
dT = 49.37 / (double )848.88;
*(temps + t) = 22.88 - (double )t * dT;
t ++;

}
return;

}
}



Summary
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• Trained and evaluated two LLMs for deobfuscation tasks 

• Fine-tuning small coding models shows promising results for 
deobfuscation

• Challenges with functional correctness -> larger models very likely to 
reduce this problem

• Memorization was non-significant in our test -> Indication of genuine code 
understanding capabilities of LLMs

• Thank you for your attention!

https://github.com/DavidBeste/llm-code-deobfuscation



Evaluation
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