
09/11/2016
FM 2016

Recovering high-level
conditions from binary

programs

Adel Djoudi
Sébastien Bardin
Éric Goubault

¶ Introduction

Outline

¶ Introduction

· Standard solutions and drawbacks

¸ Template-based conditions recovery

¹ Experiments

º Conclusion

p. 2/34

¶ Introduction

Binary code analysis : Why ?

p. 3/34

yes

no

source code

001011010101
100010101101
010110101010
001011010101
100010101101
100010101101
010110101010

binary code

source analysis

×Proprietary software
×Analysis of malware
×Compiler independent
×Multi-languages progs

binary analysis

✓Proprietary software
✓Analysis of malware
✓Compiler independent
✓Multi-languages progs

¶ Introduction

Binary code analysis : Why ?

p. 3/34

yes

no

source code

001011010101
100010101101
010110101010
001011010101
100010101101
100010101101
010110101010

binary code

source analysis

×Proprietary software
×Analysis of malware
×Compiler independent
×Multi-languages progs

binary analysis

✓Proprietary software
✓Analysis of malware
✓Compiler independent
✓Multi-languages progs

¶ Introduction

Challenges of binary code analysis (1)

p. 4/34

¶ Introduction

Challenges of binary code analysis (2)

○ Low-level semantics of data

◦ Machine arithmetic, bit-level operations
◦ Systematic usage of untyped memory [big array]

Difficult for current formal techniques

○ Low-level semantics of control

◦ No clear distinction data/instructions
◦ Dynamic jumps (jump eax)

No easy syntactic recovery of CFG

○ Diversity of architectures and instruction sets

◦ Too many instructions (ex. X86, ≥ 900 instructions)
◦ Modeling issues : side effect, addressing mode, ...

No platform independent concise formalism

�� ��Nice progress since 2004

Intermediate languages

REIL [Zynamics]
BIL [CMU]
DBA [CEA, LaBRI]
RREIL [TUM] ...

CFG recovery

CodeSurfer/x86 [GrammaTech]
Jakstab [TU München]
CFGBuilder [CEA]
...

Tests generation

SAGE [Microsoft]
OSMOSE [CEA]
Mayhem [ForAllSecure]
...

p. 5/34

¶ Introduction

Challenges of binary code analysis (2)

○ Low-level semantics of data

◦ Machine arithmetic, bit-level operations
◦ Systematic usage of untyped memory [big array]

Difficult for current formal techniques

○ Low-level semantics of control

◦ No clear distinction data/instructions
◦ Dynamic jumps (jump eax)

No easy syntactic recovery of CFG

○ Diversity of architectures and instruction sets

◦ Too many instructions (ex. X86, ≥ 900 instructions)
◦ Modeling issues : side effect, addressing mode, ...

No platform independent concise formalism

�� ��Nice progress since 2004

Intermediate languages

REIL [Zynamics]
BIL [CMU]
DBA [CEA, LaBRI]
RREIL [TUM] ...

CFG recovery

CodeSurfer/x86 [GrammaTech]
Jakstab [TU München]
CFGBuilder [CEA]
...

Tests generation

SAGE [Microsoft]
OSMOSE [CEA]
Mayhem [ForAllSecure]
...

p. 5/34

¶ Introduction

Challenge : High-level condition recovery

○ High-level conditions translated into low-level
flag predicates

○ Conditional jumps depend on flags and not
directly on registers

○ Serious problem for formal analysis

◦ abstract interpretation : precision
◦ symb exec : solving cost

p. 6/34

If ... then ... else

JCC (flags)

¶ Introduction

PowerPC translation example

p. 7/34

if (ax > bx) X = -1;

else X = 1;

compilation

cmpd ax, bx

bg l1

li X, 1

b l2

l1: li X, -1

l2:

disassembly

CR L := (ax < bx)

CR G := (ax > bx)

CR E := (ax = bx)

if (CR G) goto l1

X := 1

goto l2

l1: X := -1

l2:

Easy with relation propagation [folklore]

