
Specification of Concretization and
Symbolization Policies in Symbolic Execution

Sébastien Bardin
joint work with

Robin David, Josselin Feist, Laurent Mounier, Marie-Laure
Potet, Thanh Dihn Ta, Jean-Yves Marion

CEA LIST (Paris-Saclay, France)

ISSTA 2016

Bardin et al. ISSTA 2016 1/ 27



Preamble

Takeaway

Dynamic Symbolic Execution (DSE) : powerful approach to verif. and testing

three key ingredients : path predicate computation & solving, path
search, concretization & symbolization policy (C/S)

C/S is an essential part, yet mostly not studied

many policies (one per tool), no systematic study of C/S

undocumented, unclear

tools : often a single hardcoded policy, no reuse across tools

Our goal : establish C/S as a proper field of study [focus first on specification]

CSML, a specification language for C/S X
◮ clear, non-ambiguous [documentation]
◮ tool independent [reuse, sharing, tuning]
◮ executable [input for tools]

implemented in BINSEC X
an experimental comparison of C/S policies X

Bardin et al. ISSTA 2016 2/ 27



Preamble

About formal verification

Between Software Engineering and Theoretical Computer Science

Goal = proves correctness in a mathematical way

Key concepts : M |= ϕ

M : semantic of the program

ϕ : property to be checked

|= : algorithmic check

Kind of properties

absence of runtime error

pre/post-conditions

temporal properties

Bardin et al. ISSTA 2016 3/ 27



Preamble

From (a logician’s) dream to reality

Industrial reality in some key areas, especially safety-critical domains

hardware, aeronautics [airbus], railroad [metro 14], smartcards, drivers
[Windows], certified compilers [CompCert] and OS [Sel4], etc.

Ex : Airbus

Verification of

runtime errors [Astrée]

functional correctness [Frama-C]

numerical precision [Fluctuat]

source-binary conformance [CompCert]

ressource usage [Absint]

Bardin et al. ISSTA 2016 4/ 27



Preamble

Next big challenge

Apply formal methods to less-critical software

Very different context : no formal spec, less developer involvement, etc.

Difficulties

robustness [w.r.t. software constructs]

no place for false alarms

scale

sometimes, not even source code

Bardin et al. ISSTA 2016 5/ 27



Preamble

Next big challenge

Apply formal methods to less-critical software

Very different context : no formal spec, less developer involvement, etc.

Difficulties

robustness [w.r.t. software constructs]

no place for false alarms

scale

sometimes, not even source code

DSE as a first step

very robust

(mostly) no false alarm

scale in some ways

ok for binary code

Bardin et al. ISSTA 2016 5/ 27



DSE in a nutshell

Introducing DSE

Dynamic Symbolic Execution [since 2004-2005 : dart, cute, pathcrawler ]

a very powerful formal approach to verification and testing

many tools and successful case-studies since mid 2000’s

◮ SAGE, Klee, Mayhem, etc.
◮ coverage-oriented testing, bug finding, exploit generation, reverse

arguably one of the most wide-spread use of formal methods

Very good properties

mostly no false alarm, robust, scale, ok for binary code

Bardin et al. ISSTA 2016 6/ 27



DSE in a nutshell

Introducing DSE

Dynamic Symbolic Execution [since 2004-2005 : dart, cute, pathcrawler ]

a very powerful formal approach to verification and testing

many tools and successful case-studies since mid 2000’s

◮ SAGE, Klee, Mayhem, etc.
◮ coverage-oriented testing, bug finding, exploit generation, reverse

arguably one of the most wide-spread use of formal methods

Very good properties

mostly no false alarm, robust, scale, ok for binary code

Key idea : path predicate [King 70’s]

consider a program P on input v, and a given path σ

a path predicate ϕσ for σ is a formula s.t.

v |= ϕσ ⇒ P(v) follows σ

intuitively the conjunction of all branching conditions

old idea, recent renew interest [powerful solvers, dynamic+symbolic]

Bardin et al. ISSTA 2016 6/ 27



DSE in a nutshell

DSE

int main () {

int x = input();

int y = input();

int z = 2 * y;

if (z == x) {

if (x > y + 10)

failure;

