
Interprocedural Shape Analysis
Using Separation Logic-based

Transformer Summaries

H. Illous1,2, M. Lemerre1, X. Rival2

1CEA, LIST

2CNRS/ENS/INRIA/PSL*

H. Illous, M. Lemerre, X. Rival Interprocedural Shape Analysis Using SL-based Transformer Summaries

Introduction

State analyses: Computes a set of reachable states
to verify state properties:

Can this program perform a null pointer dereference?
Does this program preserve structural invariants of data structures?

Transformation analyses: Compute abstract transformations, i.e.
relations between program input state and output state:

Does this program modify the linked list received as an argument?
Is this sorting algorithm in-place?

This work
Abstract transformations as procedure summaries
Applied to shape analysis using separation logic.

H. Illous, M. Lemerre, X. Rival Interprocedural Shape Analysis Using SL-based Transformer Summaries

Introduction

State analyses: Computes a set of reachable states
to verify state properties:

Can this program perform a null pointer dereference?
Does this program preserve structural invariants of data structures?

Transformation analyses: Compute abstract transformations, i.e.
relations between program input state and output state:

Does this program modify the linked list received as an argument?
Is this sorting algorithm in-place?

This work
Abstract transformations as procedure summaries
Applied to shape analysis using separation logic.

H. Illous, M. Lemerre, X. Rival Interprocedural Shape Analysis Using SL-based Transformer Summaries

Introduction

State analyses: Computes a set of reachable states
to verify state properties:

Can this program perform a null pointer dereference?
Does this program preserve structural invariants of data structures?

Transformation analyses: Compute abstract transformations, i.e.
relations between program input state and output state:

Does this program modify the linked list received as an argument?
Is this sorting algorithm in-place?

This work
Abstract transformations as procedure summaries

Applied to shape analysis using separation logic.

H. Illous, M. Lemerre, X. Rival Interprocedural Shape Analysis Using SL-based Transformer Summaries

Introduction

State analyses: Computes a set of reachable states
to verify state properties:

Can this program perform a null pointer dereference?
Does this program preserve structural invariants of data structures?

Transformation analyses: Compute abstract transformations, i.e.
relations between program input state and output state:

Does this program modify the linked list received as an argument?
Is this sorting algorithm in-place?

This work
Abstract transformations as procedure summaries
Applied to shape analysis using separation logic.

H. Illous, M. Lemerre, X. Rival Interprocedural Shape Analysis Using SL-based Transformer Summaries

Overview

double_append(list* k0,list* k1,list* k2){

append(k0,k1);

append(k0,k2);

}

append(list* l0,list* l1){

while(l0→n ̸=0x0){l0=l0→n;}
l0→n = l1;

}
H. Illous, M. Lemerre, X. Rival Interprocedural Shape Analysis Using SL-based Transformer Summaries

State analysis by inlining

(using a shape domain)

double_append(list* k0,list* k1,list* k2){

append(k0,k1);

append(k0,k2);

}

h♯0

h♯20

h♯40

append(list* l0,list* l1){

while(l0→n ̸=0x0){l0=l0→n;}
l0→n = l1;

}
H. Illous, M. Lemerre, X. Rival Interprocedural Shape Analysis Using SL-based Transformer Summaries

State analysis by inlining

(using a shape domain)

double_append(list* k0,list* k1,list* k2){

append(k0,k1);

append(k0,k2);

}

h♯0

h♯20

h♯40

append(list* l0,list* l1){

h♯1
while(l0→n ̸=0x0){l0=l0→n;}
l0→n = l1;

}
H. Illous, M. Lemerre, X. Rival Interprocedural Shape Analysis Using SL-based Transformer Summaries

State analysis by inlining

(using a shape domain)

double_append(list* k0,list* k1,list* k2){

append(k0,k1);

append(k0,k2);

}

h♯0

h♯20

h♯40

append(list* l0,list* l1){

h♯1

h♯19

while(l0→n ̸=0x0){l0=l0→n;}
l0→n = l1;

}
H. Illous, M. Lemerre, X. Rival Interprocedural Shape Analysis Using SL-based Transformer Summaries

State analysis by inlining

(using a shape domain)

double_append(list* k0,list* k1,list* k2){

append(k0,k1);

append(k0,k2);

}

h♯0

h♯20

h♯40

append(list* l0,list* l1){

while(l0→n ̸=0x0){l0=l0→n;}
l0→n = l1;

}
H. Illous, M. Lemerre, X. Rival Interprocedural Shape Analysis Using SL-based Transformer Summaries

State analysis by inlining

(using a shape domain)

double_append(list* k0,list* k1,list* k2){

append(k0,k1);

append(k0,k2);

}

h♯0

h♯20

h♯40

append(list* l0,list* l1){

h♯21
while(l0→n ̸=0x0){l0=l0→n;}
l0→n = l1;

}
H. Illous, M. Lemerre, X. Rival Interprocedural Shape Analysis Using SL-based Transformer Summaries

State analysis by inlining

(using a shape domain)

double_append(list* k0,list* k1,list* k2){

append(k0,k1);

append(k0,k2);

}

h♯0

h♯20

h♯40

append(list* l0,list* l1){

h♯21

h♯39

while(l0→n ̸=0x0){l0=l0→n;}
l0→n = l1;

}
H. Illous, M. Lemerre, X. Rival Interprocedural Shape Analysis Using SL-based Transformer Summaries

State analysis by inlining

(using a shape domain)

double_append(list* k0,list* k1,list* k2){

append(k0,k1);

append(k0,k2);

}

h♯0

h♯20

h♯40

append(list* l0,list* l1){

while(l0→n ̸=0x0){l0=l0→n;}
l0→n = l1;

}
H. Illous, M. Lemerre, X. Rival Interprocedural Shape Analysis Using SL-based Transformer Summaries

State analysis by inlining

(using a shape domain)

double_append(list* k0,list* k1,list* k2){

append(k0,k1);

append(k0,k2);

}

h♯20

h♯40

append(list* l0,list* l1){

while(l0→n ̸=0x0){l0=l0→n;}
l0→n = l1;

}

+ Precise analysis of procedures
– Analysis of append is repeated for each calling context
– Cannot handle recursive procedures

H. Illous, M. Lemerre, X. Rival Interprocedural Shape Analysis Using SL-based Transformer Summaries

Abstract transformations as procedure summaries

double_append(list* k0,list* k1,list* k2){

append(k0,k1);

append(k0,k2);

}

h♯1 = t♯(h♯0)

h♯2 = t♯(h♯1)

append(list* l0,list* l1){

while(l0→n ̸=0x0){l0=l0→n;}
l0→n = l1;

}
H. Illous, M. Lemerre, X. Rival Interprocedural Shape Analysis Using SL-based Transformer Summaries

Abstract transformations as procedure summaries

double_append(list* k0,list* k1,list* k2){

append(k0,k1);

append(k0,k2);

}

h♯1 = t♯(h♯0)

h♯2 = t♯(h♯1)

append(list* l0,list* l1){

t♯
while(l0→n ̸=0x0){l0=l0→n;}
l0→n = l1;

}
H. Illous, M. Lemerre, X. Rival Interprocedural Shape Analysis Using SL-based Transformer Summaries

Abstract transformations as procedure summaries

double_append(list* k0,list* k1,list* k2){

append(k0,k1);

append(k0,k2);

}

h♯0

h♯1 = t♯(h♯0)

h♯2 = t♯(h♯1)

append(list* l0,list* l1){

t♯
while(l0→n ̸=0x0){l0=l0→n;}
l0→n = l1;

}
H. Illous, M. Lemerre, X. Rival Interprocedural Shape Analysis Using SL-based Transformer Summaries

Abstract transformations as procedure summaries

double_append(list* k0,list* k1,list* k2){

append(k0,k1);

append(k0,k2);

}

h♯0

h♯1 = t♯(h♯0)

h♯2 = t♯(h♯1)

append(list* l0,list* l1){

t♯
while(l0→n ̸=0x0){l0=l0→n;}
l0→n = l1;

}
H. Illous, M. Lemerre, X. Rival Interprocedural Shape Analysis Using SL-based Transformer Summaries

Abstract transformations as procedure summaries

double_append(list* k0,list* k1,list* k2){

append(k0,k1);

append(k0,k2);

}

h♯0

h♯1 = t♯(h♯0)

h♯2 = t♯(h♯1)

append(list* l0,list* l1){

t♯
while(l0→n ̸=0x0){l0=l0→n;}
l0→n = l1;

}
H. Illous, M. Lemerre, X. Rival Interprocedural Shape Analysis Using SL-based Transformer Summaries

Abstract transformations as procedure summaries

double_append(list* k0,list* k1,list* k2){

append(k0,k1);

append(k0,k2);

}

h♯1 = t♯(h♯0)

h♯2 = t♯(h♯1)

append(list* l0,list* l1){

t♯
while(l0→n ̸=0x0){l0=l0→n;}
l0→n = l1;

}

Applying an abstract transformation can speed up a
state analysis.