¶ Introduction

X86 translation example

p. 8/34

if (ax > bx) X = -1;

else X = 1;

compilation

cmp ax, bx

jg l1

mov X, 1

jmp l2

l1: mov X, -1

l2:

disassembly

OF := ((ax{31,31}≠bx{31,31}) &

(ax{31,31}≠(ax-bx){31,31}));
SF := (ax-bx) < 0;

ZF := (ax-bx) = 0;

if (¬ ZF ∧ (OF = SF)) goto l1

X := 1

goto l2

l1: X := -1

l2:

The real difficulty

¶ Introduction

Problem with formal approaches

4: cmp x 100; ZF := (x=100) x ↦ ⊤
5: je a; if (ZF) then goto a x ,ZF ↦ ⊤, [0, 1]
....
a:... x ,ZF ↦ ⊤, [1, 1]

Condition evaluation does not allow operand refinement

Problem with symbolic execution also

p. 9/34

¶ Introduction

Goal & achievements

Goal : Source-level like reasoning

y through high-level condition recovery

y what we want : sound, generic, precise in practice

Achievements

y template-based condition recovery

y implementation in BINSEC/VA

y other binary-level tricks [see the paper]

Applications

y formal methods : abstract interpretation, symbolic execution

y help the reverse engineering

p. 10/34

· Standard solutions and drawbacks

Outline

¶ Introduction

· Standard solutions and drawbacks

¸ Template-based conditions recovery

¹ Experiments

º Conclusion

p. 11/34

· Standard solutions and drawbacks

Logic-based recovery (1)

4: cmp x 100; ZF := (x=100) x ↦ ⊤
5: je a; if (x=100) then goto a x ↦ ⊤
...
a: x ↦ [100, 100]

○ Idea : flag predicate ⇒ operand predicate

○ Problem : flag predicate
?
⟺ operand predicate

○ Solution :

◦ use abstract interpretation to propagate flag expressions
◦ substitute flags by corresponding expressions at conditions
◦ simplify conditions to recover operand predicates

p. 12/34

[folklore] solution Generic & sound in simple cases only

· Standard solutions and drawbacks

Logic-based recovery (2)

4: cmp x 100; ZF := (x=100) x ↦ ⊤ ZF ↦ ⊤
5: je a; if (x=100) then goto a x ↦ ⊤ ZF ↦ (x = 100)
...
a: x ↦ [100, 100] ZF ↦ (x = 100)

○ Abstract domain D
#
≜ Flag → Expr

○ Propagation

flag ↦ e1 .

flag ∶= e1

flag ↦ if (x ∈
∗

e1)

x ∶= e2

flag ↦ if (e1 ≠ e3)

flag ∶= e3

flag ↦ e3

p. 13/34

· Standard solutions and drawbacks

Logic-based recovery (2)

4: cmp x 100; ZF := (x=100) x ↦ ⊤ ZF ↦ ⊤
5: je a; if (x=100) then goto a x ↦ ⊤ ZF ↦ (x = 100)
...
a: x ↦ [100, 100] ZF ↦ (x = 100)

○ Abstract domain D
#
≜ Flag → Expr

○ Propagation

flag ↦ e1 .

flag ∶= e1

flag ↦ if (x ∈
∗

e1)

x ∶= e2

flag ↦ if (e1 ≠ e3)

flag ∶= e3

flag ↦ e3

p. 13/34

· Standard solutions and drawbacks

Logic-based recovery (2)

4: cmp x 100; ZF := (x=100) x ↦ ⊤ ZF ↦ ⊤
5: je a; if (x=100) then goto a x ↦ ⊤ ZF ↦ (x = 100)
...
a: x ↦ [100, 100] ZF ↦ (x = 100)

○ Abstract domain D
#
≜ Flag → Expr

○ Propagation

flag ↦ e1 .flag ∶= e1

flag ↦ if (x ∈
∗

e1)

x ∶= e2

flag ↦ if (e1 ≠ e3)

flag ∶= e3

flag ↦ e3

p. 13/34

· Standard solutions and drawbacks

Logic-based recovery (2)