}

success;

}

given a path of the program

automatically find input that
follows the path

then, iterate over all paths

x = input()

y = input()

z = 2 * y

z == x

x > y + 10

PC:=⊤ ∧ 2y0 6= x0

PC:=⊤ ∧ 2y0 = x0 ∧ x0 > y0 + 10

PC:=⊤ ∧ 2y0 = x0 ∧ x0 ≤ y0 + 10

σ:=∅

PC:=⊤

σ := {x → x0, y → y0, z → 2y0}

PC:=⊤ ∧ 2y0 = x0

Bardin et al. ISSTA 2016 7/ 27



DSE in a nutshell

DSE

int main () {

int x = input();

int y = input();

int z = 2 * y;

if (z == x) {

if (x > y + 10)

failure;

}

success;

}

given a path of the program

automatically find input that
follows the path

then, iterate over all paths

x = input()

y = input()

z = 2 * y

z == x

x > y + 10

PC:=⊤ ∧ 2y0 6= x0

PC:=⊤ ∧ 2y0 = x0 ∧ x0 > y0 + 10

PC:=⊤ ∧ 2y0 = x0 ∧ x0 ≤ y0 + 10

σ:=∅

PC:=⊤

σ := {x → x0, y → y0, z → 2y0}

PC:=⊤ ∧ 2y0 = x0

Bardin et al. ISSTA 2016 7/ 27

Three key ingredients

path predicate computation & solving

path search

C/S policy



DSE in a nutshell

Path predicate computation

Usually easy to compute [forward, introduce new logical variables at each step]

Loc Instruction

0 input(y,z)
1 w := y+1
2 x := w + 3
3 if (x < 2 * z) [True branch]

4 if (x < z) [False branch]

Path predicate (input Y0 et Z0)

Bardin et al. ISSTA 2016 8/ 27



DSE in a nutshell

Path predicate computation

Usually easy to compute [forward, introduce new logical variables at each step]

Loc Instruction

0 input(y,z)
1 w := y+1
2 x := w + 3
3 if (x < 2 * z) [True branch]

4 if (x < z) [False branch]

Path predicate (input Y0 et Z0)
let W1 , Y0 + 1 in

Bardin et al. ISSTA 2016 8/ 27



DSE in a nutshell

Path predicate computation

Usually easy to compute [forward, introduce new logical variables at each step]

Loc Instruction

0 input(y,z)
1 w := y+1
2 x := w + 3
3 if (x < 2 * z) [True branch]

4 if (x < z) [False branch]

Path predicate (input Y0 et Z0)
let W1 , Y0 + 1 in

let X2 , W1 + 3 in

Bardin et al. ISSTA 2016 8/ 27



DSE in a nutshell

Path predicate computation

Usually easy to compute [forward, introduce new logical variables at each step]

Loc Instruction

0 input(y,z)
1 w := y+1
2 x := w + 3
3 if (x < 2 * z) [True branch]

4 if (x < z) [False branch]

Path predicate (input Y0 et Z0)
let W1 , Y0 + 1 in

let X2 , W1 + 3 in
X2 < 2× Z0

Bardin et al. ISSTA 2016 8/ 27



DSE in a nutshell

Path predicate computation

Usually easy to compute [forward, introduce new logical variables at each step]

Loc Instruction

0 input(y,z)
1 w := y+1
2 x := w + 3
3 if (x < 2 * z) [True branch]

4 if (x < z) [False branch]

Path predicate (input Y0 et Z0)
let W1 , Y0 + 1 in

let X2 , W1 + 3 in
X2 < 2× Z0 ∧ X2 ≥ Z0

Bardin et al. ISSTA 2016 8/ 27



DSE in a nutshell

Path Exploration

input : a program P

output : a test suite TS covering all feasible paths of Paths≤k(P)

pick a path σ ∈ Paths≤k(P)
compute a path predicate ϕσ of σ
solve ϕσ for satisfiability
SAT(s) ? get a new pair < s, σ >

loop until no more path to cover

Bardin et al. ISSTA 2016 9/ 27



DSE in a nutshell

Path Exploration

input : a program P

output : a test suite TS covering all feasible paths of Paths≤k(P)