H. Illous, M. Lemerre, X. Rival Interprocedural Shape Analysis Using SL-based Transformer Summaries

Modular analysis by composition of abstract transformations

double_append(list* k0,list* k1,list* k2){

append(k0,k1);

append(k0,k2);

}

append(list* l0,list* l1){

while(l0→n ̸=0x0){l0=l0→n;}
l0→n = l1;

}
H. Illous, M. Lemerre, X. Rival Interprocedural Shape Analysis Using SL-based Transformer Summaries

Modular analysis by composition of abstract transformations

double_append(list* k0,list* k1,list* k2){

append(k0,k1);

append(k0,k2);

}

append(list* l0,list* l1){

t♯
while(l0→n ̸=0x0){l0=l0→n;}
l0→n = l1;

}
H. Illous, M. Lemerre, X. Rival Interprocedural Shape Analysis Using SL-based Transformer Summaries

Modular analysis by composition of abstract transformations

double_append(list* k0,list* k1,list* k2){

append(k0,k1);

append(k0,k2);

}

Id(h♯0)

append(list* l0,list* l1){

t♯
while(l0→n ̸=0x0){l0=l0→n;}
l0→n = l1;

}
H. Illous, M. Lemerre, X. Rival Interprocedural Shape Analysis Using SL-based Transformer Summaries

Modular analysis by composition of abstract transformations

double_append(list* k0,list* k1,list* k2){

append(k0,k1);

append(k0,k2);

}

Id(h♯0)

t♯◦Id(h♯0)

append(list* l0,list* l1){

t♯
while(l0→n ̸=0x0){l0=l0→n;}
l0→n = l1;

}
H. Illous, M. Lemerre, X. Rival Interprocedural Shape Analysis Using SL-based Transformer Summaries

Modular analysis by composition of abstract transformations

double_append(list* k0,list* k1,list* k2){

append(k0,k1);

append(k0,k2);

}

Id(h♯0)

t♯◦Id(h♯0)

t♯ ◦ t♯◦Id(h♯0)

append(list* l0,list* l1){

t♯
while(l0→n ̸=0x0){l0=l0→n;}
l0→n = l1;

}
H. Illous, M. Lemerre, X. Rival Interprocedural Shape Analysis Using SL-based Transformer Summaries

Modular analysis by composition of abstract transformations

double_append(list* k0,list* k1,list* k2){

append(k0,k1);

append(k0,k2);

}

append(list* l0,list* l1){

while(l0→n ̸=0x0){l0=l0→n;}
l0→n = l1;

}

Composition of relations can produce a new summary
from summaries of callee functions.
Summary was created for a given input state

H. Illous, M. Lemerre, X. Rival Interprocedural Shape Analysis Using SL-based Transformer Summaries

Modular analysis by composition of abstract transformations

double_append(list* k0,list* k1,list* k2){

append(k0,k1);

append(k0,k2);

}

lseg(α1)
α0,k0

∗ 0x0
α1

∗ lseg(α3)
α2,k1

∗ 0x0
α3

∗ list

α4,k2

append(list* l0,list* l1){

t♯
while(l0→n ̸=0x0){l0=l0→n;}
l0→n = l1;

}

lseg(β1)
β0,l0

∗T

0x0
β1

β2

β1

∗T↓ list

β2,l1

Id Id

H. Illous, M. Lemerre, X. Rival Interprocedural Shape Analysis Using SL-based Transformer Summaries

Modular analysis by composition of abstract transformations

double_append(list* k0,list* k1,list* k2){

append(k0,k1);

append(k0,k2);

}

lseg(α1)
α0,k0

∗ 0x0
α1

∗ lseg(α3)
α2,k1

∗ 0x0
α3

∗ list

α4,k2

Id

Id(h♯0)

append(list* l0,list* l1){

t♯
while(l0→n ̸=0x0){l0=l0→n;}
l0→n = l1;

}

lseg(β1)
β0,l0

∗T

0x0
β1

β2

β1

∗T↓ list

β2,l1

Id Id

H. Illous, M. Lemerre, X. Rival Interprocedural Shape Analysis Using SL-based Transformer Summaries

Modular analysis by composition of abstract transformations

double_append(list* k0,list* k1,list* k2){

append(k0,k1);

append(k0,k2);

}

lseg(α1)
α0,k0

∗

0x0
α1

α2

α1

∗ lseg(α3)
α2,k1

∗ 0x0
α3

∗ list

α4,k2

Id Id

↓
Id(h♯0)

t♯◦Id(h♯0)

append(list* l0,list* l1){

t♯
while(l0→n ̸=0x0){l0=l0→n;}
l0→n = l1;

}

lseg(β1)
β0,l0

∗T

0x0
β1

β2

β1

∗T↓ list

β2,l1

Id Id

H. Illous, M. Lemerre, X. Rival Interprocedural Shape Analysis Using SL-based Transformer Summaries

Modular analysis by composition of abstract transformations

double_append(list* k0,list* k1,list* k2){

append(k0,k1);

append(k0,k2);

}

lseg(α1)
α0,k0

∗

0x0
α1

α2

α1

∗ lseg(α3)
α2,k1

∗

0x0
α3

α4

α3

∗ list

α4,k2

Id Id Id

↓ ↓

Id(h♯0)

t♯◦Id(h♯0)

t♯ ◦ t♯◦Id(h♯0)

append(list* l0,list* l1){

t♯
while(l0→n ̸=0x0){l0=l0→n;}
l0→n = l1;

}

lseg(β1)
β0,l0

∗T

0x0
β1

β2

β1

∗T↓ list

β2,l1

Id Id

H. Illous, M. Lemerre, X. Rival Interprocedural Shape Analysis Using SL-based Transformer Summaries

Contributions
Interprocedural transformation analysis using separation logic

1 Interprocedural analysis by composition of abstract transformations

2 Evaluation

3 Application to shape abstract transformations

H. Illous, M. Lemerre, X. Rival Interprocedural Shape Analysis Using SL-based Transformer Summaries

Outline

1 Interprocedural analysis by composition of abstract transformations

2 Evaluation

3 Application to shape abstract transformations

H. Illous, M. Lemerre, X. Rival Interprocedural Shape Analysis Using SL-based Transformer Summaries

A simple abstract state and transformation

Example (State abstraction S♯)

S♯ ≜ "linear inequalities over program variables" [Cousot&Halbwachs 1978]
γS : S♯ → P(S)

Jz := x+ 1K(x < y) =

{
x < y
z = x+ 1

Example (Abstract transformation abstraction T♯)

T♯ ≜ "linear inequalities over primed and unprimed program variables"
γT : T♯ → P(S × S)

Jz := x+ 1K




x < y
x′ = x
y′ = y
z′ = z

 =


x < y
x′ = x
y′ = y
z′ = x+ 1

H. Illous, M. Lemerre, X. Rival Interprocedural Shape Analysis Using SL-based Transformer Summaries

A simple abstract state and transformation

Example (State abstraction S♯)

S♯ ≜ "linear inequalities over program variables" [Cousot&Halbwachs 1978]
γS : S♯ → P(S)

Jz := x+ 1K(x < y) =

{
x < y
z = x+ 1

Example (Abstract transformation abstraction T♯)

T♯ ≜ "linear inequalities over primed and unprimed program variables"
γT : T♯ → P(S × S)

Jz := x+ 1K




x < y
x′ = x
y′ = y
z′ = z

 =


x < y
x′ = x
y′ = y
z′ = x+ 1

H. Illous, M. Lemerre, X. Rival Interprocedural Shape Analysis Using SL-based Transformer Summaries

Anatomy of an abstract transformation t♯ ∈ T♯

Let t♯ =


x < y
x′ = x
y′ = y
z′ = x+ 1

t♯ simultaneously contains:

1 A description ∈ S♯ of the input states: I(t♯) = x < y;

2 A description ∈ S♯ of the output states: O(t♯) =

{
x < y
z = x+ 1

;

3 A description ∈ T♯ of the relation between the input and output:
x′ = x
y′ = y
z′ = x+ 1

A relational abstraction t♯ ∈ T♯ is more precise than (I(t♯),O(t♯)),
the pair of its pre and postcondition.

H. Illous, M. Lemerre, X. Rival Interprocedural Shape Analysis Using SL-based Transformer Summaries

Composition of relations and abstract transformations

α



s6

s4

s3

s9

s8

s7


◦

♯

α



s6s2

s1

s0

s5

s4

s3


=

α



s6

s1

s0

s8

s7



Soundness theorem for ◦♯

◦♯ over-approximates the relational composition ◦ : ∀sa, sb, sc ∈ S

(sa, sb) ∈ γT(t
♯
1) ∧ (sb, sc) ∈ γT(t

♯
2) ⇒ (sa, sc) ∈ γT(t

♯
2 ◦♯ t♯1)

H. Illous, M. Lemerre, X. Rival Interprocedural Shape Analysis Using SL-based Transformer Summaries

Composition of relations and abstract transformations

α



s6

s4

s3

s9

s8

s7


◦

♯

α



s6s2

s1

s0

s5

s4

s3


=

α



s6

s1

s0

s8

s7



Soundness theorem for ◦♯

◦♯ over-approximates the relational composition ◦ : ∀sa, sb, sc ∈ S

(sa, sb) ∈ γT(t
♯
1) ∧ (sb, sc) ∈ γT(t

♯
2) ⇒ (sa, sc) ∈ γT(t

♯
2 ◦♯ t♯1)

H. Illous, M. Lemerre, X. Rival Interprocedural Shape Analysis Using SL-based Transformer Summaries

Composition of relations and abstract transformations

α



s6

s4

s3

s9

s8

s7


◦

♯

α



s6

s2

s1

s0

s5

s4

s3


=

α



s6

s1

s0

s8

s7



Soundness theorem for ◦♯

◦♯ over-approximates the relational composition ◦ : ∀sa, sb, sc ∈ S

(sa, sb) ∈ γT(t
♯
1) ∧ (sb, sc) ∈ γT(t

♯
2) ⇒ (sa, sc) ∈ γT(t

♯
2 ◦♯ t♯1)

H. Illous, M. Lemerre, X. Rival Interprocedural Shape Analysis Using SL-based Transformer Summaries

Composition of relations and abstract transformations

α



s6

s4

s3

s9

s8

s7


◦

♯

α



s6

s2

s1

s0

s5

s4

s3


=

α



s6

s1

s0

s8

s7



Soundness theorem for ◦♯

◦♯ over-approximates the relational composition ◦ : ∀sa, sb, sc ∈ S

(sa, sb) ∈ γT(t
♯
1) ∧ (sb, sc) ∈ γT(t

♯
2) ⇒ (sa, sc) ∈ γT(t

♯
2 ◦♯ t♯1)

