list
]

Inference of Robust Reachability Constraints

Yanis Sellamil2, Guillaume Girol?, Frédéric Recoules?, Damien Couroussél, Sébastien Bardin?

1 Univ. Grenoble Alpes, CEA List, France

2 Université Paris-Saclay, CEA List, France

B INSTITUT .
CARNOT HESZ,A université
| ‘ CEA LIST Grenoble Alpes PARIS-SACLAY



Automatic Bug Detection

Programs have bugs

Bugs can be exploited — Vulnerabilities

vold f() {
uint a, b = read();
if (a + b == 0)
/* bug */
else

}

We need automated methods to detect bugs

@ Inference of Robust Reachability Constraints 19/01/2024



Automatic Bug Detection

Programs have bugs Example: Symbolic Execution

Explore the program paths

Bugs can be exploited — Vulnerabilities

vold f() {
uint a, b = read();
if (a + b == 0)
/* bug */
else

Finds program input that exhibits the bug

Sound: no false positives

}

We need automated methods to detect bugs

@ Inference of Robust Reachability Constraints 19/01/2024



Automatic Bug Detection

Programs have bugs Example: Symbolic Execution

Explore the program paths

Bugs can be exploited — Vulnerabilities Finds program input that exhibits the bug

vold f() { -+ Sound: no false positives
uint a, b = read(); l
if (a + b == 0)
/* bug */ + a=0,b=0
else

}

We need automated methods to detect bugs

@ Inference of Robust Reachability Constraints 19/01/2024



False Positive in Practice

Example
void g() {
uint a = read();
uint b; /* uninitialized */
if (a + b == 0)
/* bug */
else

@ Inference of Robust Reachability Constraints 19/01/2024



False Positive in Practice

Example

void g() {
uint a = read();

uint b; /* uninitialized */
if (a + b == 0)

/* bug */
else

}

Symbolic Execution?

- Veryeasy.:a=0,b=0

@ Inference of Robust Reachability Constraints 19/01/2024



False Positive in Practice

Example The Issue
void g() { e
- - Depends on uncontrolled initial value (b
uint a = read(); P n initial value (b)
uint b; /* uninitialized */ - The formal result is not reliably reproducible
if (a + b == 0)
/* bug */

else

}

Symbolic Execution?

- Veryeasy.:a=0,b=0

@ Inference of Robust Reachability Constraints 19/01/2024



False Positive in Practice

Example The Issue
void 9() { - Depends on uncontrolled initial value (b)
uint a = read();
uint b; /* uninitialized */ - The formal result is not reliably reproducible
if (a + b == 0)
[* bug */
else Practical Causes of Unreliable Assignments
) - Interaction with the environment
Symbolic Execution? - Stack canaries
- Veryeasy.:a=0,b=0 - Uninitialized memory/register dependency

« Choice of undefined behaviors

We need to characterize the replicability of bugs

@ Inference of Robust Reachability Constraints 19/01/2024



Robust Reachability
[Girol, Farinier, Bardin: CAV 2021]

Idea void g() {

N _ uint a = read();

- Partition of the input space uint b; /* uninitialized */
- What is controlled if (a + b ==0)

. /* bug */
What is uncontrolled else
}
controlled uncontrolled

a b

@ Inference of Robust Reachability Constraints 19/01/2024



Robust Reachability
[Girol, Farinier, Bardin: CAV 2021]

Idea void g() {
N _ uint a = read();
- Partition of the input space uint b; /* uninitialized */
- What is controlled if (a + b ==0)
. /* bug */
What is uncontrolled else
}

Focus: Reliable Bugs
controlled uncontrolled

« Controlled input that triggers the bug independently of

the value of the uncontrolled inputs
P d a Y b error

@ Inference of Robust Reachability Constraints 19/01/2024



Robust Reachability
[Girol, Farinier, Bardin: CAV 2021]

Idea void g() {
N _ uint a = read();
- Partition of the input space uint b; /* uninitialized */
- What is controlled if (a + b ==0)
. /* bug */
What is uncontrolled else
}

