g ist

1
.® \\" == USCUniversity of
universite ? Y Southern California2

PARIS-SACLAY

Fine-Grained
Coverage-Based Fuzzing

Wei-Cheng Wu - Bernard Nongpoh ' Marwan Nour *

Michaél Marcozzi* Sébastien Bardin ! Christophe Hauser ?

to appear in
ACM Transactions On Software Engineering and Methodology

This work has been mainly carried out by...

Wei-Cheng Wu Dr. Benard Nongpoh Marwan Nour
Ph.D. student Postdoc M.Sc. Intern
(also @ USC in Los Angeles) (now @ Qualcomm) (from Ecole Polytechnique)

30/05/2023 Fine-Grained Coverage-Based Fuzzing 2/51

About me // Dr. Michaél Marcozzi

* Permanent researcher @ CEA LIST, Université Paris-Saclay
* My research group focus on software analysis for security

* Invited lecturer @ ENSTA, Institut Polytechnique de Paris

30/05/2023 Fine-Grained Coverage-Based Fuzzing 3/51

Outline

1. Context: coverage-based fuzzing

buffer-overflow.c

F u ZZl n g [1/2] int check_authentication(char *password) {

int auth_flag = ©;
ar password_buffer[10];
. . . strcpy(password_buffer, password);
FUZZlng d program (for Securlty) IS... if (strcmp(password_buffer, "dumbledore") == @)
auth_flag = 1;
if |(strcmp(password_buffer, "gandalf") == @)

1. Feed program with massive number of auth_flag = 1;

return auth_flag;

automatically generated inputs

int main(int argc, char *argv[]) {
AFL_INIT_ARGV();
if (argc < 2) {
printf("Usage: %s <password>\n", argv[@]);

3. Analyse failures to reveal program SEEG):

} else if (check_authentication(argv[1]))
{

2. Trigger so observable failures (e.g. crashes)

vulnerabilities to fix or exploit

printf("\nSensitive actions done.\n");

}

else printf("\nAccess Denied.\n");

30/05/2023 Fine-Grained Coverage-Based Fuzzing 5/51

buffer-overflow.c

F u ZZl n g [1/2] int check_authentication(char *password) {

int auth_flag = ©;
ar password_buffer[10];
. . . strcpy(password buffer, password);
FUZZlng d program (for Securlty) IS... if (strcmp(password_buffer, "dumbledore") == @)
auth_flag = 1;
if |(strcmp(password_buffer, "gandalf") == @)

1. Feed program with massive number of auth_flag = 1;

return auth_flag;

automatically generated inputs

int main(int argc, char *argv[]) {
AFL_INIT_ARGV();
if (argc < 2) {
printf("Usage: %s <password>\n", argv[@]);

3. Analyse failures to reveal program SEEG):

} else if (check_authentication(argv[1]))
{

2. Trigger so observable failures (e.g. crashes)

vulnerabilities to fix or exploit

printf("\nSensitive actions done.\n");

}

else printf("\nAccess Denied.\n");

30/05/2023 Fine-Grained Coverage-Based Fuzzing 6/51

buffer-overflow.c

F u ZZl n g [1/2] int check_authentication(char *password) {

int auth_flag = ©;
ar password_buffer[10];
strcpy(password buffer, password);

FUZZing Vs | program (for Security) iS"_ if (strcmp(password_buffer, "dumbledore") == @)
auth_flag = 1;
if |(strcmp(password_buffer, "gandalf") == @)

1. Feed program with massive number of auth_flag = 1;

return auth_flag;

automatically generated inputs

int main(int argc, char *argv[]) {
AFL_INIT_ARGV();
if (argc < 2) {
printf("Usage: %s <password>\n", argv[@]);

3. Analyse failures to reveal program SEEG):

} else if (check_authentication(argv[1]))
{

2. Trigger so observable failures (e.g. crashes)

vulnerabilities to fix or exploit

printf("\nSensitive actions done.\n");

}

./buffer-overflow.exe 11 else printf("\nAccess Denied.\n");

Segmentation fault

30/05/2023 Fine-Grained Coverage-Based Fuzzing 7/51

Fuzzing [2/2]
Fuzzing is popular (why? easy to understand/use, scalable, effective?)...

