
A Tight Integration of
Symbolic Execution and Fuzzing
(short paper)

Yaëlle Vinçont1,2, Sébastien Bardin2, Michaël Marcozzi2

International Symposium on Foundations & Practice of Security 2021

1Laboratoire Méthodes Formelles, Université Paris-Saclay

2CEA, List, Université Paris-Saclay

Vulnerabilities

Heartbleed

2014

BigSig

2021

Goal
Automatically test programs to find bugs

2/23

Symbolic Execution

ϕ0 ϕ1

ϕ2

ϕ12

1 formula per path

SMT solver

ϕ0, ϕ1, ϕ2, ..., ϕ12

i0 i1 i2 . . . i12

• Path explosion

• Complicated formula

Examples: , , Angr , Manticore ...
3/23

Symbolic Execution

ϕ0 ϕ1

ϕ2

ϕ12

1 formula per path

SMT solver

ϕ0, ϕ1, ϕ2, ..., ϕ12

i0 i1 i2 . . . i12

• Path explosion

• Complicated formula

Examples: , , Angr , Manticore ...
3/23

Fuzzing

Program
Under Test

X

x

inputs

mutation
input

selection
queue

seed test cases

feedback

coverage
increased

...

Fuzzing

Coverage-based Greybox Fuzzing

Examples: AFL, Radamsa, FairFuzz, Steelix...

4/23

Fuzzing

Program
Under Test

X

x

inputs

mutation
input

selection
queue

seed test cases

feedback

coverage
increased

...

Fuzzing

Coverage-based Greybox Fuzzing

Examples: AFL, Radamsa, FairFuzz, Steelix...

4/23

Fuzzing

Program
Under Test

X

x

inputs

mutation
input

selection
queue

seed test cases

feedback

coverage
increased

...

Fuzzing

Coverage-based Greybox Fuzzing

Examples: AFL, Radamsa, FairFuzz, Steelix...

4/23

Our goal

Mixing test generation techniques, to get power of SE and
lightness of fuzzing:

• efficient approach

• reason about complex code

• quick and easy input generation

Pitfall: getting the worst of both worlds

5/23

Challenges

w.r.t. symbolic reasoning

• cheap [solver-less]

• targets interesting paths

• correct

• integrated with fuzzer

w.r.t. fuzzing

• efficient

• solves constraints

6/23

Positioning

Analysis Fuzzing

Sy
m
bo

lic

C
he
ap

T
ar
ge
te
d

C
or
re
ct

E
ffi
ci
en
t

C
on

st
ra
in
ts

W
el
l-i
nt
eg
ra
te
d

co
m
po

ne
nt
s

Fuzzing - - - - X x -
SE X x x X - - -

Driller X x X X X x x
Qsym X X X x X x x
Pangolin X X X x X X X

Angora x X X x ∼ X ok
Matryoshka x X X x ∼ X ok
Eclipser x X x x X x x

ConFuzz X X X X X X X

7/23

Our proposal

Lightweight Symbolic
Execution

• variant of Dynamic SE
[Targeted & correct]

• target easily-enumerable
constraints [Cheap &

integrated]

leads exploration past specific
conditions

Constrained Fuzzer

• based on AFL [Efficient]

• takes seed &
easily-enumerable
constraint [Cheap & solves

constraints]

efficiently creates seeds,
including solutions to
constraints

8/23

Contents

Introduction

Example

Behind ConFuzz

Experimental Evaluation

9/23

Motivating example

Loop with independent conditions
0/10/20 iterations

Serie of nested conditions

Fuzzing
Loop: isn’t aware of it, no problem
Nested conditions: struggles finding a solution

SE
Loop: tries to explore every paths, path explosion
Nested conditions: solves with SMT solver

ConFuzz
Loop: not really aware of it
Nested conditions: LSE finds constraints, CF
solves them

10/23

Motivating example

Fuzzing
Loop: isn’t aware of it, no problem
Nested conditions: struggles finding a solution

SE
Loop: tries to explore every paths, path explosion
Nested conditions: solves with SMT solver

