

Specification of Concretization and Symbolization Policies in Symbolic Execution

Sébastien Bardin
joint work with

Robin David, Josselin Feist, Laurent Mounier, Marie-Laure
Potet, Thanh Dihn Ta, Jean-Yves Marion

CEA LIST (Paris-Saclay, France)

ISSTA 2016

Takeaway

Dynamic Symbolic Execution (DSE) : powerful approach to verif. and testing

- three key ingredients : path predicate computation & solving, path search, concretization & symbolization policy (C/S)

C/S is an essential part, yet mostly not studied

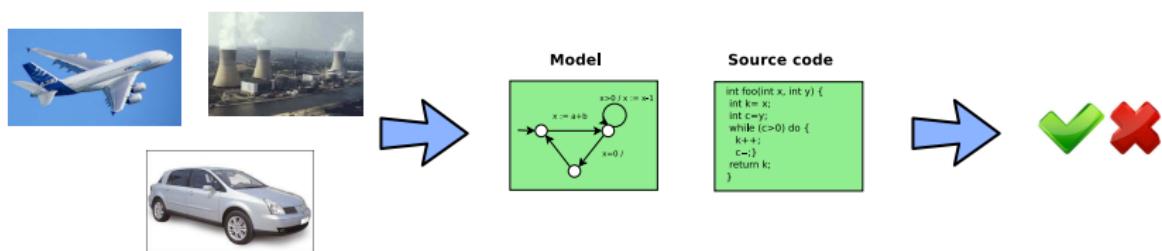
- many policies (one per tool), no systematic study of C/S
- undocumented, unclear
- tools : often a single hardcoded policy, no reuse across tools

Our goal : establish C/S as a proper field of study [focus first on specification]

- CSML, a specification language for C/S ✓
 - ▶ clear, non-ambiguous [documentation]
 - ▶ tool independent [reuse, sharing, tuning]
 - ▶ executable [input for tools]
- implemented in BINSEC ✓
- an experimental comparison of C/S policies ✓

About formal verification

- Between Software Engineering and Theoretical Computer Science
- Goal = proves correctness in a mathematical way



Key concepts : $M \models \varphi$

- M : semantic of the program
- φ : property to be checked
- \models : algorithmic check

Kind of properties

- absence of runtime error
- pre/post-conditions
- temporal properties

From (a logician's) dream to reality

Industrial reality in some **key areas**, especially safety-critical domains

- hardware, aeronautics [**airbus**], railroad [**metro 14**], smartcards, drivers [**Windows**], certified compilers [**CompCert**] and OS [**Sel4**], etc.

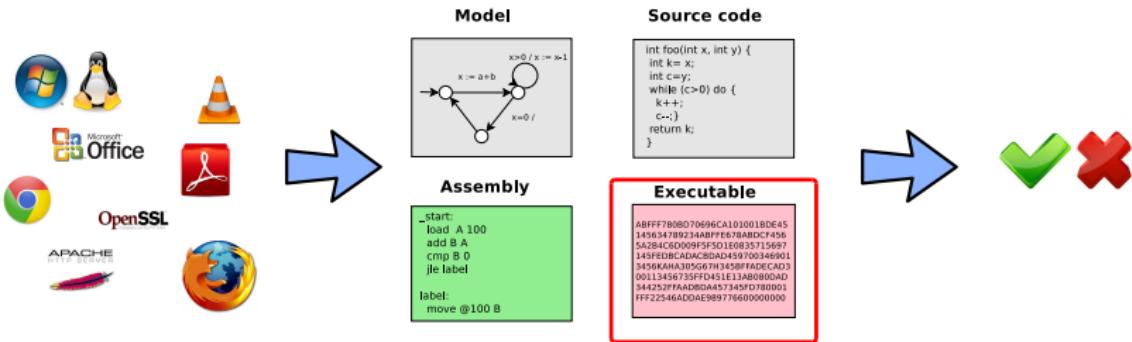
Ex : Airbus

Verification of

- runtime errors [**Astrée**]
- functional correctness [**Frama-C**]
- numerical precision [**Fluctuat**]
- source-binary conformance [**CompCert**]
- ressource usage [**Absint**]

Next big challenge

- Apply formal methods to less-critical software
- Very different context : no formal spec, less developer involvement, etc.