pick a path σ ∈ Paths≤k(P)
compute a path predicate ϕσ of σ
solve ϕσ for satisfiability
SAT(s) ? get a new pair < s, σ >

loop until no more path to cover

Bardin et al. ISSTA 2016 9/ 27



DSE in a nutshell

Path Exploration

input : a program P

output : a test suite TS covering all feasible paths of Paths≤k(P)

pick a path σ ∈ Paths≤k(P)
compute a path predicate ϕσ of σ
solve ϕσ for satisfiability
SAT(s) ? get a new pair < s, σ >

loop until no more path to cover

Bardin et al. ISSTA 2016 9/ 27



DSE in a nutshell

Path Exploration

input : a program P

output : a test suite TS covering all feasible paths of Paths≤k(P)

pick a path σ ∈ Paths≤k(P)
compute a path predicate ϕσ of σ
solve ϕσ for satisfiability
SAT(s) ? get a new pair < s, σ >

loop until no more path to cover

Bardin et al. ISSTA 2016 9/ 27



DSE in a nutshell

Path Exploration

input : a program P

output : a test suite TS covering all feasible paths of Paths≤k(P)

pick a path σ ∈ Paths≤k(P)
compute a path predicate ϕσ of σ
solve ϕσ for satisfiability
SAT(s) ? get a new pair < s, σ >

loop until no more path to cover

Bardin et al. ISSTA 2016 9/ 27



DSE in a nutshell

Path Exploration

input : a program P

output : a test suite TS covering all feasible paths of Paths≤k(P)

pick a path σ ∈ Paths≤k(P)
compute a path predicate ϕσ of σ
solve ϕσ for satisfiability
SAT(s) ? get a new pair < s, σ >

loop until no more path to cover

Bardin et al. ISSTA 2016 9/ 27



DSE in a nutshell

Path Exploration

input : a program P

output : a test suite TS covering all feasible paths of Paths≤k(P)

pick a path σ ∈ Paths≤k(P)
compute a path predicate ϕσ of σ
solve ϕσ for satisfiability
SAT(s) ? get a new pair < s, σ >

loop until no more path to cover

Bardin et al. ISSTA 2016 9/ 27



DSE in a nutshell

Path Exploration

input : a program P

output : a test suite TS covering all feasible paths of Paths≤k(P)

pick a path σ ∈ Paths≤k(P)
compute a path predicate ϕσ of σ
solve ϕσ for satisfiability
SAT(s) ? get a new pair < s, σ >

loop until no more path to cover

Bardin et al. ISSTA 2016 9/ 27

Beware

× #paths !

× incomplete



DSE in a nutshell

C/S for robustness and tradeoffs

Robustness : what if the instruction cannot be reasoned about ?

missing code, self-modification

hash functions, dynamic memory accesses, NLA operators

Solutions

Concretization : replace by runtime value [lose completeness]

Symbolization : replace by fresh variable [lose correctness]

Bardin et al. ISSTA 2016 10/ 27



DSE in a nutshell

C/S for robustness and tradeoffs

Robustness : what if the instruction cannot be reasoned about ?

missing code, self-modification

hash functions, dynamic memory accesses, NLA operators

Solutions

Concretization : replace by runtime value [lose completeness]

Symbolization : replace by fresh variable [lose correctness]

Bardin et al. ISSTA 2016 10/ 27

C/S essential to DSE

robustness to real-life code

trade-off correction / completeness / efficiency



The problem

Outline

about DSE

the problem with C/S

goal and results

experiments

conclusion

Bardin et al. ISSTA 2016 11/ 27



The problem

The problem with C/S policies

State of DSE

Path predicate computation + solving X
Path search : under active research

C/S : ? ? kind of black magic

hardcoded

often a single C/S

no easy tuning

no reuse across tools

undocumented, unclear

many policies (one per tool)

no comparison of C/S

no systematic study of C/S

Bardin et al. ISSTA 2016 12/ 27



The problem

Unclear C/S policies

Consider the following situation

instruction x := @(a * b)

your tool documentation says : “memory accesses are concretized”

suppose that at runtime : a = 7, b = 3

What is the intended meaning ? [perfect reasoning : x == select(M, a× b)]

CS1 : x == select(M, 21) [incorrect]

CS2 : x == select(M, 21) ∧ a × b == 21 [minimal]

CS3 : x == select(M, 21) ∧ a == 7 ∧ b == 3 [atomic]

No best choice, depends on the context

acceptable loss of correctness / completeness ?

is it mandatory to get rid off × ?

