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Preamble

Takeaway

Dynamic Symbolic Execution (DSE) : powerful approach to verif. and testing
m three key ingredients : path predicate computation & solving, path
search, concretization & symbolization policy (C/S)
C/S is an essential part, yet mostly not studied
m many policies (one per tool), no systematic study of C/S
m undocumented, unclear
m tools : often a single hardcoded policy, no reuse across tools

Our goal : establish C/S as a proper field of study [focus first on specification]

m CSML, a specification language for C/S \/

> clear, non-ambiguous [documentation]
> tool independent [reuse, sharing, tuning]
> executable [input for tools]

m implemented in BINSEC \/

m an experimental comparison of C/S policies \/
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Bardin et al

Preamble

About formal verification

m Between Software Engineering and Theoretical Computer Science

m Goal = proves correctness in a mathematical way

Source code

int foo(int x, inty) {
nt k= x;
intc=y;

v
LA

Kind of properties
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Preamble

From (a logician's) dream to reality

Industrial reality in some key areas, especially safety-critical domains

m hardware, aeronautics [airbus], railroad [metro 14], smartcards, drivers
[Windows], certified compilers [CompCert] and OS [Sel4], etc.

Verification of
m runtime errors [Astrée]
m functional correctness [Frama-C]

m numerical precision [Fluctuat]

m source-binary conformance [CompCert]

m ressource usage [Absint]
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Preamble

Next big challenge

m Apply formal methods to less-critical software
no formal spec, less developer involvement, etc.

m Very different context :

0L 4
r'}bffnce . |j1>

Model Source code
int foofint x, int y) {
il int k= x;
P int cay;
while (¢>0) o {
[
-0 =i}
return k;
»
Assembly Executable

start:
load A 100
a

cmp B0
ile label

label;

move @100 B

abrF7808070696C1010018DE45
145634789234ABFFEGTRABDCF456
2640600

344252FFAADBDAST34SFDTE000L
FFF22545ADDAE989776600000000
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Preamble

Next big challenge

m Apply formal methods to less-critical software

m Very different context : no formal spec,

Model

less developer involvement, etc.

Source code

esr .

int foofint x, int y) {
int k= x;

int c=y;

while (¢>0) do {
K+

)
retumn ki

’ = v®8
Executable

2 6ffice .
'..4 }i Assembly
L S —

start:
load A 100

a
APACHE mpB 0
. ile label

lab

abrF7808070696C1010018DE45
145634789234ABFFEGTRABDCF456
2640600

344252FFAADBDAST34SFDTE000L
FFF22545ADDAE989776600000000

label
move @100 B

DSE as a first step
m very robust
m (mostly) no false alarm
m scale in some ways

m ok for binary code

Bardin et al ISSTA 2016 5/ 27



DSE in a nutshell

Introducing DSE

Dynamic Symbolic Execution [since 2004-2005 : dart, cute, pathcrawler |

m a very powerful formal approach to verification and testing

® many tools and successful case-studies since mid 2000's

» SAGE, Klee, Mayhem, etc.
> coverage-oriented testing, bug finding, exploit generation, reverse

m arguably one of the most wide-spread use of formal methods

Very good properties

m mostly no false alarm, robust, scale, ok for binary code
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Introducing DSE

Dynamic Symbolic Execution [since 2004-2005 : dart, cute, pathcrawler |

m a very powerful formal approach to verification and testing

® many tools and successful case-studies since mid 2000's

» SAGE, Klee, Mayhem, etc.
> coverage-oriented testing, bug finding, exploit generation, reverse

m arguably one of the most wide-spread use of formal methods

Very good properties

m mostly no false alarm, robust, scale, ok for binary code

Key idea : path predicate [King 70's]
m consider a program P on input v, and a given path o

m a path predicate ¢, for o is a formula s.t.
v E po = P(v) follows o

intuitively the conjunction of all branching conditions

m old idea, recent renew interest [powerful solvers, dynamic+symbolic]
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DSE in a nutshell

