.
universite
PARIS-SACLAY

A Tight Integration of
Symbolic Execution and Fuzzing

(short paper)

Yaélle Vincont!?, Sébastien Bardin?, Michaél Marcozzi®

International Symposium on Foundations & Practice of Security 2021
1Laboratoire Méthodes Formelles, Université Paris-Saclay

2CEA, List, Université Paris-Saclay

Vulnerabilities

Vulnerabilities

Heartbleed
BigSig
'r(moz://a
2014 2021

Goal
Automatically test programs to find bugs

2/23

Symbolic Execution

A
&]t 1 formula per path
¥o Pl [\ e
A A o 7/°ec\pooooopgoo0000
\ LI
\ LI}
\ LI
: . P0, L1, P2, oh P12
' [P12
\ 1 1
\ 1 \ A
\ 1 \ B
O G

SMT solver
Examples: K&% & BINSEC, Angr &, Manticore ...

3/23

Symbolic Execution

e Path explosion

e Complicated formula

A
&]t 1 formula per path
¥o Pl [\ e
A A o 7/°ec\pooooopgoo0000
\ LI
\ LI}
\ LI
: . P0, L1, P2, oh P12
' [P12
\ 1 1
\ 1 \ A
\ 1 \ B
O G

SMT solver
Examples: K&% & BINSEC, Angr &, Manticore ...

3/23

Fuzzing

Program
Under Test

input .
g mutation
selection
Fuzzing

Examples: AFL, Radamsa, FairFuzz, Steelix...

4/23

Fuzzing

input
g mutation
selection
coverage
increased

Program
Under Test

Fuzzing

Examples: AFL, Radamsa, FairFuzz, Steelix...

4/23

Fuzzing

input
selection
coverage
increased

Fuzzing

Examples: AFL, Radamsa, FairFuzz, Steelix...

Program
Under Test

number of instr found
n w I @ a
8 8 & g 3

5

0 100 200 300 400 500
time since start (in s)

4/23

Mixing test generation techniques, to get power of SE and
lightness of fuzzing:

e efficient approach
e reason about complex code

e quick and easy input generation

Pitfall: getting the worst of both worlds

5/23

Challenges

w.r.t. symbolic reasoning

e cheap [solver-less]
e targets interesting paths
e correct

e integrated with fuzzer

w.r.t. fuzzing

o efficient

e solves constraints

6/23

20
c
c
.0
S=
@
(@]
(a8

sjusuodwod

pa31e4893ul-|I9AA

ok
ok

S1UIeJISUOD)

Fuzzing

wayyg

199.10D)

pa1934e

Analysis

deay)

oljoquiAg

X

Fuzzing

SE

Driller

Qsym

Pangolin

Angora

Matryoshka
Eclipser

v

|lv v v v|v v |

7/23

Our proposal

Lightweight Symbolic Constrained Fuzzer
Execution e based on AFL [Efficient]
e variant of Dynamic SE o takes seed &
[Targeted & correct] easily-enumerable
e target easily-enumerable constraint [Cheap & solves
constraints [Cheap & constraints]
integrated)]
efficiently creates seeds,
leads exploration past specific including solutions to
conditions constraints

8/23

Example

9/23

Motivating example

int main(int argc, char** argv) {

char buf[BUF_LENGTH];
int x, y;

int res = read(®, buf, BUF_LENGTH);
if (res < BUF_LENGTH) {

printf("entry too small\n");
return 0;

int cpt;

for (cpt = 16; cpt < 36; cpt++) { Loop with independent conditions
if (buf[cpt] == cpt % 20)

v 1 0/10/20 iterations

if (buf[e] == 'a")
if (buf[4a] F')
if (buf[7] 6')
if (buf[12] == '
if (buf[15] == 'L")
=g
else

else —— Serie of nested conditions
X = 3;
else
X = 4;
else
XR=N5;
else
X =6;

return 0;

