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Preamble

Takeaway

Dynamic Symbolic Execution (DSE) : powerful approach to verif. and testing

three key ingredients : path predicate computation & solving, path
search, concretization & symbolization policy (C/S)

C/S is an essential part, yet mostly not studied

many policies (one per tool), no systematic study of C/S

undocumented, unclear

tools : often a single hardcoded policy, no reuse across tools

Our goal : establish C/S as a proper field of study [focus first on specification]

CSML, a specification language for C/S X
◮ clear, non-ambiguous [documentation]
◮ tool independent [reuse, sharing, tuning]
◮ executable [input for tools]

implemented in BINSEC X
an experimental comparison of C/S policies X
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Preamble

About formal verification

Between Software Engineering and Theoretical Computer Science

Goal = proves correctness in a mathematical way

Key concepts : M |= ϕ

M : semantic of the program

ϕ : property to be checked

|= : algorithmic check

Kind of properties

absence of runtime error

pre/post-conditions

temporal properties
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Preamble

From (a logician’s) dream to reality

Industrial reality in some key areas, especially safety-critical domains

hardware, aeronautics [airbus], railroad [metro 14], smartcards, drivers
[Windows], certified compilers [CompCert] and OS [Sel4], etc.

Ex : Airbus

Verification of

runtime errors [Astrée]

functional correctness [Frama-C]

numerical precision [Fluctuat]

source-binary conformance [CompCert]

ressource usage [Absint]
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Preamble

Next big challenge

Apply formal methods to less-critical software

Very different context : no formal spec, less developer involvement, etc.

Difficulties

robustness [w.r.t. software constructs]

no place for false alarms

scale

sometimes, not even source code
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Next big challenge

Apply formal methods to less-critical software

Very different context : no formal spec, less developer involvement, etc.

Difficulties

robustness [w.r.t. software constructs]

no place for false alarms

scale

sometimes, not even source code

DSE as a first step

very robust

(mostly) no false alarm

scale in some ways

ok for binary code
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DSE in a nutshell

Introducing DSE

Dynamic Symbolic Execution [since 2004-2005 : dart, cute, pathcrawler ]

a very powerful formal approach to verification and testing

many tools and successful case-studies since mid 2000’s

◮ SAGE, Klee, Mayhem, etc.
◮ coverage-oriented testing, bug finding, exploit generation, reverse

arguably one of the most wide-spread use of formal methods

Very good properties

mostly no false alarm, robust, scale, ok for binary code
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DSE in a nutshell

Introducing DSE

Dynamic Symbolic Execution [since 2004-2005 : dart, cute, pathcrawler ]

a very powerful formal approach to verification and testing

many tools and successful case-studies since mid 2000’s

◮ SAGE, Klee, Mayhem, etc.
◮ coverage-oriented testing, bug finding, exploit generation, reverse

arguably one of the most wide-spread use of formal methods

Very good properties

mostly no false alarm, robust, scale, ok for binary code

Key idea : path predicate [King 70’s]

consider a program P on input v, and a given path σ

a path predicate ϕσ for σ is a formula s.t.

v |= ϕσ ⇒ P(v) follows σ

intuitively the conjunction of all branching conditions

old idea, recent renew interest [powerful solvers, dynamic+symbolic]
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DSE in a nutshell

DSE

int main () {

int x = input();

int y = input();

int z = 2 * y;

if (z == x) {

if (x > y + 10)

failure;

}

success;

}

given a path of the program

automatically find input that
follows the path

then, iterate over all paths

x = input()

y = input()

z = 2 * y

z == x

x > y + 10

PC:=⊤ ∧ 2y0 6= x0

PC:=⊤ ∧ 2y0 = x0 ∧ x0 > y0 + 10

PC:=⊤ ∧ 2y0 = x0 ∧ x0 ≤ y0 + 10

σ:=∅

PC:=⊤

σ := {x → x0, y → y0, z → 2y0}

PC:=⊤ ∧ 2y0 = x0
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Three key ingredients

path predicate computation & solving

path search

C/S policy



DSE in a nutshell

Path predicate computation

Usually easy to compute [forward, introduce new logical variables at each step]

Loc Instruction

0 input(y,z)
1 w := y+1
2 x := w + 3
3 if (x < 2 * z) [True branch]

4 if (x < z) [False branch]

Path predicate (input Y0 et Z0)
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Usually easy to compute [forward, introduce new logical variables at each step]

Loc Instruction

0 input(y,z)
1 w := y+1
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3 if (x < 2 * z) [True branch]
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Path predicate (input Y0 et Z0)
let W1 , Y0 + 1 in

let X2 , W1 + 3 in
X2 < 2× Z0

Bardin et al. ISSTA 2016 8/ 27



DSE in a nutshell

Path predicate computation

Usually easy to compute [forward, introduce new logical variables at each step]