Focus: Reliable Bugs
controlled uncontrolled

« Controlled input that triggers the bug independently of

the value of the uncontrolled inputs
P d a Y b error

|

Not Robustly Reachable

@ Inference of Robust Reachability Constraints 19/01/2024



Robust Reachability
[Girol, Farinier, Bardin: CAV 2021]

Idea void g() {
N _ uint a = read();
- Partition of the input space uint b; /* uninitialized */
- What is controlled if (a + b ==0)
. /* bug */
What is uncontrolled else
}

Focus: Reliable Bugs
controlled uncontrolled

« Controlled input that triggers the bug independently of

the value of the uncontrolled inputs
P d a Y b error

Extension of Reachability and Symbolic Execution \

Not Robustly Reachable

@ Inference of Robust Reachability Constraints 19/01/2024



The Remaining Problem

typedef struct { unsigned char bytes[32]; } uint256_t;

Example 3
void memcpy(void* dst, const void* src, size_t n) {
o i if (((dst | srec | n) & 6b11111))
Memcopy with slow and fast path s o)
For {(sizet 1 =0; L e nj 1 3= 1)

- Fast path is buggy but slow path is not dst[i] = src[i];
else /* fast path */
for (stze t =0 1L <=(n > 5); t. = 1)
(uint256_t*)dst[i] = (uint256_t*)src[i];

@ Inference of Robust Reachability Constraints 19/01/2024



The Remaining Problem

typedef struct { unsigned char bytes[32]; } uint256_t;

Example 3
void memcpy(void* dst, const void* src, size_t n) {
o i if (((dst | srec | n) & 6b11111))
Memcopy with slow and fast path s o)
. . safe p For (stizet 1 =08; 1L «ny 1 3= 1)
- Fast path is buggy but slow path is not dst[i] = src[i];
else /* fast path */
For (stzet 1 =0 t <= {(n > 5); 1 += 1)
buggy > (uint256_t*)dst[1] = (uint256_t*)src[i];
}

@ Inference of Robust Reachability Constraints 19/01/2024



The Remaining Problem

typedef struct { unsigned char bytes[32]; } uint256_t;

Example 3
void memcpy(void* dst, const void* src, size_t n) {
o i if (((dst | srec | n) & 6b11111))
Memcopy with slow and fast path 9 o it S )
. . safe p for (size .t i =0; 1L <n; 1L += 1)
- Fast path is buggy but slow path is not dst[i] = src[i];

else /* fast path */
For (stzet 1 =0 t <= {(n > 5); 1 += 1)
buggy > (uint256_t*)dst[i] = (uint256_t*)src[i];

« Reachability: Vulnerable

@ Inference of Robust Reachability Constraints 19/01/2024



The Remaining Problem

Example 3
« Memcopy with slow and fast path

- Fast path is buggy but slow path is not

« Reachability: Vulnerable

@ Inference of Robust Reachability Constraints

safe

buggy

memory alignment constraint

typedef struct { unsigned char bytes[32]; } uint256_t;

void memcpy(void* dst, const void* src, size_t n) {

if (((dst | sre | n) & 6b11111))

»

g

/* slow path */
For {(sizet 1 =0; L e nj 1 3= 1)
dstli] = see[i]:

else /* fast path */

»

g

For (stzet 1 =0 t <= {(n > 5); 1 += 1)
(uint256_t*)dst[i] = (uint256_t*)src[i];

19/01/2024 5



The Remaining Problem

memory alignment constraint

typedef struct unsigned char bytes[32]; uint256_t;
Example 3 yp { g ytes[32]; } K.

void memcpy(void* dst, const void* src, size_t n) {

' if (((dst | | n) & 0b11111))
Memcopy with slow and fast path & ean ] e Ll

. . safe » for (size_t 1 =0; 1 <n; 1 += 1)
- Fast path is buggy but slow path is not dst[i] = src[i];
else /* fast path */
For (stzet 1 =0 t <= {(n > 5); 1 += 1)
buggy 2 > (uint256_t*)dst[1] = (uint256_t*)src[i];
« Reachability: Vulnerable l
- Robust Reachability: Not reliably triggerable