4: cmp x 100; ZF := (x=100) x ↦ ⊤ ZF ↦ ⊤
5: je a; if (x=100) then goto a x ↦ ⊤ ZF ↦ (x = 100)
...
a: x ↦ [100, 100] ZF ↦ (x = 100)

○ Abstract domain D
#
≜ Flag → Expr

○ Propagation

flag ↦ e1 .flag ∶= e1

flag ↦ ⊤ if (x ∈
∗

e1)x ∶= e2

flag ↦ if (e1 ≠ e3)

flag ∶= e3

flag ↦ e3

p. 13/34

· Standard solutions and drawbacks

Logic-based recovery (2)

4: cmp x 100; ZF := (x=100) x ↦ ⊤ ZF ↦ ⊤
5: je a; if (x=100) then goto a x ↦ ⊤ ZF ↦ (x = 100)
...
a: x ↦ [100, 100] ZF ↦ (x = 100)

○ Abstract domain D
#
≜ Flag → Expr

○ Propagation

flag ↦ e1 .flag ∶= e1

flag ↦ e1

if (x ∈
∗

e1)

x ∶= e2

flag ↦ if (e1 ≠ e3)

flag ∶= e3

flag ↦ e3

p. 13/34

· Standard solutions and drawbacks

Logic-based recovery (2)

4: cmp x 100; ZF := (x=100) x ↦ ⊤ ZF ↦ ⊤
5: je a; if (x=100) then goto a x ↦ ⊤ ZF ↦ (x = 100)
...
a: x ↦ [100, 100] ZF ↦ (x = 100)

○ Abstract domain D
#
≜ Flag → Expr

○ Propagation

flag ↦ e1 .flag ∶= e1

flag ↦ e1

if (x ∈
∗

e1)

x ∶= e2

flag ↦ ⊤ if (e1 ≠ e3)

flag ∶= e3 flag ↦ e3

p. 13/34

· Standard solutions and drawbacks

Logic-based recovery (2)

4: cmp x 100; ZF := (x=100) x ↦ ⊤ ZF ↦ ⊤
5: je a; if (x=100) then goto a x ↦ ⊤ ZF ↦ (x = 100)
...
a: x ↦ [100, 100] ZF ↦ (x = 100)

○ Abstract domain D
#
≜ Flag → Expr

○ Propagation

flag ↦ e1 .flag ∶= e1

flag ↦ e1

if (x ∈
∗

e1)

x ∶= e2

flag ↦ e1

if (e1 ≠ e3)

flag ∶= e3 flag ↦ e3

p. 13/34

· Standard solutions and drawbacks

Logic-based recovery (3)

○ Usage (at conditional instruction)

flag ↦ e1flag ∶= e1

flag ↦ e1x ∶= e2

if (flag)...

if (rewrite(e1))...

flag ↦ ⊤

flag ↦ e1 do nothing!

flag ∶= e3 flag ↦ e3

p. 14/34

· Standard solutions and drawbacks

Logic-based recovery (3)

○ Usage (at conditional instruction)

flag ↦ e1flag ∶= e1

flag ↦ e1x ∶= e2

if (flag)...

if (rewrite(e1))...

flag ↦ ⊤

flag ↦ e1

do nothing!

flag ∶= e3 flag ↦ e3

p. 14/34

· Standard solutions and drawbacks

Logic-based recovery (3)

○ Usage (at conditional instruction)

flag ↦ e1flag ∶= e1

flag ↦ e1x ∶= e2

if (flag)...

if (rewrite(e1))...

flag ↦ ⊤

flag ↦ e1

do nothing!

flag ∶= e3 flag ↦ e3

p. 14/34

· Standard solutions and drawbacks

Logic-based recovery (3)

○ Usage (at conditional instruction)

flag ↦ e1flag ∶= e1

flag ↦ e1x ∶= e2

if (flag)...

if (rewrite(e1))...

flag ↦ ⊤

flag ↦ e1

do nothing!

flag ∶= e3 flag ↦ e3

p. 14/34

Problem solved ! Not yet...