H. Illous, M. Lemerre, X. Rival Interprocedural Shape Analysis Using SL-based Transformer Summaries

Composition of relations and abstract transformations

α



s6

s4

s3

s9

s8

s7


◦

♯

α



s6s2

s1

s0

s5

s4

s3


=

α



s6

s1

s0

s8

s7



Soundness theorem for ◦♯

◦♯ over-approximates the relational composition ◦ : ∀sa, sb, sc ∈ S

(sa, sb) ∈ γT(t
♯
1) ∧ (sb, sc) ∈ γT(t

♯
2) ⇒ (sa, sc) ∈ γT(t

♯
2 ◦♯ t♯1)

H. Illous, M. Lemerre, X. Rival Interprocedural Shape Analysis Using SL-based Transformer Summaries

Composition of relations and abstract transformations

α



s6

s4

s3

s9

s8

s7


◦♯ α



s6s2

s1

s0

s5

s4

s3


⊒♯α



s6

s1

s0

s8

s7



Soundness theorem for ◦♯

◦♯ over-approximates the relational composition ◦ : ∀sa, sb, sc ∈ S

(sa, sb) ∈ γT(t
♯
1) ∧ (sb, sc) ∈ γT(t

♯
2) ⇒ (sa, sc) ∈ γT(t

♯
2 ◦♯ t♯1)

H. Illous, M. Lemerre, X. Rival Interprocedural Shape Analysis Using SL-based Transformer Summaries

Composition of relations and abstract transformations

α



s6

s4

s3

s9

s8

s7


◦♯ α



s6s2

s1

s0

s5

s4

s3


⊒♯α



s6

s1

s0

s8

s7



Soundness theorem for ◦♯

◦♯ over-approximates the relational composition ◦ : ∀sa, sb, sc ∈ S

(sa, sb) ∈ γT(t
♯
1) ∧ (sb, sc) ∈ γT(t

♯
2) ⇒ (sa, sc) ∈ γT(t

♯
2 ◦♯ t♯1)

H. Illous, M. Lemerre, X. Rival Interprocedural Shape Analysis Using SL-based Transformer Summaries

Abstract composition to use procedure summaries

Function Summary

def f() { x := x + 1 } t♯f =


x′ = x+ 1
y′ = y
z′ = z

def g() { y := x } t♯g =


x′ = x
y′ = x
z′ = z

def h() { f(); g() } t♯h = t♯g ◦♯ t♯f =


x′ = x+ 1
y′ = x+ 1
z′ = z

Abstract composition is the operator to use an abstract transformation as a
procedure summary.

H. Illous, M. Lemerre, X. Rival Interprocedural Shape Analysis Using SL-based Transformer Summaries

Global vs context-specific transformation summaries (1)

Global transformation summary t♯f: represents all the behaviours of f.

∀s ∈ S : (s, JfK(s)) ∈ γT(t
♯
f)

+ Allows purely bottom-up analysis of the program [Sharir&Pnueli 1981]

– Leads to imprecisions of the abstract transformation:
Function Computed global summary

def f() { z := x * y } t♯f =

{
x′ = x
y′ = y

def g() { x := 3; f() } t♯g =

{
x′ = 3
y′ = y

H. Illous, M. Lemerre, X. Rival Interprocedural Shape Analysis Using SL-based Transformer Summaries

Global vs context-specific transformation summaries (1)

Global transformation summary t♯f: represents all the behaviours of f.

∀s ∈ S : (s, JfK(s)) ∈ γT(t
♯
f)

+ Allows purely bottom-up analysis of the program [Sharir&Pnueli 1981]
– Leads to imprecisions of the abstract transformation:

Function Computed global summary

def f() { z := x * y } t♯f =

{
x′ = x
y′ = y

def g() { x := 3; f() } t♯g =

{
x′ = 3
y′ = y

H. Illous, M. Lemerre, X. Rival Interprocedural Shape Analysis Using SL-based Transformer Summaries

Global vs context-specific transformation summaries (2)

Context transformation summary (s♯f, t
♯
f): represents all the behaviours of

f for some precondition s♯f:

∀s ∈ γS(s
♯
f) : (s, JfK(s)) ∈ γT(t

♯
f)

Function Computed context summary

def f() { z := x * y } s♯f = {x = 3}, t♯f =


x′ = x
y′ = y
z′ = 3 ∗ y

def g() { x := 3; f() } s♯g = ⊤, t♯g =


x′ = 3
y′ = y
z′ = 3 ∗ y

➜ Requires a top-down algorithm:
Reuse summary if possible
Recompute summary with a larger calling context if needed.

H. Illous, M. Lemerre, X. Rival Interprocedural Shape Analysis Using SL-based Transformer Summaries

Global vs context-specific transformation summaries (2)

Context transformation summary (s♯f, t
♯
f): represents all the behaviours of

f for some precondition s♯f:

∀s ∈ γS(s
♯
f) : (s, JfK(s)) ∈ γT(t

♯
f)

Function Computed context summary

def f() { z := x * y } s♯f = {x = 3}, t♯f =


x′ = x
y′ = y
z′ = 3 ∗ y

def g() { x := 3; f() } s♯g = ⊤, t♯g =


x′ = 3
y′ = y
z′ = 3 ∗ y

➜ Requires a top-down algorithm:
Reuse summary if possible
Recompute summary with a larger calling context if needed.

H. Illous, M. Lemerre, X. Rival Interprocedural Shape Analysis Using SL-based Transformer Summaries

Global vs context-specific transformation summaries (2)

Context transformation summary (s♯f, t
♯
f): represents all the behaviours of

f for some precondition s♯f:

∀s ∈ γS(s
♯
f) : (s, JfK(s)) ∈ γT(t

♯
f)

Function Computed context summary

def f() { z := x * y } s♯f = {x = 3}, t♯f =


x′ = x
y′ = y
z′ = 3 ∗ y

def g() { x := 3; f() } s♯g = ⊤, t♯g =


x′ = 3
y′ = y
z′ = 3 ∗ y

➜ Requires a top-down algorithm:
Reuse summary if possible
Recompute summary with a larger calling context if needed.

H. Illous, M. Lemerre, X. Rival Interprocedural Shape Analysis Using SL-based Transformer Summaries

We need both a context and a transformation

When f is simple, then s♯f = I(t♯f), and s♯f seems redundant.

But:

def f()
{ if(x > y)

while(1);
else if(x < y)

z = 1 /0;
}

s♯f = ⊤, t♯f =


x = y
x′ = x
y′ = y
z′ = z

, I(t♯f) = {x = y}

s♯f : context where the summary can be applied;

t♯f : summary to apply;

I(t♯f): inferred necessary pre-condition on states that return from f.

H. Illous, M. Lemerre, X. Rival Interprocedural Shape Analysis Using SL-based Transformer Summaries

We need both a context and a transformation

When f is simple, then s♯f = I(t♯f), and s♯f seems redundant. But:

def f()
{ if(x > y)

while(1);
else if(x < y)

z = 1 /0;
}

s♯f = ⊤, t♯f =


x = y
x′ = x
y′ = y
z′ = z

, I(t♯f) = {x = y}

s♯f : context where the summary can be applied;

t♯f : summary to apply;

I(t♯f): inferred necessary pre-condition on states that return from f.

H. Illous, M. Lemerre, X. Rival Interprocedural Shape Analysis Using SL-based Transformer Summaries

Algorithm idea

Top down, hybrid inter/intra procedural algorithm:
Simple statements: use relational abstract transformers

t ′
♯
= Jx := x + 1K♯(t♯)

Function call to f:
1 Determine if the current context transformation summary can be used

O(t♯) ⊑♯
S s♯f

2 Recompute the summary with a larger context if needed.

new s♯f = previous s♯f ⊔S O(t♯)

O(t♯)))new t♯f = Jbody of fK♯(Id(new s♯f))

3 Abstract composition to use the summary of f:

t ′
♯
= Jf ()K♯(t♯) = t♯f ◦♯ t♯

If recursion: grow context of procedure summaries until fixpoint.
H. Illous, M. Lemerre, X. Rival Interprocedural Shape Analysis Using SL-based Transformer Summaries

Towards relational separation logic (1) : Frame rule

def f() { x := x + 1 } s♯f = {y = 3}, t♯f =


y = 3
x′ = x+ 1
y′ = y
z′ = z

def g() {
y := 3; f();
y := 4;| f();

}

s♯g = ⊤, t♯g = Jf ()K

(
t♯f ∗T

{
y′ = y
z′ = z

)
◦♯


x′ = x+ 1
y′ = 4
z′ = z



Irrelevant memory regions in the context ⇒ spurious summary recomputations.