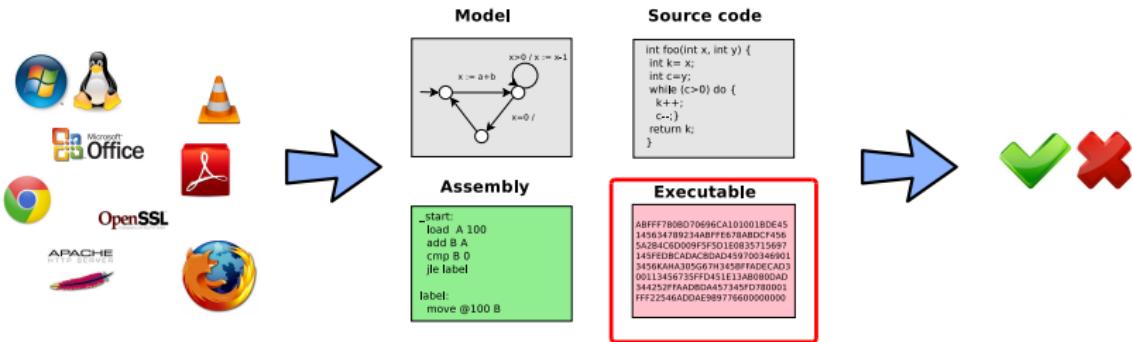


Difficulties

- robustness [w.r.t. software constructs]
- no place for false alarms
- scale
- sometimes, not even source code

Next big challenge

- Apply formal methods to less-critical software
- Very different context : no formal spec, less developer involvement, etc.



Difficulties

- robustness [w.r.t. software constructs]
- no place for false alarms
- scale
- sometimes, not even source code

DSE as a first step

- **very robust**
- (mostly) no false alarm
- scale in some ways
- ok for binary code

Introducing DSE

Dynamic Symbolic Execution [since 2004-2005 : dart, cute, pathcrawler]

- a very powerful formal approach to verification and testing
- many tools and successful case-studies since mid 2000's
 - ▶ SAGE, Klee, Mayhem, etc.
 - ▶ coverage-oriented testing, bug finding, exploit generation, reverse
- arguably one of the most wide-spread use of formal methods

Very good properties

- mostly no false alarm, robust, scale, ok for binary code

Introducing DSE

Dynamic Symbolic Execution [since 2004-2005 : dart, cute, pathcrawler]

- a very powerful formal approach to verification and testing
- many tools and successful case-studies since mid 2000's
 - ▶ SAGE, Klee, Mayhem, etc.
 - ▶ coverage-oriented testing, bug finding, exploit generation, reverse
- arguably one of the most wide-spread use of formal methods

Very good properties

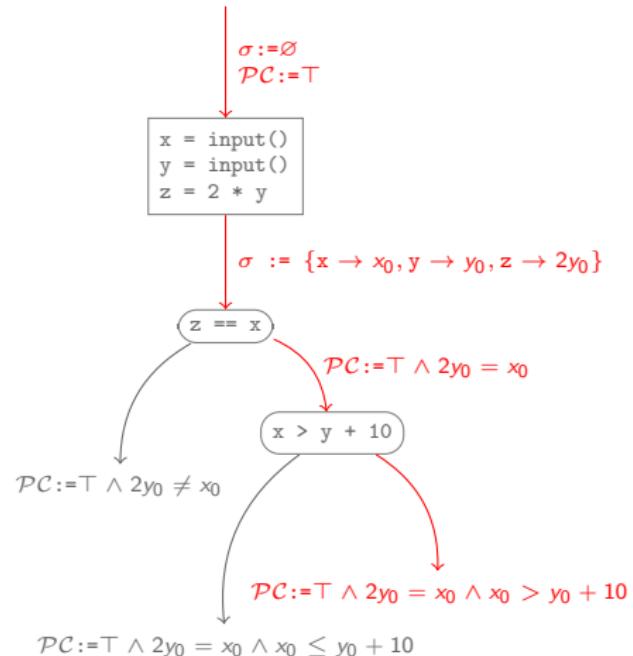
- mostly no false alarm, robust, scale, ok for binary code

Key idea : path predicate [King 70's]

- consider a program P on input v , and a given path σ
- a **path predicate** φ_σ for σ is a formula s.t.
 $v \models \varphi_\sigma \Rightarrow P(v)$ follows σ
- intuitively the **conjunction of all branching conditions**
- old idea, recent renew interest [**powerful solvers, dynamic+symbolic**]

```
int main () {
    int x = input();
    int y = input();
    int z = 2 * y;
    if (z == x) {
        if (x > y + 10)
            failure;
    }
    success;
}
```

- given a path of the program
- automatically find input that follows the path
- then, iterate over all paths



```
int main () {  
    int x = input();  
    int y = input();  
    int z = 2 * y;  
    if (z == x) {  
        if (x > y)  
            failure();  
    }  
    success();  
}
```

Three key ingredients

- path predicate computation & solving
- path search
- C/S policy

 $\sigma := \emptyset$
 $\mathcal{PC} := \top$ $\rightarrow x_0, y \rightarrow y_0, z \rightarrow 2y_0 \}$ $\mathcal{PC} := \top \wedge 2y_0 = x_0$ $\mathcal{PC} := \top \wedge 2y_0 \neq x_0$ $\mathcal{PC} := \top \wedge 2y_0 = x_0 \wedge x_0 \leq y_0 + 10$

- given a path of the program
- automatically find input that follows the path
- then, iterate over all paths