* Many recent research papers on improving fuzzers

e “At Google, fuzzing has uncovered tens of thousands of bugs” weumanetat, 2001

* Fuzzers have found many CVE vulnerabilities in real programs

Trophies

CVE 201914437 CVE-2019-14438 CVE-2019-14498 CVE-2019-1 4533 CVE-2019-14534 CVE-2019-14535 CVE-2019-14776 CVE-2019-14777
CVE-2019-14778 CVE-2019-14779 CVE-2019-14970 by Antonio Morales (GitHub Security Lab)

= Sqlit

i Lin (Ant-Financial Light-Year Security Lab)

- Vim
CVE-2019-20079 by Dhiraj (blog)

« Pure-FTPd
CVE-2019-20176 CVE-2020-9274 CVE-2020-9365 by Antonic Morales (GitHub Security Lab)

_____ e il I

Number of fuzzing papérs/year [Liang et al., 2018] Some 2019 CVEs found by AFL++ fuzzer [AFL++ website]

30/05/2023 Fine-Grained Coverage-Based Fuzzing 8/51

Coverage-based fuzzing [1/3]

Many fuzzers use branch coverage to guide input generation...

* New inputs are generated by mutating the former inputs that improved branch coverage

 The rationale of this heuristic is...

* The inputs that improved branch coverage uncovered new interesting program behaviours

* Mutating these inputs should explore these new behaviours even more

if (input > 5) {

} else {

}

30/05/2023 Fine-Grained Coverage-Based Fuzzing 9/51

Coverage-based fuzzing [2/3]

More precisely, coverage-based fuzzers implement the following loop...

Mutations
\\I
Failure Yes Analyse possible
—1 Momtor observed? vulnerability!
E E
—1 . Branch coverage
(User-provided) Seed Test improved?

Initial inputs

30/05/2023 Fine-Grained Coverage-Based Fuzzing

10/51

Coverage-based fuzzing [2/3]

More precisely, coverage-based fuzzers implement the following loop...

(User-provided)
Initial inputs

30/05/2023 Fine-Grained Coverage-Based Fuzzing 11/51

Coverage-based fuzzing [2/3]

More precisely, coverage-based fuzzers implement the following loop...

Mutations

\u%

(User-provided)
Initial inputs

30/05/2023 Fine-Grained Coverage-Based Fuzzing 12/51

Coverage-based fuzzing [2/3]

More precisely, coverage-based fuzzers implement the following loop...

Mutations
\\I
. Momtor
E E
(Usc.er.—pr.owded) Seed Test
Initial inputs .
input input

30/05/2023 Fine-Grained Coverage-Based Fuzzing 13/51

Coverage-based fuzzing [2/3]

More precisely, coverage-based fuzzers implement the following loop...

Mutations

\Yj
§ - Failure Yes Analyse possible
‘ Monitor observed? vulnerability!

Seed Test
input input

(User-provided)
Initial inputs

30/05/2023 Fine-Grained Coverage-Based Fuzzing 14/51

Coverage-based fuzzing [2/3]

More precisely, coverage-based fuzzers implement the following loop...

Mutations
\\I
Failure Yes Analyse possible
—1 Momtor observed? vulnerability!
E E
—1 . Branch coverage
(User-provided) Seed Test improved?

Initial inputs

30/05/2023 Fine-Grained Coverage-Based Fuzzing

15/51

Coverage-based fuzzing [2/3]

More precisely, coverage-based fuzzers implement the following loop...

Mutations
\\I
Failure Yes Analyse possible
—1 Momtor observed? vulnerability!
E E
—1 . Branch coverage
(User-provided) Seed Test improved?