· Standard solutions and drawbacks

Example

4: cmp x y; OF := ((x{31,31}≠y{31,31}) & x , y ↦ [0, 11], [10, 20]
(x{31,31}≠(x-y){31,31}));

SF := (x-y) < 0;

ZF := (x-y) = 0;

5: jg a; if (¬ ZF ∧ (OF = SF)) then goto a x , y ↦ [0, 11], [10, 20]
...
a:... x , y ↦[0, 11], [10, 20]

Relation propagation does not help

¬(x-y = 0) ∧ ((x{31,31}=y{31,31}) & (x{31,31}=(x-y){31,31})) = (x-y<0)
?
⇔

x > y

p. 15/34

· Standard solutions and drawbacks

Example

4: cmp x y; OF := ((x{31,31}≠y{31,31}) & x , y ↦ [0, 11], [10, 20]
(x{31,31}≠(x-y){31,31}));

SF := (x-y) < 0;

ZF := (x-y) = 0;

5: jg a; if (¬ ZF ∧ (OF = SF)) then goto a x , y ↦ [0, 11], [10, 20]
...
a:... x , y ↦[0, 11], [10, 20]

Relation propagation does not help

¬(x-y = 0) ∧ ((x{31,31}=y{31,31}) & (x{31,31}=(x-y){31,31})) = (x-y<0)
?
⇔

x > y

p. 15/34

· Standard solutions and drawbacks

Natural high-level predicate

4: cmp x y; OF := ((x{31,31}≠y{31,31}) & x , y ↦ [0, 11], [10, 20]
(x{31,31}≠(x-y){31,31}));

SF := (x-y) < 0;

ZF := (x-y) = 0;

5: jg a; if (x > y) then goto a x , y ↦ [0, 11], [10, 20]
...
a:... x , y ↦[11, 11], [10, 10]

○ Idea : flag predicate ⇒ natural operands predicate

○ Problem :

◦ only simple high-level predicates can be handled by
non-relational abstract domains

◦ complex flag predicates can hide simple high-level predicates

p. 16/34

· Standard solutions and drawbacks

Natural high-level predicate

4: cmp x y; OF := ((x{31,31}≠y{31,31}) & x , y ↦ [0, 11], [10, 20]
(x{31,31}≠(x-y){31,31}));

SF := (x-y) < 0;

ZF := (x-y) = 0;

5: jg a; if (x > y) then goto a x , y ↦ [0, 11], [10, 20]
...
a:... x , y ↦[11, 11], [10, 10]

○ Idea : flag predicate ⇒ natural operands predicate

○ Problem :

◦ only simple high-level predicates can be handled by
non-relational abstract domains

◦ complex flag predicates can hide simple high-level predicates

p. 16/34

Existing solutions

Flag patterns

Virtual flags

· Standard solutions and drawbacks

Pattern-based recovery (1)

○ Depend on operations cmp / sub / test and their use

○ Possible to ensure soundness

○ Rely on decoding information

Sound, precise but architecture specific

Compilers may use their own patterns

p. 17/34

· Standard solutions and drawbacks

Pattern-based recovery (2)

High level predicates for conditional jump instructions (x86)
1

flag predicate cmp x y sub x y test x y

predicate predicate
2

predicate

ja, jnbe ¬CF ∧ ¬ZF x >u y x
′
≠ 0 x&y ≠ 0

jae, jnb, jnc ¬CF x ≥u y true true

jb, jnae, jc CF x <u y x
′
≠ 0 false

jbe, jna CF ∨ ZF x ≤u y true x&y = 0

je, jz ZF x = y x
′
= 0 x&y = 0

jne, jnz ¬ZF x ≠ y x
′
≠ 0 x&y ≠ 0

jg, jnle ¬ZF ∧ (OF = SF) x > y x
′
> 0 (x&y ≠ 0)∧

(x ≥ 0 ∨ y ≥ 0)
jge, jnl (OF = SF) x ≥ y true (x ≥ 0 ∨ y ≥ 0)
jl, jnge (OF ≠ SF) x < y x