10/23

Motivating example

int main(int argc, char** argv) {

char buf[BUF_LENGTH];
int x, y;

int res = read(®, buf, BUF_LENGTH);

if (res < BUF_LENGTH) { Fuzzmg
printf("entry too small\n"); i , .
T isn't aware of it, no problem
01 @ struggles finding a solution

for (cpt = 16; cpt < 36; cpt++) {
if (buf[cpt] == cpt % 20)

y +=1;
}
if (buf[e] == 'a")
if (buf[4] "F')
if (buf[7] == '6")
if (buf[12] == 'g")
if (buf[15] == 'L")
X =13
else
X = 23
else
3= 58
else
X = 4;
else
X = 5;
else
X = 6;
return 0;

10/23

Motivating example

int main(int argc, char** argv) {

char buf[BUF_LENGTH];
int x, y;

int res = read(®, buf, BUF_LENGTH);

if (res < BUF_LENGTH) {
printf("entry too small\n");
return 0;

int cpt;
for (cpt = 16; cpt < 36; cpt++) {
if (buf[cpt] == cpt % 20)

y += 1; S; EE
}
if (buf[e] == 'a")
if (buf[4] "F')
if (buf[7] == '6")
if (buf[12] == 'g")
if (buf[15] == 'L")
X =13
else
X = 2;
else
3= 58
else
X = 4;
else
X = 5;
else
X = 6;
return 0;

Fuzzing

isn’t aware of it, no problem
struggles finding a solution

tries to explore every paths, path explosion
solves with SMT solver

10/23

Motivating example

int main(int argc, char** argv) {

char buf[BUF_LENGTH];
int x, y;

int res = read(®, buf, BUF_LENGTH);

if (res < BUF_LENGTH) { Fuzzmg
printf("entry too small\n"); i , .
T isn't aware of it, no problem
G @ struggles finding a solution

for (cpt = 16; cpt < 36; cpt++) {
if (buf[cpt] == cpt % 20)

, y += 1; SE
if (buf[e] == 'a') tries to explore every paths, path explosion
if (buf[4] "F')
if (buf[7] == '6') i
Gl = solves with SMT solver
if (buf[15] == 'L")
X = 1;
else ConFuzz
X =2;
1 n
. not really aware of it
else . -
% = 45 LSE finds constraints, CF
else
X = 5 solves them
else
X = 6;
return 0;

10/23

Motivating example - results

Ran 10 times, 20 minutes, KLEE, AFL, ConFuzz, with 0 and 20
loop iterations

AFL KLEE ConFuzz

Nb success/Nb tries 9/10 10/10 10/10
0 iterations Time (s) to cover Avg 247.3 0.3 1.0
all branches Dev (o) 347.6 0.1 0.2
Nb success/Nb tries 9/10 10/10 10/10
20 iterations Time (s) to cover Avg 2456 132.6 1.4
all branches Dev (o) 354.9 9.5 0.2

11/23

Behind ConFuzz

12/23

General Principle

& BINSEC, AFL

Lightweight Symbolic -
. Constrained Fuzzer
Execution ;
. . enumerate solutions
infer easily-enumerable]
. to constraint
predicate

13/23

Example

...~ targeted transition

L o
“~ Lightweight
. Symbolic
A ; Execution
) '
II A~ oz
| v P(c2)
|\ " &~
y .
io, i1, i2, -, in F B(c2) Constrained Fuzzer|

[c £ c = True, $(c) £ easily-enumerable path predicate for the path up to c |

14/23

Key challenge: easily-enumerable path
constraints

how to define it?

how to compute it?