ConFuzz
Loop: not really aware of it
Nested conditions: LSE finds constraints, CF
solves them

10/23

Motivating example

Fuzzing
Loop: isn’t aware of it, no problem
Nested conditions: struggles finding a solution

SE
Loop: tries to explore every paths, path explosion
Nested conditions: solves with SMT solver

ConFuzz
Loop: not really aware of it
Nested conditions: LSE finds constraints, CF
solves them

10/23

Motivating example

Fuzzing
Loop: isn’t aware of it, no problem
Nested conditions: struggles finding a solution

SE
Loop: tries to explore every paths, path explosion
Nested conditions: solves with SMT solver

ConFuzz
Loop: not really aware of it
Nested conditions: LSE finds constraints, CF
solves them

10/23

Motivating example - results

Ran 10 times, 20 minutes, KLEE, AFL, ConFuzz, with 0 and 20
loop iterations

AFL KLEE ConFuzz

0 iterations
Nb success/Nb tries 9/10 10/10 10/10
Time (s) to cover Avg 247.3 0.3 1.0
all branches Dev (σ) 347.6 0.1 0.2

20 iterations
Nb success/Nb tries 9/10 10/10 10/10
Time (s) to cover Avg 245.6 132.6 1.4
all branches Dev (σ) 354.9 9.5 0.2

11/23

Contents

Introduction

Example

Behind ConFuzz

Experimental Evaluation

12/23

General Principle

Lightweight Symbolic
Execution
infer easily-enumerable
predicate

Constrained Fuzzer
enumerate solutions
to constraint

approximated
path predicate

interesting
test cases

Easily-enumerable:∧
x∈X ix ≤ x ≤ jx

∧
∧

x,y∈X x = y

, AFL

13/23

Example

c0

c1

c2

c3

σ
targeted transition

Lightweight
Symbolic
Execution

c2

Constrained Fuzzer

ϕ̃(c2)

i0, i1, i2, . . . , in ` ϕ̃(c2)

[c , c = True, ϕ̃(c) , easily-enumerable path predicate for the path up to c]

14/23

Key challenge: easily-enumerable path
constraints

• how to define it?

• how to compute it?

14/23

Easily-Enumerable Constraint Language

[X : input variables, i , j : integers]

Definition (Easily-Enumerable)

Complexity enumerating n solutions: O(n × |X |)

Definition (Our Constraint Language)

ϕ̃ ,
∧
x∈X

ix ≤ x ≤ jx ∧
∧

x ,y∈X
x = y

15/23

Easily-enumerable Path Predicate - Example

i = {x : 0 ; y : 1 ; z : 2 ; t : 4 ; v : 5}

Program P

a = x + 3;
if (a <= 4) {

b = y;
e = t;

}
else {

b = 2;
}
if (b != z) {

d = 4;
}
else if (c != v) {

d = 3;
}

Trace σ

d e c l a r e x , y , z , t , v ;
d e f i n e a = x + 3 ;
a s s e r t (a <= 4) ;
d e f i n e b = y ;
d e f i n e c = t ;
a s s e r t (b == z) ;
a s s e r t (c != v) ;
d e f i n e d = 3 ;

ϕ(c 6= v)

x ≤ 1
∧ y = z

∧ t 6= v

Path predicate

ϕ̃(c 6= v)

x ≤ 1
∧ y = z

∧ t = 4
∧ v = 5

Easily-
enumerable
path predicate

16/23

Computing ϕ̃ - Backward Dynamic Analyses

Inferring the constraints
i = {x : 0 ; y : 1 ; z : 2 ; t : 4 ; v : 5}

declare x,y,z, t ,v;
define a = x + 3;
assert (a <= 4);
define b = y;
define c = t;
assert (b == z);
assert (c != v);
define c = 3;

• cstr := t = 4 ∧ v = 5

• cstr := y = z

• cstr := x ≤ 1

17/23

Computing ϕ̃ - Backward Dynamic Analyses

Inferring the constraints
i = {x : 0 ; y : 1 ; z : 2 ; t : 4 ; v : 5}

declare x,y,z, t ,v;
define a = x + 3;
assert (a <= 4);
define b = y;
define c = t;
assert (b == z);
assert (c != v);
define c = 3;