Bardin et al. ISSTA 2016 13/ 27



The problem

Too many C/S policies

Just for C/S on memory accesses

4 basic policies : concretize or keep symbolic reads / writes

exotic variations : multi-level dereferencement [exe], domain restriction
[osmose], taint-based [s. heelan], dataflow-based [mayhem], etc.

flavors of concretization : minimal, atomic, incorrect

all can be combined together

Bardin et al. ISSTA 2016 14/ 27



Our goal

Our goal

Establish C/S as a proper field of study

what is a generic C/S ?

how DSE can handle generic C/S ?

identify tradeoffs, sweetspots, etc.

First step : a specification mechanism for C/S

clear, non-ambiguous [documentation]

tool independent [reuse, sharing, tuning]

executable [input for tools]

Bardin et al. ISSTA 2016 15/ 27



Our goal

Our goal

Establish C/S as a proper field of study

what is a generic C/S ?

how DSE can handle generic C/S ?

identify tradeoffs, sweetspots, etc.

First step : a specification mechanism for C/S

clear, non-ambiguous [documentation]

tool independent [reuse, sharing, tuning]

executable [input for tools]

Bardin et al. ISSTA 2016 15/ 27

Results

formal definition of a generic C/S X

a variant of DSE supporting generic C/S X

CSML, a specification language for C/S X

implementation in BINSEC X

an experimental comparison of C/S policies X



Our goal

Overview

Bardin et al. ISSTA 2016 16/ 27



Our goal

Overview

Bardin et al. ISSTA 2016 16/ 27



Our goal

Overview

Bardin et al. ISSTA 2016 16/ 27

Tool users

clear, well-doc. C/S

change, reuse, share

best C/S available

Tool builders

flexibility

do not reimplement
existing C/S

futur-proof wrt C/S



Technical keys

What is a C/S policy ?

A decision function queried

within path predicate computation

before logical evaluation of an expression

in the scope of a given location, instruction and memory state

cs : loc × instr × state × expr 7→







C concretization
S symbolization
P propagation







Bardin et al. ISSTA 2016 17/ 27



Technical keys

DSE with parametric C/S

Example :

loc : x := a + b

concrete memory state : {a 7→ 3; b 7→ 5}

symbolic memory state : {a 7→ a2; b 7→ b9}

Standard evaluation, no C/S : Ja + bK 7→ a2 + b9

Evaluation with propagation : Ja + bKcs=P 7→ (a2 + b9,⊤)

Evaluation with symbolization : Ja + bK
cs=S 7→ (fresh,⊤)

Evaluation with concretization : Ja + bK
cs=C 7→ (8, a2 + b9 = 8)

Bardin et al. ISSTA 2016 18/ 27



Technical keys

CSML overview

Rule-based language guard ⇒ {C,S ,P}

Guard of the form πloc :: πins :: πexpr :: πΣ

predicates on the location, instruction, expression, concrete memory state

πins and πexpr mostly based on pattern matching and subterm checking

predicates checked sequentially

limited communication : meta-variables (?x , ?⋆) and placeholders (!x , !�)

Set of rules

checked sequentially, the first fireable rule returns

presence of a default rule

Bardin et al. ISSTA 2016 19/ 27



Technical keys

Example of specifications (1)

πloc :: πins :: πexpr :: πΣ ⇒ {C,S,P}

∗ : : ∗ : : 〈@?⋆〉 : : ∗ ⇒ C ;
default ⇒ P ;

Meaning

concretize result of a read value

or : “if we are evaluating an expression e built with @, then e is

concretized, otherwise it is propagated.”