BN]=

int main () { o=
int x = input(); PC:=T
int y = input();
i x = input()
int z = 2 * y; y = input()
if (z == x) { zZ=2+*y
if > + 1
1 (X . ¥ 0) o = {x— X0,y = Y.z —> 2y}
failure;
}
success; PC:=T A2y = x

PC:=T A2y #x0

|
|
PC:=T N2y =x0 ANXxg > yo+ 10
PC:=T N2y =x0 ANxp < yo + 10
|
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DSE in a nutshell

BN]=

int main () {
int x = input();
int y = input (R e
int z = 2 * y;
if (z == x) { u

— X0,¥ = Y0,Z = 200}

success; PC:=T A2y = xo

PC:=T A2y #x0

|
|
PC:=T N2y =x0 ANXxg > yo+ 10
PC:=T N2y =x0 ANxp < yo + 10
|
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DSE in a nutshell

Path predicate computation

Usually easy to compute  [forward, introduce new logical variables at each step]

Loc | Instruction

input(y,z)
w = y+1
X:=w + 3

if (x < 2 * z) [True branch]
if (x < z) [False branch]

WM =O

Path predicate (input Yo et Zp)
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Loc | Instruction
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DSE in a nutshell

Path predicate computation

Usually easy to compute  [forward, introduce new logical variables at each step]

Loc | Instruction

input(y,z)
w = y+1
X:=w + 3

if (x < 2 * z) [True branch]
if (x < z) [False branch]

WM =O

Path predicate (input Yo et Zp)
let Wi £ Yo+ 1in
let Xo £ W4 + 3 in
Xo<2x 2o N Xo > 2o
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DSE in a nutshell

Path Exploration

input : a program P
output : a test suite TS covering all feasible paths of Paths=*(P)

pick a path o € Paths<K(P)
compute a path predicate , of o
solve ¢, for satisfiability

SAT(s)? get a new pair <s, o >
loop until no more path to cover
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DSE in a nutshell

Path Exploration

input : a program P
output : a test suite TS covering all feasible paths of Paths<k(P)

pick a path o € Paths=(P)
compute a path predicate , of o
solve ¢, for satisfiability

SAT(s) 7 get a new pair <'s, o >

loop until no more path to cover
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DSE in a nutshell

Path Exploration

input : a program P
output : a test suite TS covering all feasible paths of Paths=*(P)

m pick a path o € Paths=*(P)

m compute a path predicate p, of o
m solve ¢, for satisfiability

m SAT(s)? get a new pair < s, 0 >
L]

loop until no more path to cover

@
°
X ] ]
X ) X
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DSE in a nutshell

C/S for robustness and tradeoffs

Robustness : what if the instruction cannot be reasoned about?

m missing code, self-modification

m hash functions, dynamic memory accesses, NLA operators

program path predicate concretization symbolization
. . a =5
;n?:té ‘:’bb X1 =axhb A ox1=5xb x1 = fresh
x::x+l A ox2 = %1 + 1 A X2 = x1+1 A ox2 = x1 + 1
H«::!ssert - E5S x2 > 18 Aox2 > 10 Aox2 > 10
(9,) (9,) (9;)

Solutions

m Concretization : replace by runtime value [lose completeness]

m Symbolization : replace by fresh variable [lose correctness]
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DSE in a nutshell

C/S for robustness and tradeoffs

Robustness : what if the instruction cannot be reasoned about?

m missing code, self-modification
m hash functions, dynamic memory accesses, NLA operators

C/S essential to DSE
‘ation

[ ]
i
i - fresh
— - A1 + 1
b "4 ;
//assert x > 10 | AT 8 ‘ ek > 19 ‘ fox2 > 18
(9,) (¢;) (9;)

Solutions
m Concretization : replace by runtime value [lose completeness]
m Symbolization : replace by fresh variable [lose correctness]
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The problem

Outline

m about DSE

m the problem with C/S
m goal and results

B experiments

m conclusion
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The problem

The problem with C/S policies

State of DSE
m Path predicate computation + solving \/
m Path search : under active research

m C/S :77? kind of black magic

Bardin et al ISSTA 2016
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The problem

Unclear C/S policies

Consider the following situation

m instruction x := @(a * b)
m your tool documentation says : “memory accesses are concretized

m suppose that at runtime:a = 7,b = 3

What is the intended meaning? [perfect reasoning : x == select(M, a x b)]