3 * src, Vsrc,dst, overflow?

|

Not Robustly Reachable

- Taking the fast path depends on uncontrolled initial values

The bug is serious but not robustly reachable — The concept is too strong

@ Inference of Robust Reachability Constraints 19/01/2024 5



Robust Reachability Constraints

typedef struct { unsigned char bytes[32]; } uint256_t;

Definition
_ _ o void.memcpy(void* dst, const void* src, size_t n) {
- Predicate on program input sufficient to have if <§§d§{ovlv ;;;hl*f/ﬂ & 0b11111))
Robust ReaChablllty for (size.t 1 =0; 1 < n; 1 += 1)

dst[i] = src[i];
else /* fast path */
for (stzet 1 =0; L == (n > 5); 1+ 1)
(uint256_t*)dst[i1] = (uint256_t*)src[i];

@ Inference of Robust Reachability Constraints 19/01/2024



Robust Reachability Constraints

typedef struct { unsigned char bytes[32]; } uint256_t;

Definition
_ _ o void.memcpy(void* dst, const void* src, size_t n) {
- Predicate on program input sufficient to have if <§§d§{m|v ;;;hl*f/ﬂ & 0b11111))
Robust ReaChablllty for (size.t 1 =0; 1 < n; 1 += 1)

dst[i] = src[i];
else /* fast path */
for (stzet 1 =0; L == (n > 5); 1+ 1)
(uint256_t*)dst[i1] = (uint256_t*)src[i];

3 * src, Vsrc,dst,|src % 32 =0 Adst % 32 = 0= overflow

(src and dst aligned on 32bits)

@ Inference of Robust Reachability Constraints 19/01/2024 6



Robust Reachability Constraints

typedef struct { unsigned char bytes[32]; } uint256_t;

Definition
_ _ o void.memcpy(void* dst, const void* src, size_t n) {
- Predicate on program input sufficient to have if (%di{oi §£§h|*7) % 9b11111).)
Robust ReaChablllty for (size.t 1 =0; 1 < n; 1 += 1)
dstli] = sre[i]:
else /* fast path */
for (stzet 1 =0; L == (n > 5); 1+ 1)

(uint256_t*)dst[i1] = (uint256_t*)src[i];

Advantages }

- Part of the Robust Reachability framework

- Allows precise characterization

3 * src, Vsrc,dst,|src % 32 =0 Adst % 32 = 0= overflow

(src and dst aligned on 32bits)

@ Inference of Robust Reachability Constraints 19/01/2024 6



Robust Reachability Constraints

typedef struct { unsigned char bytes[32]; } uint256_t;

Definition
_ _ o void.memcpy(void* dst, const void* src, size_t n) {
- Predicate on program input sufficient to have if (%di{oi §£§h|*7) % 9b11111).)
Robust ReaChablllty for (size.t 1 =0; 1 < n; 1 += 1)
dstli] = sre[i]:
else /* fast path */
for (stzet 1 =0; L == (n > 5); 1+ 1)

(uint256_t*)dst[i1] = (uint256_t*)src[i];

Advantages }

- Part of the Robust Reachability framework

- Allows precise characterization

3 * src, Vsrc,dst,|src % 32 =0 Adst % 32 = 0= overflow

How to Automatically Generate Such Constraints? (src and dst aligned on 32bits)

@ Inference of Robust Reachability Constraints 19/01/2024 6



Contributions

- New program-level abduction algorithm for Robust Reachability Constraints Inference
- Extends and generalizes Robustness, made more practical
- Adapts and generalizes theory-agnostic logical abduction algorithm
- Efficient optimization strategies for solving practical problems

- Implementation of a restriction to Reachability and Robust Reachability
« First evaluation of software verification and security benchmarks
- Detailed vulnerability characterization analysis in a fault injection security scenario