➜ Frame Rule of (relational) separation logic

H. Illous, M. Lemerre, X. Rival Interprocedural Shape Analysis Using SL-based Transformer Summaries

Towards relational separation logic (1) : Frame rule

def f() { x := x + 1 } s♯f = {y = 3}, t♯f =


y = 3
x′ = x+ 1
y′ = y
z′ = z

def g() {
y := 3; f();
y := 4;| f();

}

s♯g = ⊤, t♯g = Jf ()K

(
t♯f ∗T

{
y′ = y
z′ = z

)
◦♯


x′ = x+ 1
y′ = 4
z′ = z



Irrelevant memory regions in the context ⇒ spurious summary recomputations.
➜ Frame Rule of (relational) separation logic

H. Illous, M. Lemerre, X. Rival Interprocedural Shape Analysis Using SL-based Transformer Summaries

Towards relational separation logic (1) : Frame rule

def f() { x := x + 1 } s♯f = ⊤

{y = 3}

, t♯f =



y = 3

x′ = x+ 1

y′ = y
z′ = z

def g() {
y := 3; f();
y := 4;| f();

}

s♯g = ⊤, t♯g = Jf ()K

(
t♯f ∗T

{
y′ = y
z′ = z

)
◦♯


x′ = x+ 1
y′ = 4
z′ = z



Irrelevant memory regions in the context ⇒ spurious summary recomputations.
➜ Frame Rule of (relational) separation logic

H. Illous, M. Lemerre, X. Rival Interprocedural Shape Analysis Using SL-based Transformer Summaries

Towards relational separation logic (1) : Frame rule

def f() { x := x + 1 } s♯f = ⊤

{y = 3}

, t♯f =



y = 3

x′ = x+ 1

y′ = y
z′ = z

def g() {
y := 3; f();
y := 4;| f();

}

s♯g = ⊤, t♯g =

(
t♯f ∗T

{
y′ = y
z′ = z

)
◦♯


x′ = x+ 1
y′ = 4
z′ = z



Irrelevant memory regions in the context ⇒ spurious summary recomputations.
➜ Frame Rule of (relational) separation logic

H. Illous, M. Lemerre, X. Rival Interprocedural Shape Analysis Using SL-based Transformer Summaries

Towards relational separation logic (2): unbounded memory

How to handle more complex and unbounded memory states?

def f() { z := x + 1 } s♯f = {x < y}, t♯f =


x < y
x′ = x
y′ = y
z′ = x+ 1

1 Separate memory descriptions and use a shared numerical abstraction

t♯f =

 x 7→ αx

y 7→ αy

z 7→ αz

 99K

 x 7→ αx

y 7→ αy

z 7→ α′
z

 ∧
{

αx < αy

α′
z = αx + 1

1 Introduce Id predicate to represent equal regions without enumerating values

t♯f = Id
([

x 7→ αx

y 7→ αy

])
∗T

([
z 7→ αz

]
99K

[
z 7→ α′

z
])

∧
{

αx < αy

α′
z = αx + 1

1 Generalize to arbitrary representations of heap (shape analysis)

t♯f = Id
(
h♯
xy

)
∗T

(
h♯
z 99K h′♯

z

)
∧
{

αx < αy

α′
z = αx+

H. Illous, M. Lemerre, X. Rival Interprocedural Shape Analysis Using SL-based Transformer Summaries

Towards relational separation logic (2): unbounded memory

How to handle more complex and unbounded memory states?

def f() { z := x + 1 } s♯f = {x < y}, t♯f =


x < y
x′ = x
y′ = y
z′ = x+ 1

1 Separate memory descriptions and use a shared numerical abstraction

t♯f =

 x 7→ αx

y 7→ αy

z 7→ αz

 99K

 x 7→ αx

y 7→ αy

z 7→ α′
z

 ∧
{

αx < αy

α′
z = αx + 1

1 Introduce Id predicate to represent equal regions without enumerating values

t♯f = Id
([

x 7→ αx

y 7→ αy

])
∗T

([
z 7→ αz

]
99K

[
z 7→ α′

z
])

∧
{

αx < αy

α′
z = αx + 1

1 Generalize to arbitrary representations of heap (shape analysis)

t♯f = Id
(
h♯
xy

)
∗T

(
h♯
z 99K h′♯

z

)
∧
{

αx < αy

α′
z = αx+

H. Illous, M. Lemerre, X. Rival Interprocedural Shape Analysis Using SL-based Transformer Summaries

Towards relational separation logic (2): unbounded memory

How to handle more complex and unbounded memory states?

def f() { z := x + 1 } s♯f = {x < y}, t♯f =


x < y
x′ = x
y′ = y
z′ = x+ 1

1 Separate memory descriptions and use a shared numerical abstraction

t♯f =

 x 7→ αx

y 7→ αy

z 7→ αz

 99K

 x 7→ αx

y 7→ αy

z 7→ α′
z

 ∧
{

αx < αy

α′
z = αx + 1

1 Introduce Id predicate to represent equal regions without enumerating values

t♯f = Id
([

x 7→ αx

y 7→ αy

])
∗T

([
z 7→ αz

]
99K

[
z 7→ α′

z
])

∧
{

αx < αy

α′
z = αx + 1

1 Generalize to arbitrary representations of heap (shape analysis)

t♯f = Id
(
h♯
xy

)
∗T

(
h♯
z 99K h′♯

z

)
∧
{

αx < αy

α′
z = αx+

H. Illous, M. Lemerre, X. Rival Interprocedural Shape Analysis Using SL-based Transformer Summaries

Outline

1 Interprocedural analysis by composition of abstract transformations

2 Evaluation

3 Application to shape abstract transformations

H. Illous, M. Lemerre, X. Rival Interprocedural Shape Analysis Using SL-based Transformer Summaries

Experimental evaluation: Static call graph

Analysers implementation as a Frama-C plugin
Three modes:

call-string state analysis
call-string relational analysis
summary-based relational analysis

Main use case: part (2,000 lines of C) of Emacs
Heavy manipulation of pairs, used as untyped lists

Fx_show_tip

Fassq

compute_tip_xy Fnth Fcar

Fcdr Fnthcdr

Fx_display_monitor_attributes_list

x_get_monitor_attributes

x_get_monitor_attributes_fallback

x_make_monitor_attribute_list

x_get_monitor_for_frame

check_x_display_info

make_monitor_attribute_list

list2

list4

x_create_tip_frame x_default_font_parameter

x_default_parameter

x_frame_get_arg

Fcons

x_get_arg

H. Illous, M. Lemerre, X. Rival Interprocedural Shape Analysis Using SL-based Transformer Summaries

Experimental evaluation: Static call graph

Analysers implementation as a Frama-C plugin
Three modes:

call-string state analysis
call-string relational analysis
summary-based relational analysis

Main use case: part (2,000 lines of C) of Emacs
Heavy manipulation of pairs, used as untyped lists

Fx_show_tip

Fassq

compute_tip_xy Fnth Fcar

Fcdr Fnthcdr

Fx_display_monitor_attributes_list

x_get_monitor_attributes

x_get_monitor_attributes_fallback

x_make_monitor_attribute_list

x_get_monitor_for_frame

check_x_display_info

make_monitor_attribute_list

list2

list4

x_create_tip_frame x_default_font_parameter

x_default_parameter

x_frame_get_arg

Fcons

x_get_arg

H. Illous, M. Lemerre, X. Rival Interprocedural Shape Analysis Using SL-based Transformer Summaries

Experimental evaluation: Results

Time (in s)
state relational

inline 877 4257
summary-based - 15

summary-based
analysis runtime (s)

state analysis
runtime (s)

0.5 1 10 100 1000

0.5

1

2

4

8

16

Summary-based analysis is much faster on all functions but leaves:
Gain of 58x compared to the state analysis
Gain of 284x compared to the relational analysis with inlining

Most reanalyzed function: Fcons (reanalyzed 3 times, used 47 times)
No observed loss of precision wrt. state and relational analysis
Inferred relational properties stronger than state properties

H. Illous, M. Lemerre, X. Rival Interprocedural Shape Analysis Using SL-based Transformer Summaries

Summary and conclusions

Contextual procedure summaries can be represented as an abstract
transformation with a context
Summary-based transformation analyses can be done by composing
abstract transformations
Can be applied to memory analysis using separation logic

Transformations are harder to abstract than states
but using them can be very rewarding

Transformations are:
A basis for compact and precise function summaries
Capture a natural abstraction for programmers
Can verify useful functional properties

H. Illous, M. Lemerre, X. Rival Interprocedural Shape Analysis Using SL-based Transformer Summaries

Summary and conclusions

Contextual procedure summaries can be represented as an abstract
transformation with a context
Summary-based transformation analyses can be done by composing
abstract transformations
Can be applied to memory analysis using separation logic

Transformations are harder to abstract than states
but using them can be very rewarding

Transformations are:
A basis for compact and precise function summaries
Capture a natural abstraction for programmers
Can verify useful functional properties

H. Illous, M. Lemerre, X. Rival Interprocedural Shape Analysis Using SL-based Transformer Summaries

Outline

1 Interprocedural analysis by composition of abstract transformations

2 Evaluation

3 Application to shape abstract transformations

H. Illous, M. Lemerre, X. Rival Interprocedural Shape Analysis Using SL-based Transformer Summaries

From Separation Logic to Relational Separation Logic

A New Abstract Domain of Relations: Abstract Transformations

Separation Logic
h♯ ::= emp

| α 7→ β
| list(α)
| lseg(α)
| h♯ ∗ h♯

Relational Separation Logic

t♯ ::= Id(h♯)
| [h♯ 99K h♯]
| t♯ ∗T t♯

Separation Logic: properties on states

Relational Separation Logic: properties on pairs of states (in, out)

H. Illous, M. Lemerre, X. Rival Interprocedural Shape Analysis Using SL-based Transformer Summaries

From Separation Logic to Relational Separation Logic

A New Abstract Domain of Relations: Abstract Transformations

Separation Logic
h♯ ::= emp

| α 7→ β
| list(α)
| lseg(α)
| h♯ ∗ h♯

Relational Separation Logic

t♯ ::= Id(h♯)
| [h♯ 99K h♯]
| t♯ ∗T t♯

Separation Logic: properties on states

Relational Separation Logic: properties on pairs of states (in, out)