Path predicate computation

Usually easy to compute [forward, introduce new logical variables at each step]

Loc	Instruction
0	input(y,z)
1	w := y+1
2	x := w + 3
3	if (x < 2 * z) [True branch]
4	if (x < z) [False branch]

Path predicate (input Y_0 et Z_0)

Path predicate computation

Usually easy to compute [forward, introduce new logical variables at each step]

Loc	Instruction
0	input(y,z)
1	w := y+1
2	x := w + 3
3	if (x < 2 * z) [True branch]
4	if (x < z) [False branch]

Path predicate (input Y_0 et Z_0)

let $W_1 \triangleq Y_0 + 1$ in

Path predicate computation

Usually easy to compute [forward, introduce new logical variables at each step]

Loc	Instruction
0	input(y,z)
1	w := y+1
2	x := w + 3
3	if (x < 2 * z) [True branch]
4	if (x < z) [False branch]

Path predicate (input Y_0 et Z_0)

let $W_1 \triangleq Y_0 + 1$ in

 let $X_2 \triangleq W_1 + 3$ in

Path predicate computation

Usually easy to compute [forward, introduce new logical variables at each step]

Loc	Instruction
0	input(y, z)
1	$w := y + 1$
2	$x := w + 3$
3	if ($x < 2 * z$) [True branch]
4	if ($x < z$) [False branch]

Path predicate (input Y_0 et Z_0)

let $W_1 \triangleq Y_0 + 1$ in

let $X_2 \triangleq W_1 + 3$ in

$X_2 < 2 \times Z_0$

Path predicate computation

Usually easy to compute [forward, introduce new logical variables at each step]

Loc	Instruction
0	input(y,z)
1	w := y+1
2	x := w + 3
3	if (x < 2 * z) [True branch]
4	if (x < z) [False branch]

Path predicate (input Y_0 et Z_0)

let $W_1 \triangleq Y_0 + 1$ in

let $X_2 \triangleq W_1 + 3$ in

$X_2 < 2 \times Z_0 \wedge X_2 \geq Z_0$

Path Exploration

input : a program P

output : a test suite TS covering all feasible paths of $Paths^{\leq k}(P)$

- **pick a path** $\sigma \in Paths^{\leq k}(P)$
- **compute a path predicate** φ_σ of σ
- **solve** φ_σ for satisfiability
- $SAT(s)$? get a new pair $< s, \sigma >$
- loop until no more path to cover

Path Exploration

input : a program P

output : a test suite TS covering all feasible paths of $Paths^{\leq k}(P)$

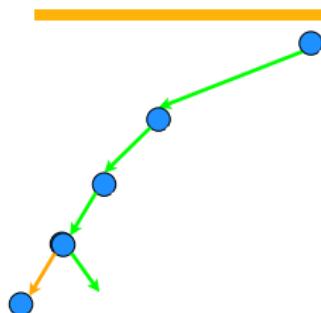
- **pick a path** $\sigma \in Paths^{\leq k}(P)$
- **compute a path predicate** φ_σ of σ
- **solve** φ_σ for satisfiability
- SAT(s) ? get a new pair $< s, \sigma >$
- loop until no more path to cover

Path Exploration

input : a program P

output : a test suite TS covering all feasible paths of $Paths^{\leq k}(P)$

- **pick a path** $\sigma \in Paths^{\leq k}(P)$
- **compute a path predicate** φ_σ of σ
- **solve** φ_σ for satisfiability
- SAT(s) ? get a new pair $< s, \sigma >$
- loop until no more path to cover



Path Exploration

input : a program P

output : a test suite TS covering all feasible paths of $Paths^{\leq k}(P)$

- **pick a path** $\sigma \in Paths^{\leq k}(P)$
- **compute a path predicate** φ_σ of σ
- **solve** φ_σ for satisfiability
- SAT(s) ? get a new pair $< s, \sigma >$
- loop until no more path to cover

Path Exploration

input : a program P

output : a test suite TS covering all feasible paths of $Paths^{\leq k}(P)$

- **pick a path** $\sigma \in Paths^{\leq k}(P)$
- **compute a path predicate** φ_σ of σ
- **solve** φ_σ for satisfiability
- SAT(s) ? get a new pair $< s, \sigma >$
- loop until no more path to cover

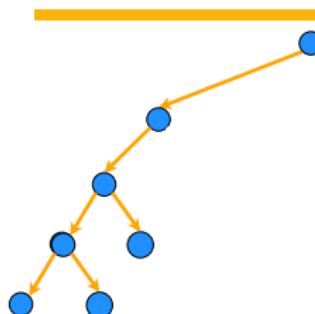


Path Exploration

input : a program P

output : a test suite TS covering all feasible paths of $Paths^{\leq k}(P)$

- **pick a path** $\sigma \in Paths^{\leq k}(P)$
- **compute a path predicate** φ_σ of σ
- **solve** φ_σ for satisfiability
- **SAT(s)** ? get a new pair $< s, \sigma >$
- **loop until no more path to cover**