Target: Computation of ¢ such that 3 C controlled value,V U uncontrolled value, (C,U) = reach(C,U)

@ Inference of Robust Reachability Constraints 19/01/2024 7



Abduction of Robust Reachability Constraints

Abductive Reasoning
[Josephson and Josephson, 1994]

Find missing precondition of unexplained goal

« Compute ¢y In Py A Py E P

@ Inference of Robust Reachability Constraints 19/01/2024



Abduction of Robust Reachability Constraints

Abductive Reasoning
[Josephson and Josephson, 1994]

« Find missing precondition of unexplained goal

« Compute ¢y In Py A Py E P

Theory-Specific Abduction
[Bienvenu 2007, Tourret et. al. 2017]

- Handle a single theory

Specification Synthesis

[Albarghouthi et. al. 2016, Calcagno et. al. 2009,
Zhou et. al. 2021]

«  White-box program analysis

@ Inference of Robust Reachability Constraints 19/01/2024



Abduction of Robust Reachability Constraints

Abductive Reasoning Theory-Agnostic First-order Abduction
[Josephson and Josephson, 1994] [Echenim et al. 2018, Reynolds et al. 2020]

« Find missing precondition of unexplained goal - Efficient procedures

« Compute ¢y in dpy A Py E g - Genericity

Theory-Specific Abduction
[Bienvenu 2007, Tourret et. al. 2017]

- Handle a single theory

Specification Synthesis

[Albarghouthi et. al. 2016, Calcagno et. al. 2009,
Zhou et. al. 2021]

«  White-box program analysis

@ Inference of Robust Reachability Constraints 19/01/2024



Abduction of Robust Reachability Constraints

Abductive Reasoning Theory-Agnostic First-order Abduction
[Josephson and Josephson, 1994] [Echenim et al. 2018, Reynolds et al. 2020]

« Find missing precondition of unexplained goal Efficient procedures

« Compute ¢y in dpy A Py E g - Genericity
Theory-Specific Abduction Our Proposal: Adapt Theory-Agnostic Abduction
[Bienvenu 2007, Tourret et. al. 2017] Algorithm to Compute Program-level Robust

: Reachability Constraints
- Handle a single theory ity !

. _ . p Jevel
Specification Synthesis rogram-leve

[Albarghouthi et. al. 2016, Calcagno et. al. 2009, - Generic
Zhou et. al. 2021]

«  White-box program analysis

@ Inference of Robust Reachability Constraints 19/01/2024



Our Solution (Framework)

g Inference Language _
(Set of Candidates) Abduction Procedure

— P Program

l// Target Trace Predicate

&Z[c Memory Partition

@ Inference of Robust Reachability Constraints 19/01/2024



Our Solution (Framework)

g Inference Language _
(Set of Candidates) Abduction Procedure

— P Program

l// Target Trace Predicate

&Z[c Memory Partition

@ Inference of Robust Reachability Constraints 19/01/2024



Our Solution (Framework)

g Inference Language _
(Set of Candidates) Abduction Procedure

— P Program

select candidate

l// Target Trace Predicate

&Z[c Memory Partition

@ Inference of Robust Reachability Constraints 19/01/2024



Our Solution (Framework)

g Inference Language
(Set of Candidates)

— P Program

l// Target Trace Predicate

&Z[c Memory Partition

@ Inference of Robust Reachability Constraints

Abduction Procedure

select candidate

o
23
o
QD
>
=3
o
>
@D
A\ 4
not solution
solution

n

»

Robust Reachability Constraints

19/01/2024 9



Our Solution (Framework)

=~
g Inference Language _
(Set of Candidates) Abduction Procedure
S
— P Program
select candidate
l// Target Trace Predicate = ‘9“
Ac Memory Partition = 2
& E
’ not solution
solution » Robust Reachability Constraints

@ Inference of Robust Reachability Constraints 19/01/2024 9



Our Solution (Framework)

g Inference Language
(Set of Candidates)

— P Program

l// Target Trace Predicate

&Z[c Memory Partition

@ Inference of Robust Reachability Constraints

Abduction Procedure

select candidate

»
>

alepipued 1sa1
additional info

<
<«

not solution

n

S
L
<

S
o
m

solution

Oracles on Trace Properties
- Robust property queries 03V
« Non-robust property queries 033

-« Can accomodate various tools
(SE, BMC, Incorrectness, ...)