H. Illous, M. Lemerre, X. Rival Interprocedural Shape Analysis Using SL-based Transformer Summaries

Relational Separation Logic Connectives

Id(h♯): No modification

γT(Id(h
♯)) = {(σ, σ) : σ ∈ γH(h

♯)}

h♯

Id

[h♯i 99K h♯o]: Memory transformation

γT([h
♯
i 99K h♯o]) =

{
(σi , σo) : σi ∈ γH(h

♯
i)

∧ σo ∈ γH(h
♯
o)

} h♯i

↓

h♯o

t♯0 ∗T t
♯
1: Independent transformations

γT(t
♯
0 ∗T t

♯
1) =

(σi ,0 ⊎ σi ,1, σo,0 ⊎ σo,1) :

(σi ,0, σo,0) ∈ γT(t
♯
0)

∧ (σi ,1, σo,1) ∈ γT(t
♯
1)

∧ separation conditions


t♯0 ∗T t♯1

H. Illous, M. Lemerre, X. Rival Interprocedural Shape Analysis Using SL-based Transformer Summaries

Relational Separation Logic Connectives

Id(h♯): No modification
γT(Id(h

♯)) = {(σ, σ) : σ ∈ γH(h
♯)} h♯

Id

[h♯i 99K h♯o]: Memory transformation

γT([h
♯
i 99K h♯o]) =

{
(σi , σo) : σi ∈ γH(h

♯
i)

∧ σo ∈ γH(h
♯
o)

} h♯i

↓

h♯o

t♯0 ∗T t
♯
1: Independent transformations

γT(t
♯
0 ∗T t

♯
1) =

(σi ,0 ⊎ σi ,1, σo,0 ⊎ σo,1) :

(σi ,0, σo,0) ∈ γT(t
♯
0)

∧ (σi ,1, σo,1) ∈ γT(t
♯
1)

∧ separation conditions


t♯0 ∗T t♯1

H. Illous, M. Lemerre, X. Rival Interprocedural Shape Analysis Using SL-based Transformer Summaries

Relational Separation Logic Connectives

Id(h♯): No modification
γT(Id(h

♯)) = {(σ, σ) : σ ∈ γH(h
♯)} h♯

Id

[h♯i 99K h♯o]: Memory transformation

γT([h
♯
i 99K h♯o]) =

{
(σi , σo) : σi ∈ γH(h

♯
i)

∧ σo ∈ γH(h
♯
o)

}

h♯i

↓

h♯o

t♯0 ∗T t
♯
1: Independent transformations

γT(t
♯
0 ∗T t

♯
1) =

(σi ,0 ⊎ σi ,1, σo,0 ⊎ σo,1) :

(σi ,0, σo,0) ∈ γT(t
♯
0)

∧ (σi ,1, σo,1) ∈ γT(t
♯
1)

∧ separation conditions


t♯0 ∗T t♯1

H. Illous, M. Lemerre, X. Rival Interprocedural Shape Analysis Using SL-based Transformer Summaries

Relational Separation Logic Connectives

Id(h♯): No modification
γT(Id(h

♯)) = {(σ, σ) : σ ∈ γH(h
♯)} h♯

Id

[h♯i 99K h♯o]: Memory transformation

γT([h
♯
i 99K h♯o]) =

{
(σi , σo) : σi ∈ γH(h

♯
i)

∧ σo ∈ γH(h
♯
o)

} h♯i

↓

h♯o

t♯0 ∗T t
♯
1: Independent transformations

γT(t
♯
0 ∗T t

♯
1) =

(σi ,0 ⊎ σi ,1, σo,0 ⊎ σo,1) :

(σi ,0, σo,0) ∈ γT(t
♯
0)

∧ (σi ,1, σo,1) ∈ γT(t
♯
1)

∧ separation conditions


t♯0 ∗T t♯1

H. Illous, M. Lemerre, X. Rival Interprocedural Shape Analysis Using SL-based Transformer Summaries

Relational Separation Logic Connectives

Id(h♯): No modification
γT(Id(h

♯)) = {(σ, σ) : σ ∈ γH(h
♯)} h♯

Id

[h♯i 99K h♯o]: Memory transformation

γT([h
♯
i 99K h♯o]) =

{
(σi , σo) : σi ∈ γH(h

♯
i)

∧ σo ∈ γH(h
♯
o)

} h♯i

↓

h♯o

t♯0 ∗T t
♯
1: Independent transformations

γT(t
♯
0 ∗T t

♯
1) =

(σi ,0 ⊎ σi ,1, σo,0 ⊎ σo,1) :

(σi ,0, σo,0) ∈ γT(t
♯
0)

∧ (σi ,1, σo,1) ∈ γT(t
♯
1)

∧ separation conditions



t♯0 ∗T t♯1

H. Illous, M. Lemerre, X. Rival Interprocedural Shape Analysis Using SL-based Transformer Summaries

Relational Separation Logic Connectives

Id(h♯): No modification
γT(Id(h

♯)) = {(σ, σ) : σ ∈ γH(h
♯)} h♯

Id

[h♯i 99K h♯o]: Memory transformation

γT([h
♯
i 99K h♯o]) =

{
(σi , σo) : σi ∈ γH(h

♯
i)

∧ σo ∈ γH(h
♯
o)

} h♯i

↓

h♯o

t♯0 ∗T t
♯
1: Independent transformations

γT(t
♯
0 ∗T t

♯
1) =

(σi ,0 ⊎ σi ,1, σo,0 ⊎ σo,1) :

(σi ,0, σo,0) ∈ γT(t
♯
0)

∧ (σi ,1, σo,1) ∈ γT(t
♯
1)

∧ separation conditions


t♯0 ∗T t♯1

H. Illous, M. Lemerre, X. Rival Interprocedural Shape Analysis Using SL-based Transformer Summaries

Abstract transformation composition: step-by-step example

lseg(α1)
α0,k0,l0

∗ 0x0
α1

∗ lseg(α3)
α2,k1,l1

∗ 0x0
α3

∗ list

α4,k2

Id

#♯#♯

lseg(β1)
β0,l0

∗T

0x0
β1
↓

β2

β1

∗T list

β2,l1
∗T list

α4,k2

Id Id Id

Step-by-step composition on the first append call

H. Illous, M. Lemerre, X. Rival Interprocedural Shape Analysis Using SL-based Transformer Summaries

Abstract transformation composition: step-by-step example

lseg(α1)
α0,k0,l0

∗ 0x0
α1

∗T lseg(α3)
α2,k1,l1

∗ 0x0
α3

∗T list

α4,k2

Id Id Id

#♯#♯

lseg(β1)
β0,l0

∗T

0x0
β1
↓

β2

β1

∗T list

β2,l1
∗T list

α4,k2

Id Id Id

Id(h1) ∗T Id(h2) ⇔ Id(h1 ∗ h2)

H. Illous, M. Lemerre, X. Rival Interprocedural Shape Analysis Using SL-based Transformer Summaries

Abstract transformation composition: step-by-step example

#♯ #♯ #♯∗T∗T

lseg(α1)
α0,k0,l0

∗ 0x0
α1

lseg(α3)
α2,k1,l1

∗ 0x0
α3

list

α4,k2

Id Id Id

#♯

lseg(β1)
β0,l0

∗T

0x0
β1
↓

β2

β1

list

β2,l1
list

α4,k2

Id Id Id

Local composition

H. Illous, M. Lemerre, X. Rival Interprocedural Shape Analysis Using SL-based Transformer Summaries

Abstract transformation composition: step-by-step example

#♯ #♯ #♯∗T∗T
Id

lseg(α1)
α0,k0,l0

∗ 0x0
α1

lseg(α3)
α2,k1,l1

∗ 0x0
α3

Id Id

#♯

lseg(β1)
β0,l0

∗T

0x0
β1
↓

β2

β1

list

β2,l1

Id Id

list

α4,k2

Id(h1) #♯ Id(h2) = Id(h1 ⊓ h2)

H. Illous, M. Lemerre, X. Rival Interprocedural Shape Analysis Using SL-based Transformer Summaries

Abstract transformation composition: step-by-step example

#♯ #♯ #♯∗T∗T
IdId

lseg(α1)
α0,k0,l0

∗ 0x0
α1

Id

#♯

lseg(β1)
β0,l0

∗T

0x0
β1
↓

β2

β1

Id

list

α4,k2
lseg(α3)
α2,k1,l1

∗ 0x0
α3

Id(h1) #♯ Id(h2) = Id(h1 ⊓ h2)

H. Illous, M. Lemerre, X. Rival Interprocedural Shape Analysis Using SL-based Transformer Summaries

Abstract transformation composition: step-by-step example

∗T#♯ #♯ #♯ #♯∗T∗T
IdId

lseg(α1)
α0,k0,l0

0x0
α1

Id Id

#♯

lseg(β1)
β0,l0

0x0
β1
↓

β2

β1

Id

list

α4,k2
lseg(α3)
α2,k1,l1

∗ 0x0
α3

Id(h1) ∗T Id(h2) ⇔ Id(h1 ∗ h2)

H. Illous, M. Lemerre, X. Rival Interprocedural Shape Analysis Using SL-based Transformer Summaries

Abstract transformation composition: step-by-step example

∗T#♯ #♯ #♯ #♯∗T∗T
IdIdId

lseg(α1)
α0,k0,l0

0x0
α1

Id

#♯
0x0
β1
↓

β2

β1

list

α4,k2
lseg(α3)
α2,k1,l1

∗ 0x0
α3

lseg(α1)
α0,k0,l0

Id(h1) #♯ Id(h2) = Id(h1 ⊓ h2)

H. Illous, M. Lemerre, X. Rival Interprocedural Shape Analysis Using SL-based Transformer Summaries

Abstract transformation composition: step-by-step example

∗T#♯ #♯ #♯∗T∗T
IdIdId

lseg(α1)
α0,k0,l0

0x0
α1

#♯ list

α4,k2
lseg(α3)
α2,k1,l1

∗ 0x0
α3

lseg(α1)
α0,k0,l0

0x0
α1

↓

α2

α1

Id(h1) #♯ [h2 −→ h3] = [h1 ⊓ h2 −→ h3]