Loc Instruction

0 input(y,z)
1 w := y+1
2 x := w + 3
3 if (x < 2 * z) [True branch]

4 if (x < z) [False branch]

Path predicate (input Y0 et Z0)
let W1 , Y0 + 1 in

let X2 , W1 + 3 in
X2 < 2× Z0 ∧ X2 ≥ Z0
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DSE in a nutshell

Path Exploration

input : a program P

output : a test suite TS covering all feasible paths of Paths≤k(P)

pick a path σ ∈ Paths≤k(P)
compute a path predicate ϕσ of σ
solve ϕσ for satisfiability
SAT(s) ? get a new pair < s, σ >

loop until no more path to cover
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DSE in a nutshell

Path Exploration

input : a program P

output : a test suite TS covering all feasible paths of Paths≤k(P)

pick a path σ ∈ Paths≤k(P)
compute a path predicate ϕσ of σ
solve ϕσ for satisfiability
SAT(s) ? get a new pair < s, σ >

loop until no more path to cover
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Beware

× #paths !

× incomplete



DSE in a nutshell

C/S for robustness and tradeoffs

Robustness : what if the instruction cannot be reasoned about ?

missing code, self-modification

hash functions, dynamic memory accesses, NLA operators

Solutions

Concretization : replace by runtime value [lose completeness]

Symbolization : replace by fresh variable [lose correctness]
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C/S for robustness and tradeoffs

Robustness : what if the instruction cannot be reasoned about ?

missing code, self-modification

hash functions, dynamic memory accesses, NLA operators

Solutions

Concretization : replace by runtime value [lose completeness]

Symbolization : replace by fresh variable [lose correctness]
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C/S essential to DSE

robustness to real-life code

trade-off correction / completeness / efficiency



The problem

Outline

about DSE

the problem with C/S

goal and results

experiments

conclusion
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The problem

The problem with C/S policies

State of DSE

Path predicate computation + solving X
Path search : under active research

C/S : ? ? kind of black magic

hardcoded

often a single C/S

no easy tuning

no reuse across tools

undocumented, unclear

many policies (one per tool)

no comparison of C/S

no systematic study of C/S
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The problem

Unclear C/S policies

Consider the following situation

instruction x := @(a * b)

your tool documentation says : “memory accesses are concretized”

suppose that at runtime : a = 7, b = 3

What is the intended meaning ? [perfect reasoning : x == select(M, a× b)]

CS1 : x == select(M, 21) [incorrect]

CS2 : x == select(M, 21) ∧ a × b == 21 [minimal]

CS3 : x == select(M, 21) ∧ a == 7 ∧ b == 3 [atomic]

No best choice, depends on the context

acceptable loss of correctness / completeness ?

is it mandatory to get rid off × ?
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The problem

Too many C/S policies

Just for C/S on memory accesses

4 basic policies : concretize or keep symbolic reads / writes

exotic variations : multi-level dereferencement [exe], domain restriction
[osmose], taint-based [s. heelan], dataflow-based [mayhem], etc.

flavors of concretization : minimal, atomic, incorrect

all can be combined together
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Our goal

Our goal

Establish C/S as a proper field of study

what is a generic C/S ?

how DSE can handle generic C/S ?

identify tradeoffs, sweetspots, etc.

First step : a specification mechanism for C/S

clear, non-ambiguous [documentation]

tool independent [reuse, sharing, tuning]

executable [input for tools]
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Results

formal definition of a generic C/S X

a variant of DSE supporting generic C/S X

CSML, a specification language for C/S X

implementation in BINSEC X

an experimental comparison of C/S policies X



Our goal

Overview
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Our goal

Overview
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Tool users

clear, well-doc. C/S

change, reuse, share

best C/S available

Tool builders

flexibility

do not reimplement
existing C/S

futur-proof wrt C/S



Technical keys

What is a C/S policy ?