» Robust Reachability Constraints

19/01/2024 9



Our Solution (Baseline Algorithm)

BASELINERCINFER(G, —p, ¥, Ac)

if T,5s — 033 (—p, ¥, T)ithén
R—{y=s}ify=sec Gelse0;
for ¢ € G do
if 07 (—p, Ac, v, ¢) then
R e— A (RU{d});
if =07 (—p, 9, =(Vger¢’)) then
L return R;

DT - NS B )

8 return R;

9 return {L};

@ Inference of Robust Reachability Constraints

Theorem:

Termination when the oracles terminate

Correction at any step when the oracles are
correct

Completeness w.r.t. the inference language
when the oracles are complete

19/01/2024

10



Our Solution (Baseline Algorithm)

BASELINERCINFER(G, —p, ¥, Ac)

1 if T,s — 033 (—>p, ¢, T) then

2
3
4
5
6
7

8

R—{y=s}ify=sec Gelse0;
for ¢ € G do
if 07 (—p, Ac, v, ¢) then
R e— A (RU{d});
if =07 (—p, 9, =(Vger¢’)) then
L return R;

return R;

9 return {L};

@ Inference of Robust Reachability Constraints

Theorem:

Termination when the oracles terminate

Correction at any step when the oracles are
correct

Completeness w.r.t. the inference language
when the oracles are complete

Under correction and completeness of the
oracles

- Minimality w.r.t. the inference language

- Weakest constraint generation when
expressible

19/01/2024 10



Making it Work

The Issue

- Exhaustive exploration of the inference language is inefficient

Key Strategies for Efficient Exploration
« Necessary constraints
- Counter-examples for Robust Reachability

« Ordering candidates

@ Inference of Robust Reachability Constraints

19/01/2024

11



Making it Work: Necessary Constraints

The Idea

- Find and store Necessary Constraints

@ Inference of Robust Reachability Constraints

candidate, —

OEIV

— not sufficient

v

— [ecesSSsary

19/01/2024

12



Making it Work: Necessary Constraints

The Idea

. . i 3 ici
- Find and store Necessary Constraints candidate, — (3Y — not sufficient

v

O 43 — necessary

Usage
- Build a candidate solution faster /

candidate, A candidate, — 3V —

« Additional information on the bug

- Emulate unsat core usage in the context of oracles

@ Inference of Robust Reachability Constraints 19/01/2024

12



Making it Work: Counter-Examples

The Idea

« Reuse information from failed candidate checks

The Issue

- Non Robustness (V3 gquantification) does not give
us counter-examples

@ Inference of Robust Reachability Constraints

candidate, —

OEIV

— not sufficient

19/01/2024

13



Making it Work: Counter-Examples

The Idea

« Reuse information from failed candidate checks

The Issue

- Non Robustness (V3 gquantification) does not give
us counter-examples

Proposal

- Use a second trace property that ensures the bug
does not arise

« Prune using these counter-examples

@ Inference of Robust Reachability Constraints

candidate, —

— not sufficient

— counter-example

}
yes

candidate,

SAT? — skip

no

OEIV

19/01/2024 13



Experimental Evaluation

Implementation & BINSEC
« (Robust) Reachability on binaries

« Tool: BINSEC [Djoudi and Bardin 2015]
« Tool: BINSEC/RSE [Girol at. al. 2020]

Prototype

Research Questions

1) Can we compute non-trivial constraints?
2) Can we compute weakest constraints?
3) What are the algorithmic performances?
4) Are the optimization effective?