Initial inputs

30/05/2023 Fine-Grained Coverage-Based Fuzzing

16/51

Coverage-based fuzzing [2/3]

More precisely, coverage-based fuzzers implement the following loop...

Mutations
\\I
Failure Yes Analyse possible
—1 Momtor observed? vulnerability!
E E
—1 . Branch coverage
(User-provided) Seed Test improved?

Initial inputs

The loop terminates when the fuzzing budget is over!

30/05/2023 Fine-Grained Coverage-Based Fuzzing 17/51

Coverage-based fuzzing [3/3]

Yet, the fuzzing loop alone requires a high budget to find bugs in “difficult” branches...

A branch in fuzzed code is “difficult” when only activated by tiny fraction of inputs

int main (long long input)

if (input == 666) {

}

* Code analyses enable fuzzers to be faster at finding inputs entering difficult branches...

» (Taint tracking) Track comparisons between inputs and constants in fuzzed code (e.g. AFL++ fuzzer)

* (Symbolic execution) Derive and solve path constraints to enter barely covered branches (e.g. Qsym fuzzer)

30/05/2023 Fine-Grained Coverage-Based Fuzzing 18/51

Outline

2. Problem: branch coverage is shallow

Fine-grained coverage metrics [1/2]

* Branch coverage is a shallow metric of interesting program behaviours
* Fuzzers may thus ignore inputs that were interesting to find and mutate
* Software testing researchers have for long proposed finer-grained metrics

* ldea: guide fuzzers using these control-flow, data-flow or mutation metrics

30/05/2023 Fine-Grained Coverage-Based Fuzzing 20/51

Fine-grained coverage metrics [2/2]

For example, MCC metric considers subtler variations of program logic...

cover both branches cover whole truth table
if (engine_speed >0 || wheels_speed > 0) { Coverage objective Satisfying input Coverage objective Satisfying input
lelse{..} Take THEN branch true || true

engine_speed =0

Take ELSE branch wheels_speed =0

true | | false

false || true

engine_speed =0

false || false wheels_speed = 0

State of the art

 Early research exists for a specific fine-grained metric in a specific fuzzer
* Yet, no clear and general idea of what practical impact is

* Huge effort needed to support all fine-grained metrics in all legacy fuzzers

C -)

30/05/2023 Fine-Grained Coverage-Based Fuzzing 22/51

Outline

3. Goal: enable and evaluate fuzzer guidance with fine-grained metrics

Challenges of guiding fuzzers with finer-grained metrics

1. Harness the wild variety of legacy fuzzers and fine-grained metrics...

Provide a runtime guidance mechanism that works without modifying legacy fuzzers:

* Activate coverage objectives from most fine-grained metrics for seed selection

» Trigger search for inputs that satisfy difficult fine-grained coverage objectives

2. Evaluate impact of fine-grained metrics over legacy fuzzers performance

30/05/2023 Fine-Grained Coverage-Based Fuzzing 24/51

Outline

4. Proposal: finer-grained objectives as new branches in fuzzed code

Principle [1/3]

We guide legacy (branch) fuzzers by transforming the fuzzed program...

* Objectives from most metrics can be made explicit as assertions in the fuzzed code

[Bardin et al., 2021]

* Thus, we add a no-op branch (if guarded by the assertion predicate) for each assertion

— >

Principle [2/3]

Multiple Condition Coverage (MCC)

cover whole truth table if (engine_speed >0 && wheels_speed > 0) {}
s
if (engine_speed <=0 && wheels_speed > 0) {}
true || true engine_speed =5
wheels_speed =5 »
if (engine_speed >0 || wheels_speed > 0) { engine_speed =5])
// Lock door + wheels_speed = 0 if (engine_speed >0 || wheels_speed > 0) {
Yelse {..} : // Lock door
else y ... false || t engine_speed =0
amse rue wheels_speed =5 } else { }

engine_speed =0
wheels_speed =0

30/05/2023 Fine-Grained Coverage-Based Fuzzing 27/51

Principle [3/3]

When fuzzing the transformed program with a legacy (branch) fuzzer...

e ...inputs covering the fine-grained objectives will effortlessly be saved as seeds

 ...code analyses for difficult branches will help with difficult fine-grained objectives

— >

Practical contributions

We propose a careful no-op branch insertion tool for fine-grained metrics...

