
—

BINSEC/SE: A Dynamic
Symbolic Execution Toolkit
for Binary-level Analysis

Robin David
Sébastien Bardin
Thanh Dinh Ta
Josselin Feist
Laurent Mounier
Marie-Laure Potet
Jean-Yves Marion

SANER 2016, Osaka, Japan, March 16th



Outline

Introduction

Dynamic Symbolic Execution

Binsec/SE

Demo

CEA - - 2/11



Introduction

The need to reverse engineer an excutable : malware, bug
discovery, safety, testing ..

Current approaches and limitations for binary-level understanding :

Static :
allow to choose any path [but not necessarily feasible]
Easy to fool → indirect jumps, self-modification etc.

Dynamic :
only doable paths [but depend on inputs]
problem → possibly miss a lot of code areas

CEA - - 3/11



Introduction

The need to reverse engineer an excutable : malware, bug
discovery, safety, testing ..

Current approaches and limitations for binary-level understanding :

Static :
allow to choose any path [but not necessarily feasible]
Easy to fool → indirect jumps, self-modification etc.

Dynamic :
only doable paths [but depend on inputs]
problem → possibly miss a lot of code areas

CEA - - 3/11



Introduction

The need to reverse engineer an excutable : malware, bug
discovery, safety, testing ..

Current approaches and limitations for binary-level understanding :

Static :
allow to choose any path [but not necessarily feasible]
Easy to fool → indirect jumps, self-modification etc.

Dynamic :
only doable paths [but depend on inputs]
problem → possibly miss a lot of code areas

CEA - - 3/11



Introduction

The need to reverse engineer an excutable : malware, bug
discovery, safety, testing ..

Current approaches and limitations for binary-level understanding :

Static :
allow to choose any path [but not necessarily feasible]
Easy to fool → indirect jumps, self-modification etc.

Dynamic :
only doable paths [but depend on inputs]
problem → possibly miss a lot of code areas

CEA - - 3/11

Symbolic : best of both world

only doable paths

can recover new paths [regardless of path rarity]



Running examples

Various problems occurs when trying to cover program paths :

Dynamic jumps

mov eax, var x
shl eax, 2
add eax, off y
mov eax, [eax]
jmp eax

Call/Ret

1004002 : call 0x100400a
1004007 : (junk byte)
1004008 :

jmp 0x100400e

100400a : pop ebp
100400b : inc ebp
100400c : push ebp
100400d : ret
100400e : ...

CEA - - 4/11



Running examples

Various problems occurs when trying to cover program paths :

Dynamic jumps

mov eax, var x
shl eax, 2
add eax, off y
mov eax, [eax]
mov edx, eax
mov eax, edx
jmp eax

Call/Ret

1004002 : call 0x100400a
1004007 : (junk byte)
1004008 :

jmp 0x100400e

100400a : pop ebp
100400b : inc ebp
100400c : push ebp
100400d : ret
100400e : ...

CEA - - 4/11

Heuristics limitations

IDA Pro 6.9 fooled by such
trick..



Running examples

Various problems occurs when trying to cover program paths :

Dynamic jumps

mov eax, var x
shl eax, 2
add eax, off y
mov eax, [eax]
mov edx, eax
mov eax, edx
jmp eax

Call/Ret

1004002 : call 0x100400a
1004007 : (junk byte)
1004008 :

jmp 0x100400e

100400a : pop ebp
100400b : inc ebp
100400c : push ebp
100400d : ret
100400e : ...

CEA - - 4/11

Heuristics limitations

IDA Pro 6.9 fooled by such
trick..



Running examples

Various problems occurs when trying to cover program paths :

Dynamic jumps

mov eax, var x
shl eax, 2
add eax, off y
mov eax, [eax]
mov edx, eax
mov eax, edx
jmp eax

Call/Ret

1004002 : call 0x100400a
1004007 : (junk byte)
1004008 : jmp 0x100400e
100400a : pop ebp
100400b : inc ebp
100400c : push ebp
100400d : ret
100400e : ...

CEA - - 4/11

Heuristics limitations

IDA Pro 6.9 fooled by such
trick..