Benchmarks

- PyAbd, Python implementation of the procedure < Software verification (SVComp extract + compile)

- Candidates: Conjunctions of equalities and
disequalities on memory bytes

@ Inference of Robust Reachability Constraints

- Security evaluation (FISSC, fault injection)

19/01/2024 14



Results: Generating Constraints (RQ1, RQ2)

sv-comp (Eg) sv-comp (Ig) FIssc (Eg) FIssc (Ig)

N O N O N O N O

# programs 147 64 147 64 719 719 719 719

# of robust cases 111 3 111 3 129 118 129 118

# of sufficient rrc 122 5 127 24 359 598 351 589

# of weakest rrc 111 3 120 4 262 526 261 518

Inference languages

- (dis-)Equality between memory bytes (Eg)

-+ Inequality between memory bytes (Ig) — More expressivity but more candidates

We can find more reliable bugs than Robust Symbolic Execution

@ Inference of Robust Reachability Constraints

19/01/2024

15



A
Results: Influence of the ‘Efficient Strategies’ (RQ4; &

sv-comp, B, (Ig) sv-comp, O, (Ig)

3 -~ Significantly improves the

10 F .

O i capabilities of the method
£
“ 10

0 20 40 60 80 100 120 0 5 10 15 20 25

# of examples # of examples EaCh Strategy matters
Fi1ssc, |, (Eg) Fi1ssc, O, (Eg)

0 50

100 150 200 250 300 350 0
# of examples

--@-- pyabd+allopt

100 200 300 400 500 600
# of examples
pyabd+cex+nec

—*— pyabd+cex -4 pyabd+noopt

Fig. 5. Cactus plot showing the influence of the strategies of Section 5 on the computation of the first
sufficient k-reachability constraint with PYABD.

—h—

@ Inference of Robust Reachability Constraints

19/01/2024 16



Results: Vulnerability Characterization on a Fault-
Injection Benchmark

Our Solution:

PYABD BiNsEC/RSE  BINSEC - Finds and characterize vulnerabilities
unknown 170 273 170 in-between Reachability and Robust
not vulnerable (0 input) 4414 4419 3921 Reachability

vulnerable (> 1 input) 226 118 719
> 0.0001% 226 118 -
> 0.01% 209 118 -
> 0.1% 173 118 -
> 1.0% 167 118 -
> 5.0% 166 118 -
> 10.0% 118 118 -
> 50.0% 118 118 -
100.0% 118 118 -

@ Inference of Robust Reachability Constraints 19/01/2024



Conclusion

Conclusion

- We propose a precondition inference technique to
improve the capabilities of Robust Reachability

- We adapt theory-agnostic abduction algorithm to 3V
formulas and apply it at program-level through oracles

- We demonstrates its capabilities on simple yet realistic
vulnerability characterization scenarii

@ Inference of Robust Reachability Constraints

& BINSEC
(hiring)

.-EE:E

e

19/01/2024 18



Conclusion

Conclusion

- We propose a precondition inference technique to
improve the capabilities of Robust Reachability

- We adapt theory-agnostic abduction algorithm to 3V
formulas and apply it at program-level through oracles

- We demonstrates its capabilities on simple yet realistic
vulnerability characterization scenarii

Preconditions explain the vulnerability
Can be reused for understanding, counting, comparing

@ Inference of Robust Reachability Constraints

& BINSEC
(hiring)

.-EE:E

e

19/01/2024 18



Conclusion

Conclusion

- We propose a precondition inference technique to
improve the capabilities of Robust Reachability

- We adapt theory-agnostic abduction algorithm to 3V
formulas and apply it at program-level through oracles

- We demonstrates its capabilities on simple yet realistic
vulnerability characterization scenarii

Preconditions explain the vulnerability
Can be reused for understanding, counting, comparing

@ Inference of Robust Reachability Constraints

Questions?

& BINSEC
(hiring)

.-EE:E

e

19/01/2024 18



PP e

—C

»
c
9
.
"
D
S
o