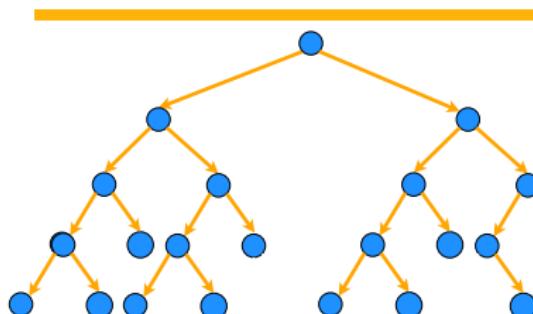


Path Exploration

input : a program P

output : a test suite TS covering all feasible paths of $Paths^{\leq k}(P)$

- **pick a path** $\sigma \in Paths^{\leq k}(P)$
- **compute a path predicate** φ_σ of σ
- **solve** φ_σ for satisfiability
- **SAT(s)** ? get a new pair $< s, \sigma >$
- **loop until no more path to cover**



Path Exploration

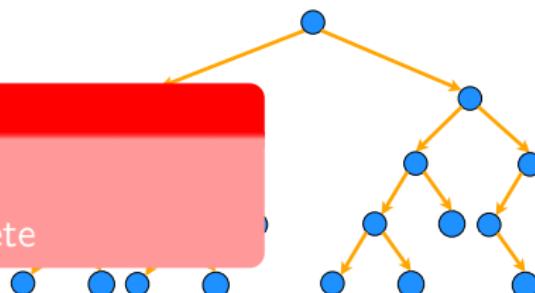
input : a program P

output : a test suite TS covering all feasible paths of $Paths^{\leq k}(P)$

- **pick a path** $\sigma \in Paths^{\leq k}(P)$
- **compute a path predicate** φ_σ of σ
- **solve** φ_σ for satisfiability
- SAT(s) ? get a new pair $< s, \sigma >$
- loop until no more path to cover

Beware

- ✗ #paths !
- ✗ incomplete



C/S for robustness and tradeoffs

Robustness : what if the instruction cannot be reasoned about ?

- missing code, self-modification
- hash functions, dynamic memory accesses, NLA operators

program	path predicate	concretization	symbolization
input: a, b x := a × b x := x + 1 <i>//assert x > 10</i>	$x_1 = a \times b$ $\wedge x_2 = x_1 + 1$ $\wedge x_2 > 10$ (φ_1)	$a = 5$ $\wedge x_1 = 5 \times b$ $\wedge x_2 = x_1 + 1$ $\wedge x_2 > 10$ (φ_2)	$x_1 = \text{fresh}$ $\wedge x_2 = x_1 + 1$ $\wedge x_2 > 10$ (φ_3)

Solutions

- **Concretization** : replace by runtime value [lose completeness]
- **Symbolization** : replace by fresh variable [lose correctness]

C/S for robustness and tradeoffs

Robustness : what if the instruction cannot be reasoned about ?

- missing code, self-modification
- hash functions, dynamic memory accesses, NLA operators

C/S essential to DSE

- robustness to real-life code
- trade-off correction / completeness / efficiency

$x := x + 1$

//assert $x > 10$

$\wedge x2 > 10$

(φ_1)

$\wedge x2 > 10$

(φ_2)

$\wedge x2 > 10$

(φ_3)

Solutions

- **Concretization** : replace by runtime value [lose completeness]
- **Symbolization** : replace by fresh variable [lose correctness]

- about DSE
- **the problem with C/S**
- goal and results
- experiments
- conclusion

The problem with C/S policies

State of DSE

- Path predicate computation + solving ✓
- Path search : under active research
- **C/S : ? ? kind of black magic**

- hardcoded
- often a single C/S
- no easy tuning
- no reuse across tools

- undocumented, unclear
- many policies (one per tool)
- no comparison of C/S
- no systematic study of C/S

Unclear C/S policies

Consider the following situation

- instruction $x := @(\mathbf{a} * \mathbf{b})$
- your tool documentation says : “*memory accesses are concretized*”
- suppose that at runtime : $\mathbf{a} = 7, \mathbf{b} = 3$

What is the intended meaning ? [perfect reasoning : $x == \text{select}(M, a \times b)$]

CS1 : $x == \text{select}(M, 21)$	[incorrect]
CS2 : $x == \text{select}(M, 21) \wedge a \times b == 21$	[minimal]
CS3 : $x == \text{select}(M, 21) \wedge a == 7 \wedge b == 3$	[atomic]

No best choice, depends on the context

- acceptable loss of correctness / completeness ?
- is it mandatory to get rid off \times ?