Examples

x := a + @b : @b is concretized

Bardin et al. ISSTA 2016 20/ 27



Technical keys

Example of specifications (2)

πloc :: πins :: πexpr :: πΣ ⇒ {C,S,P}

∗ : : 〈@?e := ?⋆〉 : : 〈!e〉 : : ∗ ⇒ C ;
default ⇒ P ;

Meaning

concretize write addresses

or : “if we are evaluating an expression e in the context of an assignment

where e is used as the write address, then e is concretized, otherwise it is

propagated.”

Examples

x := a + @b : nothing is concretized

@x := a + @b : x is concretized

Bardin et al. ISSTA 2016 21/ 27



Technical keys

Example of specifications (3)

πloc :: πins :: πexpr :: πΣ ⇒ {C,S,P}

consider instruction x := @(a * b), suppose at runtime : a = 7, b = 3

minimal concretization of r/w expressions [CS2] [concretize a*b]

∗ :: 〈?i 〉 :: (@ !�) ≺ !i :: ∗ ⇒ C

recursive concretization of r/w expressions : [concretize a*b, a, b]

∗ :: 〈?i 〉 :: !� ≺ (@ ?⋆) ≺ !i :: ∗ ⇒ C

atomic concretization of r/w expressions [CS3] [concretize a, b]

∗ :: 〈?i 〉 :: var(!�) ∧ !� ≺ (@ ?⋆) ≺ !i :: ∗ ⇒ C

incorrect concretization of r/w expressions [CS1] [replace a*b by 21]

∗ :: 〈?i 〉 :: (@ !�) ≺ !i :: ∗ ⇒ S[evalΣ(!�)]

Bardin et al. ISSTA 2016 22/ 27



Technical keys

CSML good properties

Well-defined

any CSML spec defines a C/S policy

only C and P : keeps correctness

only S and P : keeps completeness

Expressive enough

sufficient for all examples from literature [systematic review]

yet, still limited [say something about current C/S ?]

Implementable : see after

Bardin et al. ISSTA 2016 23/ 27



Technical keys

CSML good properties

Well-defined

any CSML spec defines a C/S policy

only C and P : keeps correctness

only S and P : keeps completeness

Expressive enough

sufficient for all examples from literature [systematic review]

yet, still limited [say something about current C/S ?]

Implementable : see after

About the langage itself

we describe the inner engine, not the user view

syntax can be improved

complexity can be hidden (predefined options, patterns)

Bardin et al. ISSTA 2016 23/ 27



Experiments

Implementation and experiments

CSML implemented in BINSEC/SE [binary-level dse tool]

first DSE tool with generic C/S support

Experiment 1 : evaluate CSML overhead

vs : no C/S, C/S encoded via callbacks

result : CSML does yield a cost, yet negligible wrt. solving time

Experiment 2 : experimental comparison of C/S policies

five C/S policies for memory accesses : CC, CP, PC, PP*, PP

result : PP* better on average, yet no clear winner : need different C/S !

first time such a C/S comparison is performed !

Bardin et al. ISSTA 2016 24/ 27



Experiments

CSML Overhead

Bench

167 programs (100 coreutils, 17 malware, 50 nist samate/verisec )

≈ 45,000 queries

min max average

base (PP) 0.04% 3% 0.3%

CC 0.1% 17% 1.2%
rule-based CP 0.1% 23.5% 1.45%
C/S policy PC 0.08% 12.8% 0.85%

PP* 0.08% 12.3% 0.95%
PP 0.05% 4% 0.48%

CC 0.05% 8.5% 0.5%
hard-coded CP 0.05% 8.2% 0.5%
C/S policy PC 0.05% 8% 0.45%

PP* 0.05% 6% 0.45%
PP 0.04% 3% 0.3%

Reported figures

ratio between cost of formula creation and creation + solving

note : solving time does not depend on the way C/S is implemented

Bardin et al. ISSTA 2016 25/ 27



Experiments

Quantitative comparison

Five policies for memory accesses

CC, PC, CP, PP*, PP

first letter 7→ read operation, second letter 7→ write operation

samate core malware total
opt best opt best opt best opt best

CC 20 0 44 1 5 0 69 1
PC 20 2 49 4 6 1 75 7
CP 23 1 61 11 4 0 88 12
PP* 36 12 71 24 10 5 117 41
PP 33 9 36 7 7 2 76 18

best (resp. opt) : number of programs for which the considered policy returns the
strictly highest (resp. highest) number of SAT answers