′
< 0 (x < 0 ∧ y < 0)

jle, jng ZF ∨ (OF ≠ SF) x ≤ y true (x&y = 0)∨
(x < 0 ∧ y < 0)

1. G. Balakrishnan, T. Reps : WYSINWYX : What You See Is Not What You eXecute
2. x’ = x - y
3. CF = OF = False

p. 18/34

· Standard solutions and drawbacks

Non-standard examples

example retrieved condition patterns

or eax, 0

je ...

if (eax = 0) then goto ... ×

cmp eax, 0

jns ...

if (eax ⩾ 0) then goto ... ×

sar ebp, 1

je ...

if (ebp = 0) then goto ... ×

dec ecx

jg ...

if (ecx ⩾ 0) then goto ... ×

How many necessary patterns ?

p. 19/34

· Standard solutions and drawbacks

Summary & proposal

Approach archi. Sound Complete

independent enough

Patterns × ✓/× ✓/×
Logic-based ✓ ✓ ×

Template-based ✓ ✓ ✓

Template-based approach

direct extension of logic-based approach

may combine with patterns (better recovery, speed)

p. 20/34

· Standard solutions and drawbacks

Summary & proposal

Approach archi. Sound Complete

independent enough

Patterns × ✓/× ✓/×
Logic-based ✓ ✓ ×

Template-based ✓ ✓ ✓

Template-based approach

direct extension of logic-based approach

may combine with patterns (better recovery, speed)

p. 20/34

¸ Template-based conditions recovery

Outline

¶ Introduction

· Standard solutions and drawbacks

¸ Template-based conditions recovery

¹ Experiments

º Conclusion

p. 21/34

¸ Template-based conditions recovery

Example

4: cmp x y; OF := ((x{31,31}≠y{31,31}) & x , y ↦ [0, 11], [10, 20]
(x{31,31}≠(x-y){31,31}));

SF := (x-y) < 0;

ZF := (x-y) = 0;

5: jg a; if (¬ ZF ∧ (OF = SF)) then goto a x , y ↦ [0, 11], [10, 20]
...
a:... x , y ↦[0, 11], [10, 20]

¬(x-y = 0) ∧ ((x{31,31}=y{31,31}) & (x{31,31}=(x-y){31,31})) = (x-y<0)
?
⇔

x > y

p. 22/34

¸ Template-based conditions recovery

Template-based recovery (1)

○ Abstract domain D
#
≜ Flag → Expr

○ Propagation : same as in logic-based approach

Insights

○ Complex predicates often hide simple predicates

○ Only a few templates : >u,s ,<u,s ,≥u,s ,≤u,s ,=,≠

○ Try to find the appropriate one through equivalence checking

○ Optimization :

◦ Do it only once per loc (cache)
◦ Cheap pruning through filtering

p. 23/34

¸ Template-based conditions recovery

Template-based recovery (2)

○ Usage at condition : cond

○ Retrieve potential operands : x and y from cond

flag ↦ condflag ∶= cond

flag ↦ condx ∶= e

if (flag)...

if (template(cond))...

flag ↦ ⊤

do nothing!flag ↦ cond

flag ∶= cond flag ↦ cond

○ Assert the equivalence of cond with :

cond ⇔ x >u y cond ⇔ x <u y cond ⇔ x ≥u y cond ⇔ x ≤u y
cond ⇔ x > y cond ⇔ x < y cond ⇔ x ≥ y cond ⇔ x ≤ y
cond ⇔ x = y cond ⇔ x ≠ y s.t. x, y ∈syntax cond

○ If no assertion is satisfied then do nothing

p. 24/34

¸ Template-based conditions recovery

Template-based recovery (2)

○ Usage at condition : cond

○ Retrieve potential operands : x and y from cond

flag ↦ condflag ∶= cond

flag ↦ condx ∶= e

if (flag)...

if (template(cond))...

flag ↦ ⊤ do nothing!