• assert (c != v);

• concretization
• backtrack on define c = t
• t, v : input variables
• i [t] = 4, i [v] = 5

cstr := t = 4 ∧ v = 5

• cstr := y = z

• cstr := x ≤ 1

17/23

Computing ϕ̃ - Backward Dynamic Analyses

Inferring the constraints
i = {x : 0 ; y : 1 ; z : 2 ; t : 4 ; v : 5}

declare x,y,z, t ,v;
define a = x + 3;
assert (a <= 4);
define b = y;
define c = t;
assert (b == z);
assert (c != v);
define c = 3;

• cstr := t = 4 ∧ v = 5

• assert (b == z);

• equality analysis
• backtrack on define b = y
• y , z : input variables

cstr := y = z

• cstr := x ≤ 1

17/23

Computing ϕ̃ - Backward Dynamic Analyses

Inferring the constraints
i = {x : 0 ; y : 1 ; z : 2 ; t : 4 ; v : 5}

declare x,y,z, t ,v;
define a = x + 3;
assert (a <= 4);
define b = y;
define c = t;
assert (b == z);
assert (c != v);
define c = 3;

• cstr := t = 4 ∧ v = 5

• cstr := y = z

• assert (a <= 4);

• value analysis: a ≤ 4
• backtrack on define a = x + 3:

x ≤ 1
• x : input variable

cstr := x ≤ 1

17/23

Computing ϕ̃ - Backward Dynamic Analyses

Inferring the constraints
i = {x : 0 ; y : 1 ; z : 2 ; t : 4 ; v : 5}

declare x,y,z, t ,v;
define a = x + 3;
assert (a <= 4);
define b = y;
define c = t;
assert (b == z);
assert (c != v);
define c = 3;

• cstr := t = 4 ∧ v = 5

• cstr := y = z

• cstr := x ≤ 1

ϕ̃(c! = v)

x ≤ 1 ∧ y = z ∧ t = 4 ∧ v = 5

17/23

Integration with Constrained Fuzzing

Constrained
Fuzzer

Program
Under Test

seed

seed tests
Lightweight
Symbolic
Execution

new

constraints

coverage

no yes trace, target

18/23

Contents

Introduction

Example

Behind ConFuzz

Experimental Evaluation

19/23

Implementation - ConFuzz

Lightweight Symbolic Execution

•
• 6kloc OCaml

• only i ≤ x ≤ j and concretization

Constrained Fuzzer

• AFL

• 4kloc C

• modifed mutations to make them constrained

20/23

Protocol

Tools

• ConFuzz

• AFL [it was built on]

• AFL++ [SoA fuzzing]

• KLEE [SoA SE]

Benchmark

• LAVA-M: real-world
programs, with injected
bugs

• Metric: number detected
bugs

• 1 hour timeout

• Stats on 5 runs

Vargha-Delaney statistic (Â12)
Probability for ConFuzz to do better than compared technique

21/23

Results

AFL AFL++ KLEE ConFuzz

base64 Avg 0 0.2 10.0 38.8
3kloc Dev (σ) 0 0.4 1.3 0.4
44 bugs Â12 1.0 1.0 1.0 -

md5sum Avg 0 0 0 9
3kloc Dev (σ) 0 0 0 1.7
57 bugs Â12 1.0 1.0 1.0 -

uniq Avg 0 0.4 5 26.9
3kloc Dev (σ) 0 0.5 0 3.6
28 bugs Â12 1.0 1.0 1.0 -

22/23

Conclusion

• Lightweight Symbolic Execution
• uses easy-to-enumerate path predicates
• no need for constraint solver
• offers guarantees on solutions

• integrated with Constrained Fuzzer
• quickly generate solutions

• ⇒ promising early results

• Future work
• formalize “easy-enumerability”
• extend the constraint language
• more extensive experimentation

Find : binsec.github.io and @BinsecTool!

23/23

https://binsec.github.io/

	Introduction
	Example
	Behind ConFuzz
	Experimental Evaluation