Running examples

Various problems occurs when trying to cover program paths :

Dynamic jumps

mov eax, var x
shl eax, 2
add eax, off y
mov eax, [eax]
mov edx, eax
mov eax, edx
jmp eax

Call/Ret

1004002 : call 0x100400a
1004007 : (junk byte)
1004008 : jmp 0x100400e
100400a : pop ebp
100400b : inc ebp
100400c : push ebp
100400d : ret
100400e : ...

CEA - - 4/11

Heuristics limitations

IDA Pro 6.9 fooled by such
trick..

Heuristics limitations

Common disassemblers does not
disassemble after unknown byte
and ret instructions



Running examples

Various problems occurs when trying to cover program paths :

Dynamic jumps

mov eax, var x
shl eax, 2
add eax, off y
mov eax, [eax]
mov edx, eax
mov eax, edx
jmp eax

Call/Ret

1004002 : call 0x100400a
1004007 : (junk byte)
1004008 : jmp 0x100400e
100400a : pop ebp
100400b : inc ebp
100400c : push ebp
100400d : ret
100400e : ...

And many others..
CEA - - 4/11

Heuristics limitations

IDA Pro 6.9 fooled by such
trick..

Heuristics limitations

Common disassemblers does not
disassemble after unknown byte
and ret instructions



Outline

Introduction

Dynamic Symbolic Execution

Binsec/SE

Demo

CEA - - 5/11



DSE : In brief

Definition

Symbolic execution is the mean of executing a program using
symbolic values (logical symbols) rather than actual values
(bitvectors) in order to obtain in-out relationship of a path.

Dynamic Symbolic Execution [DSE] :

precise reasoning on a single path
sound execution of the program (path necessarily feasible)
can recover new paths (goto eax, call/ret, etc.)
thwart basic tricks (code overlapping..)

CEA - - 6/11



Outline

Introduction

Dynamic Symbolic Execution

Binsec/SE

Demo

CEA - - 7/11



Binsec : Global overview

CEA - - 8/11



Binsec : Global overview

CEA - - 8/11



Binsec/SE : In depth

Tracing (Pin)

gather certain library calls
concrete infos

arbitrary value retrieval
(registers/memory)

On-the-fly value
patching

Linux/Windows

Remote control

Core (10K OCaml loc)

stub engine for library
calls

generic path selection

path predicate
optimization :

handle JSON conf. files

Solvers : Z3, boolector, ..

CEA - - 9/11



Outline

Introduction

Dynamic Symbolic Execution

Binsec/SE

Demo

CEA - - 10/11



Demo : Call/Ret violation

Example code obfuscated by the ASPack packer :

1 1004002 e8 03 00 00 00 c a l l 0 x100400a //push 0x1004007 as return
2 100400 a 5d pop ebp //pop return address in ebp
3 100400 b 45 i n c ebp //increment ebp
4 100400 c 55 push ebp //push back the value
5 100400 d c3 r e t //return on 0x1004008
6 1004008 eb 04 jmp 0 x100400e

→ Fool the disassembler (which works here).

(Goal : Trying to find the violations with DSE)

CEA - - 11/11



Demo : Call/Ret violation

Example code obfuscated by the ASPack packer :

1 1004002 e8 03 00 00 00 c a l l 0 x100400a //push 0x1004007 as return
2 100400 a 5d pop ebp //pop return address in ebp
3 100400 b 45 i n c ebp //increment ebp
4 100400 c 55 push ebp //push back the value
5 100400 d c3 r e t //return on 0x1004008
6 1004008 eb 04 jmp 0 x100400e

→ Fool the disassembler (which works here).

(Goal : Trying to find the violations with DSE)

CEA - - 11/11



Thank you !

ああありりりがががとととうううごごござざざいいいままますすす

Direction de la Recherche Technologique
Département d’Ingénierie des Logiciels et des Systèmes
Laboratoire de Sûreté des Logiciels

Commissariat à l’énergie atomique et aux énergies alternatives
Institut Carnot CEA LIST

Centre de Saclay — 91191 Gif-sur-Yvette Cedex

Etablissement public à caractère industriel et commercial — RCS Paris B 775 685 019


	Introduction
	Dynamic Symbolic Execution
	Binsec/SE
	Demo