A decision function queried

within path predicate computation

before logical evaluation of an expression

in the scope of a given location, instruction and memory state

cs : loc × instr × state × expr 7→







C concretization
S symbolization
P propagation






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Technical keys

DSE with parametric C/S

Example :

loc : x := a + b

concrete memory state : {a 7→ 3; b 7→ 5}

symbolic memory state : {a 7→ a2; b 7→ b9}

Standard evaluation, no C/S : Ja + bK 7→ a2 + b9

Evaluation with propagation : Ja + bKcs=P 7→ (a2 + b9,⊤)

Evaluation with symbolization : Ja + bK
cs=S 7→ (fresh,⊤)

Evaluation with concretization : Ja + bK
cs=C 7→ (8, a2 + b9 = 8)
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Technical keys

CSML overview

Rule-based language guard ⇒ {C,S ,P}

Guard of the form πloc :: πins :: πexpr :: πΣ

predicates on the location, instruction, expression, concrete memory state

πins and πexpr mostly based on pattern matching and subterm checking

predicates checked sequentially

limited communication : meta-variables (?x , ?⋆) and placeholders (!x , !�)

Set of rules

checked sequentially, the first fireable rule returns

presence of a default rule
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Technical keys

Example of specifications (1)

πloc :: πins :: πexpr :: πΣ ⇒ {C,S,P}

∗ : : ∗ : : 〈@?⋆〉 : : ∗ ⇒ C ;
default ⇒ P ;

Meaning

concretize result of a read value

or : “if we are evaluating an expression e built with @, then e is

concretized, otherwise it is propagated.”

Examples

x := a + @b : @b is concretized
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Technical keys

Example of specifications (2)

πloc :: πins :: πexpr :: πΣ ⇒ {C,S,P}

∗ : : 〈@?e := ?⋆〉 : : 〈!e〉 : : ∗ ⇒ C ;
default ⇒ P ;

Meaning

concretize write addresses

or : “if we are evaluating an expression e in the context of an assignment

where e is used as the write address, then e is concretized, otherwise it is

propagated.”

Examples

x := a + @b : nothing is concretized

@x := a + @b : x is concretized
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Technical keys

Example of specifications (3)

πloc :: πins :: πexpr :: πΣ ⇒ {C,S,P}

consider instruction x := @(a * b), suppose at runtime : a = 7, b = 3

minimal concretization of r/w expressions [CS2] [concretize a*b]

∗ :: 〈?i 〉 :: (@ !�) ≺ !i :: ∗ ⇒ C

recursive concretization of r/w expressions : [concretize a*b, a, b]

∗ :: 〈?i 〉 :: !� ≺ (@ ?⋆) ≺ !i :: ∗ ⇒ C

atomic concretization of r/w expressions [CS3] [concretize a, b]

∗ :: 〈?i 〉 :: var(!�) ∧ !� ≺ (@ ?⋆) ≺ !i :: ∗ ⇒ C

incorrect concretization of r/w expressions [CS1] [replace a*b by 21]

∗ :: 〈?i 〉 :: (@ !�) ≺ !i :: ∗ ⇒ S[evalΣ(!�)]
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Technical keys

CSML good properties

Well-defined

any CSML spec defines a C/S policy

only C and P : keeps correctness

only S and P : keeps completeness

Expressive enough

sufficient for all examples from literature [systematic review]

yet, still limited [say something about current C/S ?]

Implementable : see after
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Technical keys

CSML good properties

Well-defined

any CSML spec defines a C/S policy

only C and P : keeps correctness

only S and P : keeps completeness

Expressive enough

sufficient for all examples from literature [systematic review]

yet, still limited [say something about current C/S ?]

Implementable : see after

About the langage itself

we describe the inner engine, not the user view

syntax can be improved

complexity can be hidden (predefined options, patterns)
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Experiments

Implementation and experiments

CSML implemented in BINSEC/SE [binary-level dse tool]

first DSE tool with generic C/S support

Experiment 1 : evaluate CSML overhead

vs : no C/S, C/S encoded via callbacks

result : CSML does yield a cost, yet negligible wrt. solving time

Experiment 2 : experimental comparison of C/S policies

five C/S policies for memory accesses : CC, CP, PC, PP*, PP

result : PP* better on average, yet no clear winner : need different C/S !

first time such a C/S comparison is performed !
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Experiments

CSML Overhead

Bench

167 programs (100 coreutils, 17 malware, 50 nist samate/verisec )

≈ 45,000 queries

min max average

base (PP) 0.04% 3% 0.3%

CC 0.1% 17% 1.2%
rule-based CP 0.1% 23.5% 1.45%
C/S policy PC 0.08% 12.8% 0.85%

PP* 0.08% 12.3% 0.95%
PP 0.05% 4% 0.48%

CC 0.05% 8.5% 0.5%
hard-coded CP 0.05% 8.2% 0.5%
C/S policy PC 0.05% 8% 0.45%

PP* 0.05% 6% 0.45%
PP 0.04% 3% 0.3%

Reported figures

ratio between cost of formula creation and creation + solving

note : solving time does not depend on the way C/S is implemented
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Experiments