* ...which avoids corrupting the program semantics (side-effects, spurious crashes)

 ...which avoids branches being tampered by compiler or fuzzing harness

\)/ \)/
A\ A\

30/05/2023 Fine-Grained Coverage-Based Fuzzing 29/51

Simple example of corruption avoidance

if (print(“a”) | | graph_ok) {

} else { }

Simple example of corruption avoidance

// Proceed

}else{/* Error */}

if (print(“a”) | | graph_ok) { l

30/05/2023

if (print(“a”) && graph_ok) {}
if (print(“a”) && !graph_ok) {}
if (!print(“a”) && graph_ok) {}

if (print(“a”) | | graph_ok) {
// Proceed
}else {/* Error */}

Fine-Grained Coverage-Based Fuzzing

31/51

Simple example of corruption avoidance

30/05/2023

if (print(“a”) | | graph_ok) {
// Proceed
}else{/* Error */}

if (print(“a”) && graph_ok) {}
if (print(“a”) && lgraph_ok) {}
if (!print(“a”) && graph_ok) {}

if (print(“a”) | | graph_ok) {
// Proceed
}else {/* Error */}

Fine-Grained Coverage-Based Fuzzing

Prints “a” 4x more!
(semantic change)

32/51

Simple example of corruption avoidance

30/05/2023

if (print(“a”) | | graph_ok) {
// Proceed
}else{/* Error */}

if (print(“a”) && graph_ok) {}
if (print(“a”) && lgraph_ok) {}
if (!print(“a”) && graph_ok) {}

if (print(“a”) | | graph_ok) {
// Proceed
}else {/* Error */}

int temp = print(“a”);

if (temp || graph_ok) {
// Proceed

}else{/* Error */}

Fine-Grained Coverage-Based Fuzzing

Prints “a” 4x more!
(semantic change)

33/51

Simple example of corruption avoidance

30/05/2023

if (print(“a”) | | graph_ok) {
// Proceed
}else{/* Error */}

int temp = print(“a”);

if (temp | | graph_ok) {
// Proceed

}else{/* Error */}

=)

if (print(“a”) && graph_ok) {}
if (print(“a”) && lgraph_ok) {}
if (!print(“a”) && graph_ok) {}

if (print(“a”) | | graph_ok) {
// Proceed
}else {/* Error */}

o n

int temp = print(“a”);

if (temp && graph_ok) {}
if (temp && Igraph_ok) {}
if (Itemp && graph_ok) {}

if (temp | | graph_ok) {
// Proceed
telse{/* Error */ }

Fine-Grained Coverage-Based Fuzzing

Prints “a” 4x more!
(semantic change)

34/51

Possible extensions

No-op branches could be used as a more general guidance mechanism...

* They could also be guarded by predicates written by human developers...

e ...or by predicates computed by static analysers (like fault preconditions)

— >

Outline

5. Experimental evaluation of impact

Main evaluation plan

We evaluate the impact of fine-grained metrics over fuzzing...

 ...by running legacy fuzzers over original programs and transformed versions

 ...and comparing throughput, seeds number, covered branches and found bugs

(I

30/05/2023 Fine-Grained Coverage-Based Fuzzing 37/51

Main experimental setup

EN
é:ﬁ: LAVA-M and MAGMA

standard benchmarks

&2&2 16 Cprograms

. 700k LOC with planted bugs
Original programs

30/05/2023 Fine-Grained Coverage-Based Fuzzing 38/51

Main experimental setup

EN
é:ﬁ: LAVA-M and MAGMA

standard benchmarks

&2&2 16 Cprograms

. 700k LOC with planted bugs
Original programs

v v

8 RN
.ﬁ;.ﬁ; .ﬁ;.ﬁ; We use Multiple Condition Coverage (MCC) and Weak Mutations coverage (WM)
Ea‘ Ea‘ Eg‘ Eg‘ two common fine-grained metrics, notoriously denser than branch coverage