Bardin et al. ISSTA 2016 26/ 27



Conclusion

Conclusion

Dynamic Symbolic Execution (DSE) : powerful approach to verif. and testing

three key ingredients : path predicate computation & solving, path
search, concretization & symbolization policy (C/S)

C/S is an essential part, yet mostly not studied

many policies (one per tool), no systematic study of C/S

undocumented, unclear

tools : often a single hardcoded policy, no reuse across tools

Our goal : establish C/S as a proper field of study [focus first on specification]

CSML, a specification language for C/S X
◮ clear, non-ambiguous [documentation]
◮ tool independent [reuse, sharing, tuning]
◮ executable [input for tools]

implemented in BINSEC X
an experimental comparison of C/S policies X

Bardin et al. ISSTA 2016 27/ 27



Bonus

Dynamic Symbolic Execution

Dynamic Symbolic Execution [Korel+, Williams+, Godefroid+]

interleave dynamic and symbolic executions

drive the search towards feasible paths for free

give hints for relevant under-approximations [robustness]

Concretization : force a symbolic variable to take its runtime value

application 1 : follow only feasible path for free

application 2 : correct approximation of “difficult” constructs
[out of scope or too expensive to handle]

Bardin et al. ISSTA 2016 27/ 27



Bonus

About robustness

Goal = find input leading to ERROR

(assume we have only a solver for linear integer arith.)

f(int x, int y) {z=x*x; if (y == z) ERROR; else OK }

Loc Instruction

0 input(x,y)
1 z := x * x
2 if (z == y) [True branch]

Path predicate (input X0 et Y0) — Unrealistic perfect symbolic reasoning
⊤

Bardin et al. ISSTA 2016 27/ 27



Bonus

About robustness

Goal = find input leading to ERROR

(assume we have only a solver for linear integer arith.)

f(int x, int y) {z=x*x; if (y == z) ERROR; else OK }

Loc Instruction

0 input(x,y)
1 z := x * x
2 if (z == y) [True branch]

Path predicate (input X0 et Y0) — Unrealistic perfect symbolic reasoning
⊤ ∧ Z1 = X0 × X0

Bardin et al. ISSTA 2016 27/ 27



Bonus

About robustness

Goal = find input leading to ERROR

(assume we have only a solver for linear integer arith.)

f(int x, int y) {z=x*x; if (y == z) ERROR; else OK }

Loc Instruction

0 input(x,y)
1 z := x * x
2 if (z == y) [True branch]

Path predicate (input X0 et Y0) — Unrealistic perfect symbolic reasoning
⊤ ∧ Z1 = X0 × X0 ∧ Z1 = Y0

Bardin et al. ISSTA 2016 27/ 27



Bonus

About robustness

Goal = find input leading to ERROR

(assume we have only a solver for linear integer arith.)

f(int x, int y) {z=x*x; if (y == z) ERROR; else OK }

Loc Instruction

0 input(x,y)
1 z := x * x
2 if (z == y) [True branch]

Path predicate (input X0 et Y0) — Unrealistic perfect symbolic reasoning

OK, but how to solve ? ×

Bardin et al. ISSTA 2016 27/ 27



Bonus

About robustness

Goal = find input leading to ERROR

(assume we have only a solver for linear integer arith.)

f(int x, int y) {z=x*x; if (y == z) ERROR; else OK }

Loc Instruction

0 input(x,y)
1 z := x * x
2 if (z == y) [True branch]

Path predicate (input X0 et Y0) — Limited symbolic reasoning
⊤

Bardin et al. ISSTA 2016 27/ 27



Bonus

About robustness

Goal = find input leading to ERROR

(assume we have only a solver for linear integer arith.)

f(int x, int y) {z=x*x; if (y == z) ERROR; else OK }

Loc Instruction

0 input(x,y)
1 z := x * x
2 if (z == y) [True branch]