H. Illous, M. Lemerre, X. Rival Interprocedural Shape Analysis Using SL-based Transformer Summaries

Abstract transformation composition: step-by-step example

∗T#♯ #♯ #♯∗T∗T
IdIdId

lseg(α1)
α0,k0,l0

0x0
α1

#♯ list

α4,k2
lseg(α3)
α2,k1,l1

∗ 0x0
α3

lseg(α1)
α0,k0,l0

0x0
α1

↓

α2

α1

H. Illous, M. Lemerre, X. Rival Interprocedural Shape Analysis Using SL-based Transformer Summaries

Using the summary when available

double_append(list* k0,list* k1,list* k2){

append(k0,k1);

}

t♯0 = lseg(α1)
α0,k0

∗ 0x0
α1

∗ lseg(α3)
α2,k1

∗ 0x0
α3

∗ list

α4,k2

Id
t♯0

append(list* l0,list* l1){ h♯:

t♯:
while(l0→n ̸=0x0){l0=l0→n;}
l0→n = l1;

}

list

β1,l0
∗ list

β2,l1

lseg(β1)
β0,l0

∗T

0x0
β1

β2

β1

∗T↓ list

β2,l1

Id Id

1 Parameter passing
2 Extracting output state
3 Procedure footprint
4 Summary coverage testing
5 Summary application
6 Parameter suppression

H. Illous, M. Lemerre, X. Rival Interprocedural Shape Analysis Using SL-based Transformer Summaries

Using the summary when available

double_append(list* k0,list* k1,list* k2){

append(k0,k1);

}

t♯0 = lseg(α1)
α0,k0,l0

∗ 0x0
α1

∗ lseg(α3)
α2,k1,l1

∗ 0x0
α3

∗ list

α4,k2

Id
t♯0

append(list* l0,list* l1){ h♯:

t♯:
while(l0→n ̸=0x0){l0=l0→n;}
l0→n = l1;

}

list

β1,l0
∗ list

β2,l1

lseg(β1)
β0,l0

∗T

0x0
β1

β2

β1

∗T↓ list

β2,l1

Id Id

1 Parameter passing

2 Extracting output state
3 Procedure footprint
4 Summary coverage testing
5 Summary application
6 Parameter suppression

H. Illous, M. Lemerre, X. Rival Interprocedural Shape Analysis Using SL-based Transformer Summaries

Using the summary when available

double_append(list* k0,list* k1,list* k2){

append(k0,k1);

}

t♯0 = lseg(α1)
α0,k0,l0

∗ 0x0
α1

∗ lseg(α3)
α2,k1,l1

∗ 0x0
α3

∗ list

α4,k2

Id

O(t♯0) = lseg(α1)
α0,k0,l0

∗ 0x0
α1

∗ lseg(α3)
α2,k1,l1

∗ 0x0
α3

∗ list

α4,k2

t♯0

append(list* l0,list* l1){ h♯:

t♯:
while(l0→n ̸=0x0){l0=l0→n;}
l0→n = l1;

}

list

β1,l0
∗ list

β2,l1

lseg(β1)
β0,l0

∗T

0x0
β1

β2

β1

∗T↓ list

β2,l1

Id Id

1 Parameter passing
2 Extracting output state

3 Procedure footprint
4 Summary coverage testing
5 Summary application
6 Parameter suppression

H. Illous, M. Lemerre, X. Rival Interprocedural Shape Analysis Using SL-based Transformer Summaries

Using the summary when available

double_append(list* k0,list* k1,list* k2){

append(k0,k1);

}

t♯0 = lseg(α1)
α0,k0,l0

∗ 0x0
α1

∗ lseg(α3)
α2,k1,l1

∗ 0x0
α3

∗ list

α4,k2

Id

O(t♯0) = lseg(α1)
α0,k0,l0

∗ 0x0
α1

∗ lseg(α3)
α2,k1,l1

∗ 0x0
α3

∗ list

α4,k2

Reachable part R[l0, l1](O(t♯0))
Not

reachable

t♯0

append(list* l0,list* l1){ h♯:

t♯:
while(l0→n ̸=0x0){l0=l0→n;}
l0→n = l1;

}

list

β1,l0
∗ list

β2,l1

lseg(β1)
β0,l0

∗T

0x0
β1

β2

β1

∗T↓ list

β2,l1

Id Id

1 Parameter passing
2 Extracting output state
3 Procedure footprint

4 Summary coverage testing
5 Summary application
6 Parameter suppression

H. Illous, M. Lemerre, X. Rival Interprocedural Shape Analysis Using SL-based Transformer Summaries

Using the summary when available

double_append(list* k0,list* k1,list* k2){

append(k0,k1);

}

t♯0 = lseg(α1)
α0,k0,l0

∗ 0x0
α1

∗ lseg(α3)
α2,k1,l1

∗ 0x0
α3

∗ list

α4,k2

Id

O(t♯0) = lseg(α1)
α0,k0,l0

∗ 0x0
α1

∗ lseg(α3)
α2,k1,l1

∗ 0x0
α3

∗ list

α4,k2

Reachable part R[l0, l1](O(t♯0))
Not

reachable

R[l0, l1](O(t♯0)) ⊑ h♯ ?

t♯0

append(list* l0,list* l1){ h♯:

t♯:
while(l0→n ̸=0x0){l0=l0→n;}
l0→n = l1;

}

list

β1,l0
∗ list

β2,l1

lseg(β1)
β0,l0

∗T

0x0
β1

β2

β1

∗T↓ list

β2,l1

Id Id

1 Parameter passing
2 Extracting output state
3 Procedure footprint
4 Summary coverage testing

5 Summary application
6 Parameter suppression

H. Illous, M. Lemerre, X. Rival Interprocedural Shape Analysis Using SL-based Transformer Summaries

Using the summary when available

double_append(list* k0,list* k1,list* k2){

append(k0,k1);

}

t♯0 = lseg(α1)
α0,k0,l0

∗ 0x0
α1

∗ lseg(α3)
α2,k1,l1

∗ 0x0
α3

∗ list

α4,k2

Id

O(t♯0) = lseg(α1)
α0,k0,l0

∗ 0x0
α1

∗ lseg(α3)
α2,k1,l1

∗ 0x0
α3

∗ list

α4,k2

Reachable part R[l0, l1](O(t♯0))
Not

reachable

R[l0, l1](O(t♯0)) ⊑ h♯ ? Yes

t♯0

append(list* l0,list* l1){ h♯:

t♯:
while(l0→n ̸=0x0){l0=l0→n;}
l0→n = l1;

}

list

β1,l0
∗ list

β2,l1

lseg(β1)
β0,l0

∗T

0x0
β1

β2

β1

∗T↓ list

β2,l1

Id Id

1 Parameter passing
2 Extracting output state
3 Procedure footprint
4 Summary coverage testing

5 Summary application
6 Parameter suppression

H. Illous, M. Lemerre, X. Rival Interprocedural Shape Analysis Using SL-based Transformer Summaries

Using the summary when available

double_append(list* k0,list* k1,list* k2){

append(k0,k1);

}

t♯0 = lseg(α1)
α0,k0,l0

∗ 0x0
α1

∗ lseg(α3)
α2,k1,l1

∗ 0x0
α3

∗ list

α4,k2

Id

O(t♯0) = lseg(α1)
α0,k0,l0

∗ 0x0
α1

∗ lseg(α3)
α2,k1,l1

∗ 0x0
α3

∗

list

α4,k2

Id

t♯0

append(list* l0,list* l1){ h♯:

t♯:
while(l0→n ̸=0x0){l0=l0→n;}
l0→n = l1;

}

list

β1,l0
∗ list

β2,l1

lseg(β1)
β0,l0

∗T

0x0
β1

β2

β1

∗T↓ list

β2,l1

Id Id

1 Parameter passing
2 Extracting output state
3 Procedure footprint
4 Summary coverage testing
5 Summary application

6 Parameter suppression

H. Illous, M. Lemerre, X. Rival Interprocedural Shape Analysis Using SL-based Transformer Summaries

Using the summary when available

double_append(list* k0,list* k1,list* k2){

append(k0,k1);

}

t♯0 = lseg(α1)
α0,k0,l0

∗ 0x0
α1

∗ lseg(α3)
α2,k1,l1

∗ 0x0
α3

∗ list

α4,k2

Id

O(t♯0) = lseg(α1)
α0,k0,l0

∗ 0x0
α1

∗ lseg(α3)
α2,k1,l1

∗ 0x0
α3

∗

t♯ ∗T list

α4,k2

Id

t♯0

append(list* l0,list* l1){ h♯:

t♯:
while(l0→n ̸=0x0){l0=l0→n;}
l0→n = l1;

}

list

β1,l0
∗ list

β2,l1

lseg(β1)
β0,l0

∗T

0x0
β1

β2

β1

∗T↓ list

β2,l1

Id Id

1 Parameter passing
2 Extracting output state
3 Procedure footprint
4 Summary coverage testing
5 Summary application

6 Parameter suppression

H. Illous, M. Lemerre, X. Rival Interprocedural Shape Analysis Using SL-based Transformer Summaries

Using the summary when available

double_append(list* k0,list* k1,list* k2){

append(k0,k1);