CS1: x == select(M, 21) [incorrect]
CS2: x == select(M,21) Nax b==21 [minimal]
CS3: x ==select(M,21) Na==T7TAb== [atomic]

No best choice, depends on the context

m acceptable loss of correctness / completeness ?

m is it mandatory to get rid off x 7

Bardin et al ISSTA 2016 13/ 27



The problem

Too many C/S policies

Just for C/S on memory accesses

m 4 basic policies : concretize or keep symbolic reads / writes

m exotic variations : multi-level dereferencement [exe], domain restriction
[osmose], taint-based [s. heelan], dataflow-based [mayhem], etc.

m flavors of concretization : minimal, atomic, incorrect

m all can be combined together

Bardin et al ISSTA 2016 14/ 27



Our goal

Our goal

Establish C/S as a proper field of study

m what is a generic C/S7?
m how DSE can handle generic C/S?

m identify tradeoffs, sweetspots, etc.

First step : a specification mechanism for C/S

m clear, non-ambiguous
m tool independent

m executable

Bardin et al ISSTA 2016

[documentation]
[reuse, sharing, tuning]

[input for tools]
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Our goal

Our goal

Establish C/S as a proper field of study

m what is a generic C/S7?
m how DSE._can handle oeneric C/S7?

m identify
m formal definition of a generic C/S v
m a variant of DSE supporting generic C/S \/
First step : a
" P m CSML, a specification language for C/S \/
L antati
m clear, ng m implementation in BINSEC \/ ntation]
m tool ind ) ) o , tuning]
m an experimental comparison of C/S policies \/ |
m executabi.c pipue for tools]
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Our goal

Overview

DSE
@ hardcoded @
C/S
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path

Our goal

Overview

DSE
> »{formula
C/S
policy

CSML input

3

csml
spec

csml csml
spec spec
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Our goal

Overview

DSE
( path > > :<formu|a)
c/s
policy.
m clear, well-doc. C/S - m flexibility
CSML in}
m change, reuse, share j\_ m do not reimplement
m best C/S available — existing C/S
: m futur-proof wrt C/S
csml csml ann
spec spec spec
Bardin et al ISSTA 2016

16/ 27



Technical keys

What is a C/S policy ?

A decision function queried
m within path predicate computation
m before logical evaluation of an expression

m in the scope of a given location, instruction and memory state

C  concretization
cs : loc x instr x state X expr — S symbolization
P propagation

Bardin et al ISSTA 2016 17/ 27



Technical keys

Bardin et al

DSE with parametric C/S

Example :
mloc:x :=a+b
B concrete memory state

m symbolic memory state

Standard evaluation, no C/S : [a + b] — a2 + by

Evaluation with propagation :

Evaluation with symbolization :

Evaluation with concretization

:{a+—3;b— 5}

:{ar> ay b by}

Ha + bﬂ657,p — (32 + bg,T)
:[a + b]_g > (fresh, T)
‘[a + B] o (8,22 + by =8)

ISSTA 2016
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Technical keys

CSML overview

Rule-based language guard = {C,S, P}

Guard of the form mjoc & Tins it Texpr = 75
m predicates on the location, instruction, expression, concrete memory state
B Tjps and Texpr Mostly based on pattern matching and subterm checking
m predicates checked sequentially

m limited communication : meta-variables (?x, 7x) and placeholders (!x, !0)

Set of rules
m checked sequentially, the first fireable rule returns

m presence of a default rule

Bardin et al ISSTA 2016 19/ 27



Technical keys

Example of specifications (1)

Thoc * Tins 2 Texpr o= Ty = {C, S, P}

* oox o {@%) ok =C;
default =P

Meaning
m concretize result of a read value
m or : “if we are evaluating an expression e built with @, then e is
concretized, otherwise it is propagated.”
Examples

m X :=a+ 0b: @b is concretized

Bardin et al ISSTA 2016 20/ 27



Technical keys

Example of specifications (2)

Tloc * Tins * Texpr o= Ty = {C, S, P}

=P;