Quantitative comparison

Five policies for memory accesses

CC, PC, CP, PP*, PP

first letter 7→ read operation, second letter 7→ write operation

samate core malware total
opt best opt best opt best opt best

CC 20 0 44 1 5 0 69 1
PC 20 2 49 4 6 1 75 7
CP 23 1 61 11 4 0 88 12
PP* 36 12 71 24 10 5 117 41
PP 33 9 36 7 7 2 76 18

best (resp. opt) : number of programs for which the considered policy returns the
strictly highest (resp. highest) number of SAT answers
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Conclusion

Conclusion

Dynamic Symbolic Execution (DSE) : powerful approach to verif. and testing

three key ingredients : path predicate computation & solving, path
search, concretization & symbolization policy (C/S)

C/S is an essential part, yet mostly not studied

many policies (one per tool), no systematic study of C/S

undocumented, unclear

tools : often a single hardcoded policy, no reuse across tools

Our goal : establish C/S as a proper field of study [focus first on specification]

CSML, a specification language for C/S X
◮ clear, non-ambiguous [documentation]
◮ tool independent [reuse, sharing, tuning]
◮ executable [input for tools]

implemented in BINSEC X
an experimental comparison of C/S policies X
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Bonus

Dynamic Symbolic Execution

Dynamic Symbolic Execution [Korel+, Williams+, Godefroid+]

interleave dynamic and symbolic executions

drive the search towards feasible paths for free

give hints for relevant under-approximations [robustness]

Concretization : force a symbolic variable to take its runtime value

application 1 : follow only feasible path for free

application 2 : correct approximation of “difficult” constructs
[out of scope or too expensive to handle]
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Bonus

About robustness

Goal = find input leading to ERROR

(assume we have only a solver for linear integer arith.)

f(int x, int y) {z=x*x; if (y == z) ERROR; else OK }

Loc Instruction

0 input(x,y)
1 z := x * x
2 if (z == y) [True branch]

Path predicate (input X0 et Y0) — Unrealistic perfect symbolic reasoning
⊤
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Bonus

About robustness

Goal = find input leading to ERROR

(assume we have only a solver for linear integer arith.)

f(int x, int y) {z=x*x; if (y == z) ERROR; else OK }

Loc Instruction

0 input(x,y)
1 z := x * x
2 if (z == y) [True branch]

Path predicate (input X0 et Y0) — Unrealistic perfect symbolic reasoning

OK, but how to solve ? ×
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Bonus

About robustness

Goal = find input leading to ERROR

(assume we have only a solver for linear integer arith.)

f(int x, int y) {z=x*x; if (y == z) ERROR; else OK }

Loc Instruction

0 input(x,y)
1 z := x * x
2 if (z == y) [True branch]

Path predicate (input X0 et Y0) — Limited symbolic reasoning

Incorrect, may find a bad solution (ex : X0 = 10, Y0 = 34) ×
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About robustness
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Bonus

About robustness

Goal = find input leading to ERROR

(assume we have only a solver for linear integer arith.)

f(int x, int y) {z=x*x; if (y == z) ERROR; else OK }

Loc Instruction

0 input(x,y)
1 z := x * x
2 if (z == y) [True branch]

Path predicate (input X0 et Y0) — Limited dynamic symbolic reasoning
⊤ ∧ Z1 = X0 × X0 [assume runtime values : x=3,z=9]
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Bonus

About robustness

Goal = find input leading to ERROR

(assume we have only a solver for linear integer arith.)

f(int x, int y) {z=x*x; if (y == z) ERROR; else OK }

Loc Instruction

0 input(x,y)
1 z := x * x
2 if (z == y) [True branch]

Path predicate (input X0 et Y0) — Limited dynamic symbolic reasoning
⊤∧ Z1 = 9 ∧ X0 = 3
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Bonus

About robustness

Goal = find input leading to ERROR

(assume we have only a solver for linear integer arith.)

f(int x, int y) {z=x*x; if (y == z) ERROR; else OK }

Loc Instruction

0 input(x,y)
1 z := x * x
2 if (z == y) [True branch]

Path predicate (input X0 et Y0) — Limited dynamic symbolic reasoning
⊤ ∧ Z1 = 9 ∧ X0 = 3 ∧ Z1 = Y0
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Bonus

About robustness

Goal = find input leading to ERROR

(assume we have only a solver for linear integer arith.)

f(int x, int y) {z=x*x; if (y == z) ERROR; else OK }

Loc Instruction

0 input(x,y)
1 z := x * x
2 if (z == y) [True branch]

Path predicate (input X0 et Y0) — Limited dynamic symbolic reasoning

Correct, find a real solution (ex : X0 = 3, Y0 = 9) X
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