Too many C/S policies

Just for C/S on memory accesses

- 4 basic policies : concretize or keep symbolic reads / writes
- exotic variations : multi-level dereferencement [[exe](#)], domain restriction [[osmose](#)], taint-based [[s. heelan](#)], dataflow-based [[mayhem](#)], etc.
- flavors of concretization : minimal, atomic, incorrect
- *all can be combined together*

Our goal

Establish C/S as a proper field of study

- what is a generic C/S ?
- how DSE can handle generic C/S ?
- identify tradeoffs, sweetspots, etc.

First step : a specification mechanism for C/S

- clear, non-ambiguous [documentation]
- tool independent [reuse, sharing, tuning]
- executable [input for tools]

Our goal

Establish C/S as a proper field of study

- what is a generic C/S ?
- how DSE can handle generic C/S ?
- identify

Results

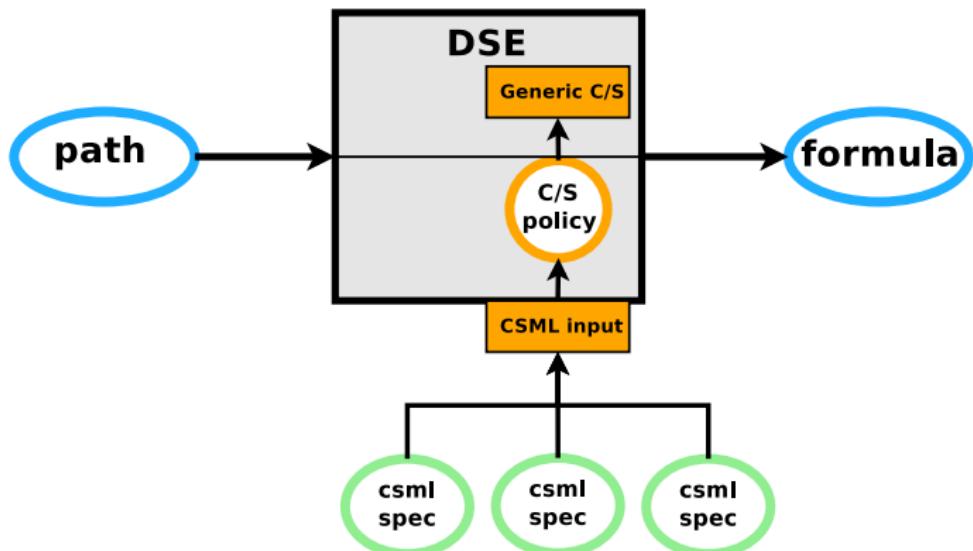
- formal definition of a generic C/S ✓
- a variant of DSE supporting generic C/S ✓
- CSML, a specification language for C/S ✓
- implementation in BINSEC ✓
- an experimental comparison of C/S policies ✓

First step : a

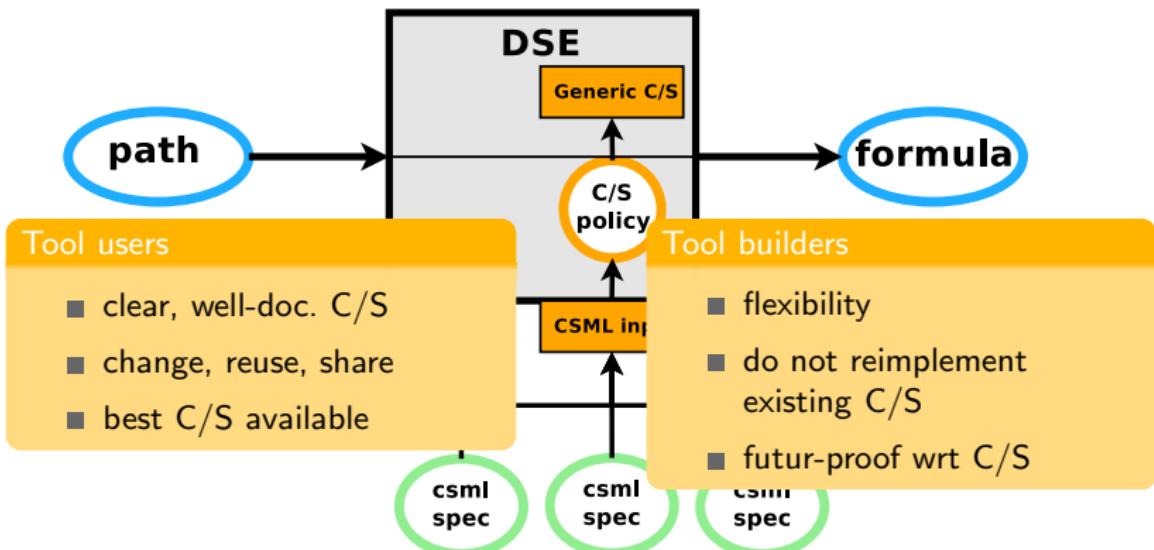
- clear, no
- tool inde
- executab

entation]
, tuning]
input for tools]

Overview



Overview



What is a C/S policy ?