}

t♯0 = lseg(α1)
α0,k0,l0

∗ 0x0
α1

∗ lseg(α3)
α2,k1,l1

∗ 0x0
α3

∗ list

α4,k2

Id

O(t♯0) = lseg(α1)
α0,k0,l0

∗ 0x0
α1

∗ lseg(α3)
α2,k1,l1

∗ 0x0
α3

∗

t♯ ∗T#♯ list

α4,k2

Id

t♯0

append(list* l0,list* l1){ h♯:

t♯:
while(l0→n ̸=0x0){l0=l0→n;}
l0→n = l1;

}

list

β1,l0
∗ list

β2,l1

lseg(β1)
β0,l0

∗T

0x0
β1

β2

β1

∗T↓ list

β2,l1

Id Id

1 Parameter passing
2 Extracting output state
3 Procedure footprint
4 Summary coverage testing
5 Summary application

6 Parameter suppression

H. Illous, M. Lemerre, X. Rival Interprocedural Shape Analysis Using SL-based Transformer Summaries

Using the summary when available

double_append(list* k0,list* k1,list* k2){

append(k0,k1);

}

lseg(α1)
α0,k0,l0

∗

0x0
α1

α2

α1

∗ lseg(α3)
α2,k1,l1

∗ 0x0
α3

∗ list

α4,k2

Id Id

↓

t♯0

append(list* l0,list* l1){ h♯:

t♯:
while(l0→n ̸=0x0){l0=l0→n;}
l0→n = l1;

}

list

β1,l0
∗ list

β2,l1

lseg(β1)
β0,l0

∗T

0x0
β1

β2

β1

∗T↓ list

β2,l1

Id Id

1 Parameter passing
2 Extracting output state
3 Procedure footprint
4 Summary coverage testing
5 Summary application

6 Parameter suppression

H. Illous, M. Lemerre, X. Rival Interprocedural Shape Analysis Using SL-based Transformer Summaries

Using the summary when available

double_append(list* k0,list* k1,list* k2){

append(k0,k1);

}

lseg(α1)
α0,k0

∗

0x0
α1

α2

α1

∗ lseg(α3)
α2,k1

∗ 0x0
α3

∗ list

α4,k2

Id Id

↓

t♯0

append(list* l0,list* l1){ h♯:

t♯:
while(l0→n ̸=0x0){l0=l0→n;}
l0→n = l1;

}

list

β1,l0
∗ list

β2,l1

lseg(β1)
β0,l0

∗T

0x0
β1

β2

β1

∗T↓ list

β2,l1

Id Id

1 Parameter passing
2 Extracting output state
3 Procedure footprint
4 Summary coverage testing
5 Summary application
6 Parameter suppression

H. Illous, M. Lemerre, X. Rival Interprocedural Shape Analysis Using SL-based Transformer Summaries

Using the summary when available

double_append(list* k0,list* k1,list* k2){

append(k0,k1);

}

lseg(α1)
α0,k0

∗

0x0
α1

α2

α1

∗ lseg(α3)
α2,k1

∗ 0x0
α3

∗ list

α4,k2

Id Id

↓

t♯0

t♯1

append(list* l0,list* l1){ h♯:

t♯:
while(l0→n ̸=0x0){l0=l0→n;}
l0→n = l1;

}

list

β1,l0
∗ list

β2,l1

lseg(β1)
β0,l0

∗T

0x0
β1

β2

β1

∗T↓ list

β2,l1

Id Id

1 Parameter passing
2 Extracting output state
3 Procedure footprint
4 Summary coverage testing
5 Summary application
6 Parameter suppression

H. Illous, M. Lemerre, X. Rival Interprocedural Shape Analysis Using SL-based Transformer Summaries

Computing the summary when needed

double_append(list* k0,list* k1,list* k2){

append(k0,k1);

}

t♯0 = lseg(α1)
α0,k0

∗ 0x0
α1

∗ lseg(α3)
α2,k1

∗ 0x0
α3

∗ list

α4,k2

Id
t♯0

append(list* l0,list* l1){ h♯:

t♯:
while(l0→n ̸=0x0){l0=l0→n;}
l0→n = l1;

}

list

β1,l0
∗ 0x0

β2,l1

lseg(β1)
β0,l0

∗T

0x0
β1

β2

β1

∗T↓ 0x0
β2,l1

Id Id

1 Parameter passing
2 Extracting output state
3 Procedure footprint
4 Summary coverage testing

Summary recomputation
5 Summary application
6 Parameter suppression

H. Illous, M. Lemerre, X. Rival Interprocedural Shape Analysis Using SL-based Transformer Summaries

Computing the summary when needed

double_append(list* k0,list* k1,list* k2){

append(k0,k1);

}

t♯0 = lseg(α1)
α0,k0,l0

∗ 0x0
α1

∗ lseg(α3)
α2,k1,l1

∗ 0x0
α3

∗ list

α4,k2

Id
t♯0

append(list* l0,list* l1){ h♯:

t♯:
while(l0→n ̸=0x0){l0=l0→n;}
l0→n = l1;

}

list

β1,l0
∗ 0x0

β2,l1

lseg(β1)
β0,l0

∗T

0x0
β1

β2

β1

∗T↓ 0x0
β2,l1

Id Id

1 Parameter passing

2 Extracting output state
3 Procedure footprint
4 Summary coverage testing

Summary recomputation
5 Summary application
6 Parameter suppression

H. Illous, M. Lemerre, X. Rival Interprocedural Shape Analysis Using SL-based Transformer Summaries

Computing the summary when needed

double_append(list* k0,list* k1,list* k2){

append(k0,k1);

}

t♯0 = lseg(α1)
α0,k0,l0

∗ 0x0
α1

∗ lseg(α3)
α2,k1,l1

∗ 0x0
α3

∗ list

α4,k2

Id

O(t♯0) = lseg(α1)
α0,k0,l0

∗ 0x0
α1

∗ lseg(α3)
α2,k1,l1

∗ 0x0
α3

∗ list

α4,k2

t♯0

append(list* l0,list* l1){ h♯:

t♯:
while(l0→n ̸=0x0){l0=l0→n;}
l0→n = l1;

}

list

β1,l0
∗ 0x0

β2,l1

lseg(β1)
β0,l0

∗T

0x0
β1

β2

β1

∗T↓ 0x0
β2,l1

Id Id

1 Parameter passing
2 Extracting output state

3 Procedure footprint
4 Summary coverage testing

Summary recomputation
5 Summary application
6 Parameter suppression

H. Illous, M. Lemerre, X. Rival Interprocedural Shape Analysis Using SL-based Transformer Summaries

Computing the summary when needed

double_append(list* k0,list* k1,list* k2){

append(k0,k1);

}

t♯0 = lseg(α1)
α0,k0,l0

∗ 0x0
α1

∗ lseg(α3)
α2,k1,l1

∗ 0x0
α3

∗ list

α4,k2

Id

O(t♯0) = lseg(α1)
α0,k0,l0

∗ 0x0
α1

∗ lseg(α3)
α2,k1,l1

∗ 0x0
α3

∗ list

α4,k2

Reachable part R[l0, l1](O(t♯0))
Not

reachable

t♯0

append(list* l0,list* l1){ h♯:

t♯:
while(l0→n ̸=0x0){l0=l0→n;}
l0→n = l1;

}

list

β1,l0
∗ 0x0

β2,l1

lseg(β1)
β0,l0

∗T

0x0
β1

β2

β1

∗T↓ 0x0
β2,l1

Id Id

1 Parameter passing
2 Extracting output state
3 Procedure footprint

4 Summary coverage testing
Summary recomputation

5 Summary application
6 Parameter suppression

H. Illous, M. Lemerre, X. Rival Interprocedural Shape Analysis Using SL-based Transformer Summaries

Computing the summary when needed

double_append(list* k0,list* k1,list* k2){

append(k0,k1);

}

t♯0 = lseg(α1)
α0,k0,l0

∗ 0x0
α1

∗ lseg(α3)
α2,k1,l1

∗ 0x0
α3

∗ list

α4,k2

Id

O(t♯0) = lseg(α1)
α0,k0,l0

∗ 0x0
α1

∗ lseg(α3)
α2,k1,l1

∗ 0x0
α3

∗ list

α4,k2

Reachable part R[l0, l1](O(t♯0))
Not

reachable

R[l0, l1](O(t♯0)) ⊑ h♯ ?

t♯0

append(list* l0,list* l1){ h♯:

t♯:
while(l0→n ̸=0x0){l0=l0→n;}
l0→n = l1;

}

list

β1,l0
∗ 0x0

β2,l1

lseg(β1)
β0,l0

∗T

0x0
β1

β2

β1

∗T↓ 0x0
β2,l1

Id Id

1 Parameter passing
2 Extracting output state
3 Procedure footprint
4 Summary coverage testing

Summary recomputation
5 Summary application
6 Parameter suppression

H. Illous, M. Lemerre, X. Rival Interprocedural Shape Analysis Using SL-based Transformer Summaries

Computing the summary when needed

double_append(list* k0,list* k1,list* k2){

append(k0,k1);

}

t♯0 = lseg(α1)
α0,k0,l0

∗ 0x0
α1

∗ lseg(α3)
α2,k1,l1

∗ 0x0
α3

∗ list

α4,k2

Id

O(t♯0) = lseg(α1)
α0,k0,l0

∗ 0x0
α1

∗ lseg(α3)
α2,k1,l1

∗ 0x0
α3

∗ list

α4,k2

Reachable part R[l0, l1](O(t♯0))
Not

reachable

R[l0, l1](O(t♯0)) ⊑ h♯ ? No

t♯0

append(list* l0,list* l1){ h♯:

t♯:
while(l0→n ̸=0x0){l0=l0→n;}
l0→n = l1;