flag ↦ cond

flag ∶= cond flag ↦ cond

○ Assert the equivalence of cond with :

cond ⇔ x >u y cond ⇔ x <u y cond ⇔ x ≥u y cond ⇔ x ≤u y
cond ⇔ x > y cond ⇔ x < y cond ⇔ x ≥ y cond ⇔ x ≤ y
cond ⇔ x = y cond ⇔ x ≠ y s.t. x, y ∈syntax cond

○ If no assertion is satisfied then do nothing

p. 24/34

¸ Template-based conditions recovery

Template-based recovery (2)

○ Usage at condition : cond

○ Retrieve potential operands : x and y from cond

flag ↦ condflag ∶= cond

flag ↦ condx ∶= e

if (flag)...

if (template(cond))...

flag ↦ ⊤ do nothing!

flag ↦ cond

flag ∶= cond flag ↦ cond

○ Assert the equivalence of cond with :

cond ⇔ x >u y cond ⇔ x <u y cond ⇔ x ≥u y cond ⇔ x ≤u y
cond ⇔ x > y cond ⇔ x < y cond ⇔ x ≥ y cond ⇔ x ≤ y
cond ⇔ x = y cond ⇔ x ≠ y s.t. x, y ∈syntax cond

○ If no assertion is satisfied then do nothing

p. 24/34

¸ Template-based conditions recovery

Optimization 1 : Normalization cache

○ Low-level condition saved in the cache at address a together
with the retrieved high-level condition

○ If the same condition at the same address a is met later in the
analysis, the saved high-level condition can be safely reused

flag ↦ cond

flag ↦ cond
′

flag ∶= cond

flag ↦ cond

flag ↦ cond
′

x ∶= e

if (flag)...

if (template(cond))...

if (template(cond))...if (template(cond
′))...

flag ↦ cond (cond , template(cond))

flag ↦ cond
′ (cond , template(cond))flag ↦ cond
′ (cond

′
, template(cond

′))

flag ∶= cond flag ↦ cond

flag ↦ cond
′

If cond = cond
′

p. 25/34

¸ Template-based conditions recovery

Optimization 1 : Normalization cache

○ Low-level condition saved in the cache at address a together
with the retrieved high-level condition

○ If the same condition at the same address a is met later in the
analysis, the saved high-level condition can be safely reused

flag ↦ cond

flag ↦ cond
′

flag ∶= cond

flag ↦ cond

flag ↦ cond
′

x ∶= e

if (flag)...

if (template(cond))...if (template(cond))...if (template(cond
′))... flag ↦ cond (cond , template(cond))

flag ↦ cond
′ (cond , template(cond))

flag ↦ cond
′ (cond

′
, template(cond

′))

flag ∶= cond

flag ↦ cond

flag ↦ cond
′

If cond = cond
′

p. 25/34

¸ Template-based conditions recovery

Optimization 1 : Normalization cache

○ Low-level condition saved in the cache at address a together
with the retrieved high-level condition

○ If the same condition at the same address a is met later in the
analysis, the saved high-level condition can be safely reused

flag ↦ cond

flag ↦ cond
′

flag ∶= cond

flag ↦ cond

flag ↦ cond
′

x ∶= e

if (flag)...if (template(cond))...

if (template(cond))...

if (template(cond
′))... flag ↦ cond (cond , template(cond))

flag ↦ cond
′ (cond , template(cond))

flag ↦ cond
′ (cond

′
, template(cond

′))

flag ∶= cond

flag ↦ cond

flag ↦ cond
′

If cond = cond
′

p. 25/34

¸ Template-based conditions recovery

Optimization 1 : Normalization cache

○ Low-level condition saved in the cache at address a together
with the retrieved high-level condition

○ If the same condition at the same address a is met later in the
analysis, the saved high-level condition can be safely reused

flag ↦ cond

flag ↦ cond
′

flag ∶= cond

flag ↦ cond

flag ↦ cond
′

x ∶= e

if (flag)...if (template(cond))...if (template(cond))...

if (template(cond
′))...