A decision function queried

- within path predicate computation
- before logical evaluation of an expression
- in the scope of a given location, instruction and memory state

$$\text{cs} : \text{loc} \times \text{instr} \times \text{state} \times \text{expr} \mapsto \left\{ \begin{array}{ll} \mathcal{C} & \text{concretization} \\ \mathcal{S} & \text{symbolization} \\ \mathcal{P} & \text{propagation} \end{array} \right\}$$

DSE with parametric C/S

Example :

- loc : $x := a + b$
- concrete memory state : $\{a \mapsto 3; b \mapsto 5\}$
- symbolic memory state : $\{a \mapsto a_2; b \mapsto b_9\}$

Standard evaluation, no C/S : $\llbracket a + b \rrbracket \mapsto a_2 + b_9$

Evaluation with propagation : $\llbracket a + b \rrbracket_{cs=\mathcal{P}} \mapsto (a_2 + b_9, \top)$

Evaluation with symbolization : $\llbracket a + b \rrbracket_{cs=\mathcal{S}} \mapsto (\text{fresh}, \top)$

Evaluation with concretization : $\llbracket a + b \rrbracket_{cs=\mathcal{C}} \mapsto (8, a_2 + b_9 = 8)$

CSML overview

Rule-based language $guard \Rightarrow \{\mathcal{C}, \mathcal{S}, \mathcal{P}\}$

Guard of the form $\pi_{loc} :: \pi_{ins} :: \pi_{expr} :: \pi_{\Sigma}$

- predicates on the location, instruction, expression, concrete memory state
- π_{ins} and π_{expr} mostly based on pattern matching and subterm checking
- predicates checked sequentially
- limited communication : *meta-variables* ($?x$, $?*$) and *placeholders* ($!x$, $!\square$)

Set of rules

- checked sequentially, the first fireable rule returns
- presence of a default rule

Example of specifications (1)

$$\pi_{loc} :: \pi_{ins} :: \pi_{expr} :: \pi_{\Sigma} \Rightarrow \{\mathcal{C}, \mathcal{S}, \mathcal{P}\}$$

*	::	*	::	$\langle @?* \rangle$::	*	$\Rightarrow \mathcal{C};$
default							$\Rightarrow \mathcal{P};$

Meaning

- concretize result of a read value
- or : “if we are evaluating an expression e built with $@$, then e is concretized, otherwise it is propagated.”

Examples

- $x := a + @b :$ $@b$ is concretized

Example of specifications (2)

$$\pi_{loc} :: \pi_{ins} :: \pi_{expr} :: \pi_{\Sigma} \Rightarrow \{\mathcal{C}, \mathcal{S}, \mathcal{P}\}$$

```
*      ::  <@?e := ?★>  ::  <!e>  ::  *  ⇒ C;
default                                ⇒ P;
```

Meaning

- concretize write addresses
- or : *"if we are evaluating an expression e in the context of an assignment where e is used as the write address, then e is concretized, otherwise it is propagated."*

Examples

- $x := a + @b$: nothing is concretized
- $@x := a + @b$: x is concretized

Example of specifications (3)

$$\pi_{loc} :: \pi_{ins} :: \pi_{expr} :: \pi_{\Sigma} \Rightarrow \{\mathcal{C}, \mathcal{S}, \mathcal{P}\}$$

consider instruction $x := @(\mathbf{a} * \mathbf{b})$, suppose at runtime : $\mathbf{a} = 7$, $\mathbf{b} = 3$

- minimal concretization of r/w expressions [CS2] [concretize $\mathbf{a} * \mathbf{b}$]
 $* :: \langle ?i \rangle :: (@ !\square) \prec !i :: * \Rightarrow \mathcal{C}$
- recursive concretization of r/w expressions : [concretize $\mathbf{a} * \mathbf{b}$, \mathbf{a} , \mathbf{b}]
 $* :: \langle ?i \rangle :: !\square \prec (@ ?*) \prec !i :: * \Rightarrow \mathcal{C}$
- atomic concretization of r/w expressions [CS3] [concretize \mathbf{a} , \mathbf{b}]
 $* :: \langle ?i \rangle :: \text{var}(!\square) \wedge !\square \prec (@ ?*) \prec !i :: * \Rightarrow \mathcal{C}$
- incorrect concretization of r/w expressions [CS1] [replace $\mathbf{a} * \mathbf{b}$ by 21]
 $* :: \langle ?i \rangle :: (@ !\square) \prec !i :: * \Rightarrow \mathcal{S}_{[\text{eval}_{\Sigma}(!\square)]}$

CSML good properties

Well-defined

- any CSML spec defines a C/S policy
- only \mathcal{C} and \mathcal{P} : keeps correctness
- only \mathcal{S} and \mathcal{P} : keeps completeness

Expressive enough

- sufficient for all examples from literature [systematic review]
- yet, still limited [say something about current C/S ?]