Path predicate (input X0 et Y0) — Limited symbolic reasoning
⊤ ∧ Z1 = X0 × X0

Bardin et al. ISSTA 2016 27/ 27



Bonus

About robustness

Goal = find input leading to ERROR

(assume we have only a solver for linear integer arith.)

f(int x, int y) {z=x*x; if (y == z) ERROR; else OK }

Loc Instruction

0 input(x,y)
1 z := x * x
2 if (z == y) [True branch]

Path predicate (input X0 et Y0) — Limited symbolic reasoning
⊤∧ ⊤

Bardin et al. ISSTA 2016 27/ 27



Bonus

About robustness

Goal = find input leading to ERROR

(assume we have only a solver for linear integer arith.)

f(int x, int y) {z=x*x; if (y == z) ERROR; else OK }

Loc Instruction

0 input(x,y)
1 z := x * x
2 if (z == y) [True branch]

Path predicate (input X0 et Y0) — Limited symbolic reasoning
⊤ ∧ ⊤ ∧ Z1 = Y0

Bardin et al. ISSTA 2016 27/ 27



Bonus

About robustness

Goal = find input leading to ERROR

(assume we have only a solver for linear integer arith.)

f(int x, int y) {z=x*x; if (y == z) ERROR; else OK }

Loc Instruction

0 input(x,y)
1 z := x * x
2 if (z == y) [True branch]

Path predicate (input X0 et Y0) — Limited symbolic reasoning

Incorrect, may find a bad solution (ex : X0 = 10, Y0 = 34) ×

Bardin et al. ISSTA 2016 27/ 27



Bonus

About robustness

Goal = find input leading to ERROR

(assume we have only a solver for linear integer arith.)

f(int x, int y) {z=x*x; if (y == z) ERROR; else OK }

Loc Instruction

0 input(x,y)
1 z := x * x
2 if (z == y) [True branch]

Path predicate (input X0 et Y0) — Limited dynamic symbolic reasoning
⊤

Bardin et al. ISSTA 2016 27/ 27



Bonus

About robustness

Goal = find input leading to ERROR

(assume we have only a solver for linear integer arith.)

f(int x, int y) {z=x*x; if (y == z) ERROR; else OK }

Loc Instruction

0 input(x,y)
1 z := x * x
2 if (z == y) [True branch]

Path predicate (input X0 et Y0) — Limited dynamic symbolic reasoning
⊤ ∧ Z1 = X0 × X0 [assume runtime values : x=3,z=9]

Bardin et al. ISSTA 2016 27/ 27



Bonus

About robustness

Goal = find input leading to ERROR

(assume we have only a solver for linear integer arith.)

f(int x, int y) {z=x*x; if (y == z) ERROR; else OK }

Loc Instruction

0 input(x,y)
1 z := x * x
2 if (z == y) [True branch]

Path predicate (input X0 et Y0) — Limited dynamic symbolic reasoning
⊤∧ Z1 = 9 ∧ X0 = 3

Bardin et al. ISSTA 2016 27/ 27



Bonus

About robustness

Goal = find input leading to ERROR

(assume we have only a solver for linear integer arith.)

f(int x, int y) {z=x*x; if (y == z) ERROR; else OK }

Loc Instruction

0 input(x,y)
1 z := x * x
2 if (z == y) [True branch]

Path predicate (input X0 et Y0) — Limited dynamic symbolic reasoning
⊤ ∧ Z1 = 9 ∧ X0 = 3 ∧ Z1 = Y0

Bardin et al. ISSTA 2016 27/ 27



Bonus

About robustness

Goal = find input leading to ERROR

(assume we have only a solver for linear integer arith.)

f(int x, int y) {z=x*x; if (y == z) ERROR; else OK }

Loc Instruction

0 input(x,y)
1 z := x * x
2 if (z == y) [True branch]

Path predicate (input X0 et Y0) — Limited dynamic symbolic reasoning

Correct, find a real solution (ex : X0 = 3, Y0 = 9) X

Bardin et al. ISSTA 2016 27/ 27


	Preamble
	DSE in a nutshell
	The problem
	Our goal
	Technical keys
	Experiments
	Conclusion
	Bonus