}

list

β1,l0
∗ 0x0

β2,l1

lseg(β1)
β0,l0

∗T

0x0
β1

β2

β1

∗T↓ 0x0
β2,l1

Id Id

1 Parameter passing
2 Extracting output state
3 Procedure footprint
4 Summary coverage testing

Summary recomputation
5 Summary application
6 Parameter suppression

H. Illous, M. Lemerre, X. Rival Interprocedural Shape Analysis Using SL-based Transformer Summaries

Computing the summary when needed

double_append(list* k0,list* k1,list* k2){

append(k0,k1);

}

t♯0 = lseg(α1)
α0,k0,l0

∗ 0x0
α1

∗ lseg(α3)
α2,k1,l1

∗ 0x0
α3

∗ list

α4,k2

Id

O(t♯0) = lseg(α1)
α0,k0,l0

∗ 0x0
α1

∗ lseg(α3)
α2,k1,l1

∗ 0x0
α3

∗ list

α4,k2

Reachable part R[l0, l1](O(t♯0))
Not

reachable

t♯0

append(list* l0,list* l1){ h♯:

t♯:
while(l0→n ̸=0x0){l0=l0→n;}
l0→n = l1;

}

list

β1,l0
∗ 0x0

β2,l1

1 Parameter passing
2 Extracting output state
3 Procedure footprint
4 Summary coverage testing

Summary recomputation

5 Summary application
6 Parameter suppression

H. Illous, M. Lemerre, X. Rival Interprocedural Shape Analysis Using SL-based Transformer Summaries

Computing the summary when needed

double_append(list* k0,list* k1,list* k2){

append(k0,k1);

}

t♯0 = lseg(α1)
α0,k0,l0

∗ 0x0
α1

∗ lseg(α3)
α2,k1,l1

∗ 0x0
α3

∗ list

α4,k2

Id

O(t♯0) = lseg(α1)
α0,k0,l0

∗ 0x0
α1

∗ lseg(α3)
α2,k1,l1

∗ 0x0
α3

∗ list

α4,k2

Reachable part R[l0, l1](O(t♯0))
Not

reachable

h♯ := h♯ ∇ R[l0, l1](O(t♯0))

t♯0

append(list* l0,list* l1){ h♯:

t♯:
while(l0→n ̸=0x0){l0=l0→n;}
l0→n = l1;

}

list

β1,l0
∗ list

β2,l1

1 Parameter passing
2 Extracting output state
3 Procedure footprint
4 Summary coverage testing

Summary recomputation

5 Summary application
6 Parameter suppression

H. Illous, M. Lemerre, X. Rival Interprocedural Shape Analysis Using SL-based Transformer Summaries

Computing the summary when needed

double_append(list* k0,list* k1,list* k2){

append(k0,k1);

}

t♯0 = lseg(α1)
α0,k0,l0

∗ 0x0
α1

∗ lseg(α3)
α2,k1,l1

∗ 0x0
α3

∗ list

α4,k2

Id

O(t♯0) = lseg(α1)
α0,k0,l0

∗ 0x0
α1

∗ lseg(α3)
α2,k1,l1

∗ 0x0
α3

∗ list

α4,k2

Reachable part R[l0, l1](O(t♯0))
Not

reachable

t♯0

append(list* l0,list* l1){ h♯:

t♯:
while(l0→n ̸=0x0){l0=l0→n;}
l0→n = l1;

}

list

β1,l0
∗ list

β2,l1

lseg(β1)
β0,l0

∗T

0x0
β1

β2

β1

∗T↓ list

β2,l1

Id Id

1 Parameter passing
2 Extracting output state
3 Procedure footprint
4 Summary coverage testing

Summary recomputation

5 Summary application
6 Parameter suppression

H. Illous, M. Lemerre, X. Rival Interprocedural Shape Analysis Using SL-based Transformer Summaries

Computing the summary when needed

double_append(list* k0,list* k1,list* k2){

append(k0,k1);

}

t♯0 = lseg(α1)
α0,k0,l0

∗ 0x0
α1

∗ lseg(α3)
α2,k1,l1

∗ 0x0
α3

∗ list

α4,k2

Id

O(t♯0) = lseg(α1)
α0,k0,l0

∗ 0x0
α1

∗ lseg(α3)
α2,k1,l1

∗ 0x0
α3

∗

list

α4,k2

Id

t♯0

append(list* l0,list* l1){ h♯:

t♯:
while(l0→n ̸=0x0){l0=l0→n;}
l0→n = l1;

}

list

β1,l0
∗ list

β2,l1

lseg(β1)
β0,l0

∗T

0x0
β1

β2

β1

∗T↓ list

β2,l1

Id Id

1 Parameter passing
2 Extracting output state
3 Procedure footprint
4 Summary coverage testing

Summary recomputation
5 Summary application

6 Parameter suppression

H. Illous, M. Lemerre, X. Rival Interprocedural Shape Analysis Using SL-based Transformer Summaries

Computing the summary when needed

double_append(list* k0,list* k1,list* k2){

append(k0,k1);

}

t♯0 = lseg(α1)
α0,k0,l0

∗ 0x0
α1

∗ lseg(α3)
α2,k1,l1

∗ 0x0
α3

∗ list

α4,k2

Id

O(t♯0) = lseg(α1)
α0,k0,l0

∗ 0x0
α1

∗ lseg(α3)
α2,k1,l1

∗ 0x0
α3

∗

t♯ ∗T list

α4,k2

Id

t♯0

append(list* l0,list* l1){ h♯:

t♯:
while(l0→n ̸=0x0){l0=l0→n;}
l0→n = l1;

}

list

β1,l0
∗ list

β2,l1

lseg(β1)
β0,l0

∗T

0x0
β1

β2

β1

∗T↓ list

β2,l1

Id Id

1 Parameter passing
2 Extracting output state
3 Procedure footprint
4 Summary coverage testing

Summary recomputation
5 Summary application

6 Parameter suppression

H. Illous, M. Lemerre, X. Rival Interprocedural Shape Analysis Using SL-based Transformer Summaries

Computing the summary when needed

double_append(list* k0,list* k1,list* k2){

append(k0,k1);

}

t♯0 = lseg(α1)
α0,k0,l0

∗ 0x0
α1

∗ lseg(α3)
α2,k1,l1

∗ 0x0
α3

∗ list

α4,k2

Id

O(t♯0) = lseg(α1)
α0,k0,l0

∗ 0x0
α1

∗ lseg(α3)
α2,k1,l1

∗ 0x0
α3

∗

t♯ ∗T#♯ list

α4,k2

Id

t♯0

append(list* l0,list* l1){ h♯:

t♯:
while(l0→n ̸=0x0){l0=l0→n;}
l0→n = l1;

}

list

β1,l0
∗ list

β2,l1

lseg(β1)
β0,l0

∗T

0x0
β1

β2

β1

∗T↓ list

β2,l1

Id Id

1 Parameter passing
2 Extracting output state
3 Procedure footprint
4 Summary coverage testing

Summary recomputation
5 Summary application

6 Parameter suppression

H. Illous, M. Lemerre, X. Rival Interprocedural Shape Analysis Using SL-based Transformer Summaries

Computing the summary when needed

double_append(list* k0,list* k1,list* k2){

append(k0,k1);

}

lseg(α1)
α0,k0,l0

∗

0x0
α1

α2

α1

∗ lseg(α3)
α2,k1,l1

∗ 0x0
α3

∗ list

α4,k2

Id Id

↓

t♯0

append(list* l0,list* l1){ h♯:

t♯:
while(l0→n ̸=0x0){l0=l0→n;}
l0→n = l1;

}

list

β1,l0
∗ list

β2,l1

lseg(β1)
β0,l0

∗T

0x0
β1

β2

β1

∗T↓ list

β2,l1

Id Id

1 Parameter passing
2 Extracting output state
3 Procedure footprint
4 Summary coverage testing

Summary recomputation
5 Summary application

6 Parameter suppression

H. Illous, M. Lemerre, X. Rival Interprocedural Shape Analysis Using SL-based Transformer Summaries

Computing the summary when needed

double_append(list* k0,list* k1,list* k2){

append(k0,k1);

}

lseg(α1)
α0,k0

∗

0x0
α1

α2

α1

∗ lseg(α3)
α2,k1

∗ 0x0
α3

∗ list

α4,k2

Id Id

↓

t♯0

append(list* l0,list* l1){ h♯:

t♯:
while(l0→n ̸=0x0){l0=l0→n;}
l0→n = l1;

}

list

β1,l0
∗ list

β2,l1

lseg(β1)
β0,l0

∗T

0x0
β1

β2

β1

∗T↓ list

β2,l1

Id Id

1 Parameter passing
2 Extracting output state
3 Procedure footprint
4 Summary coverage testing

Summary recomputation
5 Summary application
6 Parameter suppression

H. Illous, M. Lemerre, X. Rival Interprocedural Shape Analysis Using SL-based Transformer Summaries

Computing the summary when needed

double_append(list* k0,list* k1,list* k2){

append(k0,k1);

}

lseg(α1)
α0,k0

∗

0x0
α1

α2

α1

∗ lseg(α3)
α2,k1

∗ 0x0
α3

∗ list

α4,k2

Id Id

↓

t♯0

t♯1

append(list* l0,list* l1){ h♯:

t♯:
while(l0→n ̸=0x0){l0=l0→n;}
l0→n = l1;

}

list

β1,l0
∗ list

β2,l1

lseg(β1)
β0,l0

∗T

0x0
β1

β2

β1

∗T↓ list

β2,l1

Id Id

1 Parameter passing
2 Extracting output state
3 Procedure footprint
4 Summary coverage testing

Summary recomputation
5 Summary application
6 Parameter suppression

H. Illous, M. Lemerre, X. Rival Interprocedural Shape Analysis Using SL-based Transformer Summaries

	Introduction
	Interprocedural analysis by composition of abstract transformations
	Evaluation
	Conclusions
	Application to shape abstract transformations