Implementable : see after

CSML good properties

Well-defined

- any CSML spec defines a C/S policy
- only \mathcal{C} and \mathcal{P} : keeps correctness
- only \mathcal{S} and \mathcal{P} : keeps completeness

Expressive enough

- sufficient for all examples from literature [systematic review]
- yet, still limited [say something about current C/S ?]

Implementable : see after

About the langage itself

- we describe the inner engine, not the user view
- syntax can be improved
- complexity can be hidden (predefined options, patterns)

Implementation and experiments

CSML implemented in BINSEC/SE [binary-level dse tool]

- first DSE tool with generic C/S support

Experiment 1 : evaluate CSML overhead

- vs : no C/S, C/S encoded via callbacks
- result : CSML does yield a cost, yet negligible wrt. solving time

Experiment 2 : experimental comparison of C/S policies

- five C/S policies for memory accesses : CC, CP, PC, PP*, PP
- result : PP* better on average, yet no clear winner : **need different C/S !**
- first time such a C/S comparison is performed !

CSML Overhead

Bench

- 167 programs (100 coreutils, 17 malware, 50 nist samate/verisec)
- ≈ 45,000 queries

		min	max	average
base	(PP)	0.04%	3%	0.3%
rule-based C/S policy	CC	0.1%	17%	1.2%
	CP	0.1%	23.5%	1.45%
	PC	0.08%	12.8%	0.85%
	PP*	0.08%	12.3%	0.95%
	PP	0.05%	4%	0.48%
hard-coded C/S policy	CC	0.05%	8.5%	0.5%
	CP	0.05%	8.2%	0.5%
	PC	0.05%	8%	0.45%
	PP*	0.05%	6%	0.45%
	PP	0.04%	3%	0.3%

Reported figures

- ratio between cost of formula creation and creation + solving
- note : solving time does not depend on the way C/S is implemented

Quantitative comparison

Five policies for memory accesses

- CC, PC, CP, PP*, PP
- first letter \mapsto read operation, second letter \mapsto write operation

	samate		core		malware		total	
	opt	best	opt	best	opt	best	opt	best
CC	20	0	44	1	5	0	69	1
PC	20	2	49	4	6	1	75	7
CP	23	1	61	11	4	0	88	12
PP*	36	12	71	24	10	5	117	41
PP	33	9	36	7	7	2	76	18

best (resp. opt) : number of programs for which the considered policy returns the strictly highest (resp. highest) number of SAT answers

Conclusion

Dynamic Symbolic Execution (DSE) : powerful approach to verif. and testing

- three key ingredients : path predicate computation & solving, path search, concretization & symbolization policy (C/S)

C/S is an essential part, yet mostly not studied

- many policies (one per tool), no systematic study of C/S
- undocumented, unclear
- tools : often a single hardcoded policy, no reuse across tools

Our goal : establish C/S as a proper field of study [focus first on specification]

- CSML, a specification language for C/S ✓
 - ▶ clear, non-ambiguous [documentation]
 - ▶ tool independent [reuse, sharing, tuning]
 - ▶ executable [input for tools]
- implemented in BINSEC ✓
- an experimental comparison of C/S policies ✓

Dynamic Symbolic Execution

Dynamic Symbolic Execution [Korel+, Williams+, Godefroid+]

- interleave dynamic and symbolic executions
- drive the search towards feasible paths for free
- give hints for relevant under-approximations [robustness]

Concretization : force a symbolic variable to take its runtime value

- application 1 : follow only feasible path for free
- application 2 : correct approximation of “difficult” constructs
[out of scope or too expensive to handle]

About robustness

Goal = find input leading to ERROR

(assume we have only a solver for linear integer arith.)

```
f(int x, int y) {z=x*x; if (y == z) ERROR; else OK }
```

Loc	Instruction
0	input(x,y)
1	$z := x * x$
2	if ($z == y$) [True branch]

Path predicate (input X_0 et Y_0) — Unrealistic perfect symbolic reasoning

⊤

About robustness

Goal = find input leading to ERROR

(assume we have only a solver for linear integer arith.)

```
f(int x, int y) {z=x*x; if (y == z) ERROR; else OK }
```

Loc	Instruction
0	input(x,y)
1	$z := x * x$
2	if ($z == y$) [True branch]

Path predicate (input X_0 et Y_0) — Unrealistic perfect symbolic reasoning

$\top \wedge Z_1 = X_0 \times X_0$

About robustness

Goal = find input leading to ERROR

(assume we have only a solver for linear integer arith.)

```
f(int x, int y) {z=x*x; if (y == z) ERROR; else OK }
```

Loc	Instruction
0	input(x,y)
1	$z := x * x$
2	if ($z == y$) [True branch]