Transformed programs Transformed programs
for WM metric for MCC metric

o
cad

Transformed programs for
WM+MCC metrics

30/05/2023 Fine-Grained Coverage-Based Fuzzing 39/51

Main experimental setup

neia

LAVA-M and MAGMA
standard benchmarks

eiia

Original programs

16 C programs

700k LOC with planted bugs

v

h 4

e
et

Transformed programs
for WM metric

cacr
cmeiia

Transformed programs
for MCC metric

v

e
dimetia

Transformed programs for
WM+MCC metrics

30/05/2023

AFL++

5 x (24h fuzzing campaign)
per program
to improve statistical significance

Fine-Grained Coverage-Based Fuzzing

40/51

Main experimental setup

i
conua

Original programs

LAVA-M and MAGMA
standard benchmarks
16 C programs
700k LOC with planted bugs

v

h 4

e
res

Transformed programs
for WM metric

cimeia
coanea

Transformed programs
for MCC metric

caes
cres

Transformed programs for
WM+MCC metrics

30/05/2023

5 x (24h fuzzing campaign)
per program
to improve statistical significance

Fine-Grained Coverage-Based Fuzzing

Averaged...

£ fuzzer’s throughput

saved seeds
covered branches
' # planted bugs that were detected

41/51

2.5 years of CPU computation happen here

30/05/2023

Consolidated results for AFL++

(detailed results for AFL++ and QSYM are available in the paper, observations are similar)

Executable AFL++ with MCC AFL++ with WM AFL++ with MCC + WM
Throughput | Seeds | Branches Bugs | Throughput | Seeds | Branches Bugs | Throughput | Seeds | Branches Bugs
base64 +29%
"""""" uniq | 6w | 5% | 7 |
~md5sum | c18% | -34% | a1
"""""" who | en | +19% | 133 | v165
lua
”””””” exif a1 | 41
""""" sndfile 230 |
- libpng read | n | vean | 33 1
tiff_read_rgba 268 | 2
tiffcp -653 -2
“read_memory 47 |
xmllint -850 -1
""""" sqlite3 2489 |
""""" server s [
client
x509 -1

Fine-Grained Coverage-Based Fuzzing

43/51

Consolidated results for AFL++

(detailed results for AFL++ and QSYM are available in the paper, observations are similar)

AFL++ with MCC AFL++ with WM AFL++ with MCC + WM

Executable

Throughput | Seeds | Branches Bugs | Throughput | Seeds | Branches Bugs | Throughput | Seeds | Branches Bugs

who 6% +19% +133 +165 9 +28% 6 +98 -19% +22% 4 -56

lua 6 65 - -33% 7 -159 - -36% (9 -
o exif | 219 | c19% | - i | N 2% | 5% | 13 | +1 | -21m |- 25% | 98 | 1
""""" sndfile | 8% | -2z | 230 | — | 2% | +39% | 578 | - | -ea% | +a8% | 373 | —
- libpng_read | % | +64% | - 3 | S va5% | 12 | — s | eesw |- 6 | —
tiff_read_rgba | -49% | 2% | 268 | 2 | 8% | f11% | 354 | - 1| aasw | +15% | 158 | -1

tiffcp -49% 9 -653 -2 -52% +18% -512 -2 -44% +18% -543 -2
‘read_memory | -84% | w359 | -1447 | — | 63% | +8% | 55 | - 1 sen | +s3% | 1333 | —

xmllint -72% +46% -850 -1 -49% +12% +401 -1 -77% +54% -1059 -1
""""" sqlite3 | -19% | 7% | 2489 | — | 25% | -10% | -5297 | — | -a5% | -19% | -6062 | —
-~ server | 7% | 3% | % O a 8% | S |- 26 | - 1| 3% | e | a7 | a

client -17% +16 -27% -20 -42% -1
x509 -18% +1 -9 -1 -21% +1 -11 -24% +1 -13 -1

Fuzzer quickly saturates on smaller and simpler programs...