Meaning

m concretize write addresses

m or : “if we are evaluating an expression e in the context of an assignment

where e is used as the write address, then e is concretized, otherwise it is

propagated.”
Examples
B X := a + @b : nothing is concretized

m Ox := a + @b : x is concretized

Bardin et al ISSTA 2016 21/ 27



Technical keys

Example of specifications (3)

Tloc * Tins * Texpr o= Ty = {C, S, P}

consider instruction x := @(a * b), suppose at runtime:a = 7, b = 3

m minimal concretization of r/w expressions [CS2] [concretize a*Db]
« 1 () (@lg)<licz x = C

m recursive concretization of r/w expressions : [concretize axb, a, b
w o () g <(@M%) <l x = C

m atomic concretization of r/w expressions [CS3] [concretize a, b]
w«  (2)y ovar(lpg) Alg<(@?7%) <li « = C

m incorrect concretization of r/w expressions [CS1] [replace axb by 21]
* <7l > o (@ !D) <li: % = S[e\/a/}:(!D)]
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Technical keys

CSML good properties

Well-defined

m any CSML spec defines a C/S policy
m only C and P : keeps correctness

m only § and P : keeps completeness

Expressive enough

m sufficient for all examples from literature [systematic review]

m yet, still limited [say something about current C/S7?]

Implementable : see after
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Technical keys

CSML good properties

Well-defined

m any CSML spec defines a C/S policy
m only C and P : keeps correctness

m only § and P : keeps completeness

Expressive enough

m sufficient for all examples from literature [systematic review]

m yet, still limited [say something about current C/S7?]

Implementable : see after

m we describe the inner engine, not the user view
® syntax can be improved

m complexity can be hidden (predefined options, patterns)
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Experiments

Implementation and experiments

CSML implemented in BINSEC/SE [binary-level dse tool]

m first DSE tool with generic C/S support

Experiment 1 : evaluate CSML overhead

m vs : no C/S, C/S encoded via callbacks

m result : CSML does yield a cost, yet negligible wrt. solving time

Experiment 2 : experimental comparison of C/S policies
m five C/S policies for memory accesses : CC, CP, PC, PP*, PP
m result : PP* better on average, yet no clear winner : need different C/S!

m first time such a C/S comparison is performed !
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Experiments

CSML Overhead

Bench

m 167 programs (100 coreutils, 17 malware, 50 nist samate/verisec )

m =~ 45,000 queries

| | | min | max [ average
[ base [ (PP)J004% [ 3% [ 03%
CC 0.1% 17% 1.2%
rule-based CP 0.1% 23.5% 1.45%
C/S policy | PC | 0.08% | 12.8% | 0.85%
PP* 0.08% 12.3% 0.95%
PP 0.05% 4% 0.48%

CC 0.05% 8.5% 0.5%
hard-coded CP 0.05% | 8.2% 0.5%
C/S policy PC 0.05% 8% 0.45%
PP* 0.05% 6% 0.45%
PP 0.04% 3% 0.3%

Reported figures
m ratio between cost of formula creation and creation + solving

m note : solving time does not depend on the way C/S is implemented
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Experiments

Quantitative comparison

Five policies for memory accesses

m CC, PC, CP, PP*, PP

m first letter — read operation, second letter — write operation

samate core malware total
opt | best | opt | best | opt | best opt | best
CcC 20 0 44 1 5 0 69 1
PC 20 2 49 4 6 1 75 7
CP 23 1 61 11 4 0 88 12
PP* 36 12 71 24 10 5 117 41
PP 33 9 36 7 7 2 76 18

best (resp. opt) : number of programs for which the considered policy returns the
strictly highest (resp. highest) number of SAT answers
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Conclusion

Conclusion

Dynamic Symbolic Execution (DSE) : powerful approach to verif. and testing
m three key ingredients : path predicate computation & solving, path
search, concretization & symbolization policy (C/S)
C/S is an essential part, yet mostly not studied
m many policies (one per tool), no systematic study of C/S
m undocumented, unclear
m tools : often a single hardcoded policy, no reuse across tools