Easily-Enumerable Constraint Language

[X: input variables, i, j: integers]

Definition (Easily-Enumerable)

Complexity enumerating n solutions: O(n x |X|)

Definition (Our Constraint Language)

g2 N k<x<jn N\ x=y
xeX x,yeX

15/23

Easily-enumerable Path Predicate - Example

i={x:0;y:1;z:2;t:4; v:5}

Program P Trace o p(c#v) P(c # v)
a=zx+ 3; declare x, y, z, t, v; x<1 x<1
if (a <= 4) { define a = x + 3; AN y=z AN y=
b =y; assert (a <= 4); A t# A t=4
e = t; define b Y A v=5
} define c = t; Path predicate Easil
else { assert (b = z); ’ cmumerable
b = 2; assert (C = V); path predicate
} define d = 3;
if (b !'=2) {
d = 4;
}
else if (c !'= v) {
d = 3;
}

16/23

Computing ¢ - Backward Dynamic Analyses

Inferring the constraints
i={x:0; y:1;2z:2;t:4; v:5}
declare x,y,z,t,v;

define a = x + 3;
assert (a <= 4);

define b = y;
define ¢ = t;
assert (b == z);
define ¢ = 3;

17/23

Computing ¢ - Backward Dynamic Analyses

Inferring the constraints
i={x:0;y:1;z:2;t:4; v:5}
e assert (c !=v);

e concretization

backtrack on define c =t

e t, v: input variables
i[t] =4, i[v] =5

cstr =t=4Av=5

define ¢ = t;

assert (c !=v);

17/23

Computing ¢ - Backward Dynamic Analyses

Inferring the constraints
i={x:0;y:1;z:2;t:4; v:5}
o cstr:=t=4Av=5
e assert (b == 2z);

e equality analysis

define b = y;
e backtrack on define b =y

assert (b == z); e y, z: input variables

cstri=y =1z

17/23

Computing ¢ - Backward Dynamic Analyses

Inferring the constraints
i={x:0;y:1;z:2;t:4; v:5}

o cstri=t=4ANv=>5
define a = x + 3; - sliEy=a
assert (a <= 4); e assert (a <=4);

e value analysis: a <4

e backtrack on define a = x + 3:
x<1

e x: input variable

cstr :=x<1

17/23

Computing ¢ - Backward Dynamic Analyses

Inferring the constraints

i={x:0; y:1;2z:2;t:4; v:5}

e cstri=t=4Av=5
o cstr:=y=z

e cstr: =x<1

B(cl = v)
xX<1IANy=zAt=4ANv=5

17/23

Integration with Constrained Fuzzing

Lightweight
Constrained 1gtW lg
Symbolic
Fuzzer .
Execution
no__yes
new
Program
Under Test

18/23

Experimental Evaluation

19/23

Implementation - ConFuzz

Lightweight Symbolic Execution

o 4 BINSEC
e 6kloc OCaml

e only i < x < and concretization

Constrained Fuzzer

e AFL
e 4kloc C

e modifed mutations to make them constrained

20/23

Benchmark
Tools e LAVA-M: real-world
e ConFuzz programs, with injected
bugs
e AFL [it was built on]

e Metric: number detected

AFL++ [SoA fuzzing]
KLEE [SoA SE]

bugs

e 1 hour timeout

e Stats on 5 runs

Vargha-Delaney statistic (A1)
Probability for ConFuzz to do better than compared technique

21/23

Results

| AFL AFL++ KLEE | ConFuzz

base64 Avg 0 0.2 10.0 38.8
3kloc Dev (o) 0 0.4 1.3 0.4
44 bugs A1s 1.0 1.0 1.0 -
md5sum Avg 0 0 0 9
3kloc Dev (o) 0 0 0 1.7
57 bugs Ao 1.0 1.0 1.0 =
uniq Avg 0 0.4 5 26.9
3kloc Dev (o) 0 0.5 0 3.6
28 bugs A1n 1.0 1.0 1.0 -

22/23

Conclusion

e Lightweight Symbolic Execution

e uses easy-to-enumerate path predicates
e no need for constraint solver
e offers guarantees on solutions

e integrated with Constrained Fuzzer
e quickly generate solutions

e = promising early results

e Future work

e formalize “"easy-enumerability”
e extend the constraint language
e more extensive experimentation

Find %: BINSEC: binsec.github.io and ¥©@BinsecTool!

23/23

https://binsec.github.io/

	Introduction
	Example
	Behind ConFuzz
	Experimental Evaluation