30/05/2023 Fine-Grained Coverage-Based Fuzzing 44/51

Consolidated results for AFL++

(detailed results for AFL++ and QSYM are available in the paper, observations are similar)

AFL++ with MCC AFL++ with WM AFL++ with MCC + WM

30/05/2023

Executable

Throughput

Seeds | Branches

Bugs

Throughput

Seeds

Branches

Bugs

Throughput

Seeds

Branches

Bugs

who -6% +19% +133 +165 -9% +28% 6 +98 -19% +22% 4 -56

lua 8% (65 - -33% 7 -159 - -36% 6)9 -
o exift | 2% | -19% | - a1 a0 2% | 5% | 13 | +1 | -21m | - 25% | 98 | 1
""""" sndfile | 8% | <22 | 239 | — | 2% | +39% | 578 | — | -64% | +48% | 373 | —
- libpng_read | - 7% | +64% | - 33 BT 3% |- va5% | 12 | — | casm | s95% | - 6 | -
tiff_read_rgba | -49% | 2% | 268 2 8% | f11% | 354 | - 1| a5% | +15% | 158 | -1

tiffcp -49% 9 -653 -2 -52% +18% -512 -2 -44% +18% -543 -2
‘read_memory | -84% | ¥35% | - 1447 | — | 63% | +8% | 55 | - 1 8w | +53% | - 1333 | -

xmllint -72% +46% -850 -1 -49% +12% +401 -1 -717% +54% -1059 -1
""""" sqlite3 | -19% | 7% | -2489 | — | -25% | -10% | -5297 | — | -45% | -19% | -6062 | —
- server | 7% | 3% | 3| a1 18% | s | - 26 | - 1| 3% | - 5% | 47 | a1

client -17% 16 -27% 0 -42% -1%)
x509 -18% 1 -9 -1 -21% #1 -11 -24% #1 -13 -1

Fine-grained metrics slow down the fuzzer
(instrumented program is slower and produces more coverage data)

Fine-Grained Coverage-Based Fuzzing

45/51

30/05/2023

Consolidated results for AFL++

(detailed results for AFL++ and QSYM are available in the paper, observations are similar)

Executable

AFL++ with MCC

AFL++ with WM

AFL++ with MCC + WM

Throughput

Seeds

Branches

Bugs

Throughput

Seeds

Branches

Bugs

Throughput

Seeds

Branches

Bugs

who 6% +19% +133 +165 -99, +28% +6 +98 -19% +22% -4 -56

lua -8% 6% -65 - -33% 7 -159 - -36% 6% -99 -
o exift | 219 | -19% | 41 1| 2% | s | 13 | w1 | 21w | 25% | 98 | 1
""""" sndfile | 8% | -2z | 230 | — | 2% | 439w | 578 | - | -ea% | «as% | 373 | —
- libpng_read | % | +64% | 33 ET 3% |- +45% | - 12 | — | css | sesw | e | —
tiff_read_rgba | -49% | 2% | 268 2| 8% | f11% | 354 | - 1| aasw | +15% | 158 | -1

tiffcp -49% -9 -653 -2 -52% +18% -512 -2 -44% +18% -543 -2
‘read_memory | -84% | w359 | -1447 | — | 63% | +8% | 55 | - 1 sew | +53% | - 1333 | -

xmllint -72% +46% -850 -1 -49% +12% +401 -1 -77% +54% -1059 -1
""""" sqlite3 | -19% | 7% | 2489 | — | 25% | -10% | -5297 | — | -a5% | -19% | -6062 | —
-~ server | -17% | % | 3 | a1 | 18% | - 5% | 26 | - a1 | k8w | s | a7 | a0

client -17% +2% +16 -27% 20 -42% -1% -27
x509 -18% +1% -9 -1 -21% +1% -11 -24% +1% 13 -1