Our goal : establish C/S as a proper field of study [focus first on specification]

m CSML, a specification language for C/S \/

> clear, non-ambiguous [documentation]
> tool independent [reuse, sharing, tuning]
> executable [input for tools]

m implemented in BINSEC \/

m an experimental comparison of C/S policies \/
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Bonus

Dynamic Symbolic Execution

Dynamic Symbolic Execution [Korel+, Williams+, Godefroid-]

m interleave dynamic and symbolic executions
m drive the search towards feasible paths for free

m give hints for relevant under-approximations [robustness]

Concretization : force a symbolic variable to take its runtime value

m application 1 : follow only feasible path for free

m application 2 : correct approximation of “difficult” constructs

[out of scope or too expensive to handle]
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Bonus

About robustness

Goal = find input leading to ERROR
(assume we have only a solver for linear integer arith.)

f(int x, int y) {z=x*x; if (y == z) ERROR; else OK }

Loc | Instruction
0 | input(x,y)
1 zZ = x ¥ x
2 | if (z==y) [True branch]

Path predicate (input Xo et Yo) — Unrealistic perfect symbolic reasoning
-
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Bonus

About robustness

Goal = find input leading to ERROR
(assume we have only a solver for linear integer arith.)

f(int x, int y) {z=x*x; if (y == z) ERROR; else OK }

Loc | Instruction
0 | input(x,y)
1 zZ = x ¥ x
2 | if (z==y) [True branch]

Path predicate (input Xo et Yo) — Unrealistic perfect symbolic reasoning
OK, but how to solve? X
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Bonus

About robustness

Goal = find input leading to ERROR
(assume we have only a solver for linear integer arith.)

f(int x, int y) {z=x*x; if (y == z) ERROR; else OK }

Loc | Instruction
0 | input(x,y)
1 zZ = x ¥ x
2 | if (z==y) [True branch]

Path predicate (input Xo et Yo) — Limited symbolic reasoning
Incorrect, may find a bad solution (ex : Xo = 10, Yy = 34) X
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Bonus

About robustness

Goal = find input leading to ERROR
(assume we have only a solver for linear integer arith.)

f(int x, int y) {z=x*x; if (y == z) ERROR; else OK }

Loc | Instruction
0 | input(x,y)
1 zZ = x ¥ x
2 | if (z==y) [True branch]

Path predicate (input Xo et Yo) — Limited dynamic symbolic reasoning
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Bonus

About robustness

Goal = find input leading to ERROR
(assume we have only a solver for linear integer arith.)

f(int x, int y) {z=x*x; if (y == z) ERROR; else OK }

Loc | Instruction
0 | input(x,y)
1 zZ = x ¥ x
2 | if (z==y) [True branch]

Path predicate (input Xo et Yp) —
TA Zl = X() X X()

Limited dynamic symbolic reasoning
[assume runtime values : x=3,z=9]
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About robustness

Goal = find input leading to ERROR
(assume we have only a solver for linear integer arith.)

f(int x, int y) {z=x*x; if (y == z) ERROR; else OK }

Loc | Instruction
0 | input(x,y)
1 zZ = x ¥ x
2 | if (z==y) [True branch]

Path predicate (input Xo et Yp) —
TANZ1=9ANXy=3

Limited dynamic symbolic reasoning
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About robustness

Goal = find input leading to ERROR
(assume we have only a solver for linear integer arith.)

f(int x, int y) {z=x*x; if (y == z) ERROR; else OK }

Loc | Instruction
0 | input(x,y)
1 zZ = x ¥ x
2 | if (z==y) [True branch]

Path predicate (input Xo et Yp) —
TANZ1=9ANXo=3NZ1 =Y

Limited dynamic symbolic reasoning
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Bonus

About robustness

Goal = find input leading to ERROR
(assume we have only a solver for linear integer arith.)

f(int x, int y) {z=x*x; if (y == z) ERROR; else OK }

Loc | Instruction
0 | input(x,y)
1 zZ = x ¥ x
2 | if (z==y) [True branch]

Path predicate (input Xo et Yo) — Limited dynamic symbolic reasoning
Correct, find a real solution (ex : Xo = 3, Yo = 9) v
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