Path predicate (input X_0 et Y_0) — Unrealistic perfect symbolic reasoning

$$\top \wedge Z_1 = X_0 \times X_0 \wedge Z_1 = Y_0$$

About robustness

Goal = find input leading to ERROR

(assume we have only a solver for linear integer arith.)

```
f(int x, int y) {z=x*x; if (y == z) ERROR; else OK }
```

Loc	Instruction
0	input(x,y)
1	$z := x * x$
2	if ($z == y$) [True branch]

Path predicate (input X_0 et Y_0) — Unrealistic perfect symbolic reasoning
OK, but how to solve? X

About robustness

Goal = find input leading to ERROR

(assume we have only a solver for linear integer arith.)

```
f(int x, int y) {z=x*x; if (y == z) ERROR; else OK }
```

Loc	Instruction
0	input(x,y)
1	$z := x * x$
2	if ($z == y$) [True branch]

Path predicate (input X_0 et Y_0) — Limited symbolic reasoning

⊤

About robustness

Goal = find input leading to ERROR

(assume we have only a solver for linear integer arith.)

```
f(int x, int y) {z=x*x; if (y == z) ERROR; else OK }
```

Loc	Instruction
0	input(x,y)
1	$z := x * x$
2	if ($z == y$) [True branch]

Path predicate (input X_0 et Y_0) — Limited symbolic reasoning

$$\top \wedge Z_1 = X_0 \times X_0$$

About robustness

Goal = find input leading to ERROR

(assume we have only a solver for linear integer arith.)

```
f(int x, int y) {z=x*x; if (y == z) ERROR; else OK }
```

Loc	Instruction
0	input(x,y)
1	$z := x * x$
2	if ($z == y$) [True branch]

Path predicate (input X_0 et Y_0) — Limited symbolic reasoning

$T \wedge \text{True}$

About robustness

Goal = find input leading to ERROR

(assume we have only a solver for linear integer arith.)

```
f(int x, int y) {z=x*x; if (y == z) ERROR; else OK }
```

Loc	Instruction
0	input(x,y)
1	$z := x * x$
2	if ($z == y$) [True branch]

Path predicate (input X_0 et Y_0) — Limited symbolic reasoning

$$T \wedge T \wedge Z_1 = Y_0$$

About robustness

Goal = find input leading to ERROR

(assume we have only a solver for linear integer arith.)

```
f(int x, int y) {z=x*x; if (y == z) ERROR; else OK }
```

Loc	Instruction
0	input(x,y)
1	$z := x * x$
2	if ($z == y$) [True branch]

Path predicate (input X_0 et Y_0) — Limited symbolic reasoning
Incorrect, may find a bad solution (ex : $X_0 = 10$, $Y_0 = 34$) \times

About robustness

Goal = find input leading to ERROR

(assume we have only a solver for linear integer arith.)

```
f(int x, int y) {z=x*x; if (y == z) ERROR; else OK }
```

Loc	Instruction
0	input(x,y)
1	$z := x * x$
2	if ($z == y$) [True branch]

Path predicate (input X_0 et Y_0) — Limited dynamic symbolic reasoning

⊤

About robustness

Goal = find input leading to ERROR

(assume we have only a solver for linear integer arith.)

```
f(int x, int y) {z=x*x; if (y == z) ERROR; else OK }
```

Loc	Instruction
0	input(x,y)
1	$z := x * x$
2	if ($z == y$) [True branch]

Path predicate (input X_0 et Y_0) — Limited dynamic symbolic reasoning

$\top \wedge Z_1 = X_0 \times X_0$ [assume runtime values : x=3,z=9]

About robustness

Goal = find input leading to ERROR

(assume we have only a solver for linear integer arith.)

```
f(int x, int y) {z=x*x; if (y == z) ERROR; else OK }
```

Loc	Instruction
0	input(x,y)
1	$z := x * x$
2	if ($z == y$) [True branch]

Path predicate (input X_0 et Y_0) — Limited dynamic symbolic reasoning

$\top \wedge Z_1 = 9 \wedge X_0 = 3$

About robustness

Goal = find input leading to ERROR

(assume we have only a solver for linear integer arith.)

```
f(int x, int y) {z=x*x; if (y == z) ERROR; else OK }
```

Loc	Instruction
0	input(x,y)
1	$z := x * x$
2	if ($z == y$) [True branch]

Path predicate (input X_0 et Y_0) — Limited dynamic symbolic reasoning

$$\top \wedge Z_1 = 9 \wedge X_0 = 3 \wedge Z_1 = Y_0$$

About robustness

Goal = find input leading to ERROR

(assume we have only a solver for linear integer arith.)

```
f(int x, int y) {z=x*x; if (y == z) ERROR; else OK }
```

Loc	Instruction
0	input(x,y)
1	$z := x * x$
2	if ($z == y$) [True branch]

Path predicate (input X_0 et Y_0) — Limited dynamic symbolic reasoning

Correct, find a real solution (ex : $X_0 = 3$, $Y_0 = 9$) ✓