Fine-grained metrics improve performance when fuzzer slowdown is low enough
and bug density is high enough (favour local exploration vs. new branch discovery)

Fine-Grained Coverage-Based Fuzzing

46/51

Consolidated results for AFL++

(detailed results for AFL++ and QSYM are available in the paper, observations are similar)

Executable

AFL++ with MCC

AFL++ with WM

AFL++ with MCC + WM

Throughput

Seeds

Branches

Bugs

Throughput

Seeds

Branches

Bugs

Throughput

Seeds | Branches

Bugs

-6% +19% +133 +165 -9% +28% +6 +98 -19% +22% 4 -56
lua -8% +6% -65 - -33% 7% -159 - -36% 6% -99 —
o exif | 2% | -19% | 41 P 2% | s | 13 [| 2 |- 25% | 98 | 1
""""" sndfile | 8% | w2z | 29 | — | 72w | +39% | 578 | — | -6a% | +48% | 373 | —
- libpng_read | % | v64% | 33 BT 3% | +45% | - a2z | — | 3w | sesw | 16 | —
tiff_read_rgba | -49% | 2% | 268 EN 8% | 1% | 354 | - a0 - 45% | +15% | -158 | -1
tlHCp -49% -9% -653 -2 -52% +18% -512 -2 -44% +18% -543 -2
‘read_memory | -84% | w359 | -1447 | — | -63% | +8% | 556 | N 86% | +53% | -1333 | —
xmllint -72% +46% -850 -1 -49% +12% +401 -1 -77% + ° e
""""" sqiites e T T T e o [e T e Hard to know if these conditions
""""" server |z T EE T AT T e e T AT s T are met before fuzzing
client -17% +29 +16 -27% 20 42% : (most of the time, no)... :_(
x509 -18% +1% -9 -1 -21% +1% -11 -24% . ‘ ‘

30/05/2023

Fine-grained metrics improve performance when fuzzer slowdown is low enough
and bug density is high enough (favour local exploration vs. new branch discovery)

Fine-Grained Coverage-Based Fuzzing

47/51

Outline

6. Conclusions

30/05/2023 Fine-Grained Coverage-Based Fuzzing 48/51

Conclusions [1/2]

Adding no-op branches to fuzzed code...

e Can provide runtime guidance to legacy (branch) fuzzers out of the box

e Can encode guidance from most fine-grained coverage metrics

* Requires careful transformation for not breaking semantics (beware of corner cases)

Future work involves...

e Study tighter integration with fuzzer harness and configuration

 Use to encode human directives or bug preconditions from static analysers

30/05/2023 Fine-Grained Coverage-Based Fuzzing 49/51

Conclusions [2/2]

Fine-grained metrics should not replace branch coverage to guide fuzzers...

* Impact is hard to predict before fuzzing and usually neutral or negative

» Other studies (with tight fuzzer/metric integration) tend to confirm this trend

* Yet, they might be useful in small doses, to improve local exploration where needed

Future work involves...

 |nvestigate favourable circumstances that could make fine-grained metrics profitable

* Notably, use them only in fragile or sensitive parts of the code...

30/05/2023 Fine-Grained Coverage-Based Fuzzing 50/51

Fine-Grained Coverage-Based Fuzzing

Key takeaways
> Carefully adding branches to fuzzed code provides guidance to fuzzers
> Fine-grained metrics slow down fuzzers but favour local exploration

\ Dr. Michaél Marcozzi
& Permanent Researcher

u @michaelmarcozzi

/ﬁ\ WwWw.marcozzi.net Postdocs, Ph.D: students and interns .
Software security and program analysis

30/05/2023 Fine-Grained Coverage-Based Fuzzing 51/51