flag ↦ cond (cond , template(cond))flag ↦ cond
′ (cond , template(cond))

flag ↦ cond
′ (cond

′
, template(cond

′))

flag ∶= cond

flag ↦ cond

flag ↦ cond
′

If cond = cond
′

p. 25/34

¸ Template-based conditions recovery

Optimization 2 : Templates filtering

○ Substitute operands in cond with special values

○ Evaluate cond to eliminate obvious impossible predicates

¬(x-y = 0) ∧ ((x{31,31}=y{31,31}) & (x{31,31}=(x-y){31,31})) = (x-y<0)
?
⇔ x ⋄ y

Eval 1 : cond[0/x, 0/y] = 0⇒ ⋄ ∉ {=,≤,≤u,≥,≥u}
Eval 2 : cond[0/x, 1/y] = 0⇒ ⋄ ∉ {≠,<,<u}
Eval 3 : cond[0/x,−1/y] = 1⇒ ⋄ ∉ {>u}

⋄ ∈ {>}

p. 26/34

¸ Template-based conditions recovery

Tricky examples

example retrieved condition patterns templates
or eax, 0

je ...

if (eax = 0) then goto ... × ✓

cmp eax, 0

jns ...

if (eax ⩾ 0) then goto ... × ✓

sar ebp, 1

je ...

if (ebp = 0) then goto ... × ✓

dec ecx

jg ...

if (ecx ⩾ 0) then goto ... × ✓

add ecx, 0xfffefefe

jae ...

if (ecx ⩾ 0xfffefefe) goto ... × ✓

test al, 0x8

jne ...

if ((al & 0x8) ≠ 0) goto ... ✓ ×

stos [edi],eax if(DF) goto ... × ×
and edx, eax

jp ...

if (PF) goto ... × ×

shr ecx, 1

jae ...

if (¬CF) goto ... × ×

cmp [esp+0x64],eax

mov eax, [esp+0x24]

jg ...

if (¬ZF∧(OF=SF)) goto ... × ×

p. 27/34

¹ Experiments

Outline

¶ Introduction

· Standard solutions and drawbacks

¸ Template-based conditions recovery

¹ Experiments

º Conclusion

p. 28/34

¹ Experiments

BINSEC Platform Overview

p. 29/34

¹ Experiments

BINSEC Platform Overview

p. 29/34

• Front-end [loader, decoder, disassembly, simplifications]
• Simulator
• Generic static analyzer
• Dynamic Symbolic Execution [ISSTA16, SANER16, BlackHatEU16]

• Developed in OCaml [≈50 000 loc] [TACAS 2015]
• Within the BINSEC project [CEA, IRISA, LORIA, Univ-Genoble]

¹ Experiments

BINSEC Platform Overview

p. 29/34

Open source and available at : http://binsec.gforge.inria.fr/tools.html

Static analysis
• Generic fixpoint computation
• Sound CFG recovery
• Precision recovery via SMT solvers
• Dedicated domains to binary code
• High-level condition recovery

¹ Experiments

Experiments (1)

progs #loc
†

#cond
‡

#success
⋆

#fail time timeall

(s) (s)

firefox 21488 150 (137) 134 ∣ 89% (98%) 16 1.40 55.91
cat 6490 132 (125) 116 ∣ 88% (92%) 16 1.08 259.24
chmod 8954 183 (172) 159 ∣ 87% (92%) 24 1.44 313.17
cp 67199 174 (162) 152 ∣ 87% (94%) 22 4.79 346.84
cut 7358 148 (138) 132 ∣ 89% (96%) 16 1.16 211.73
dir 9732 137 (126) 118 ∣ 86% (94%) 19 1.26 201.67
echo 8016 190 (182) 168 ∣ 88% (92%) 22 1.43 274.60
kill 6911 142 (133) 125 ∣ 88% (94%) 17 1.17 209.79
ln 88837 203 (185) 177 ∣ 87% (96%) 26 4.88 531.58
mkdir 6347 125 (117) 109 ∣ 87% (93%) 16 1.01 235.80
Verisec 11552 394 (370) 370 ∣ 87% (100%) 24 3.31 34.48

total 242884 1978 (1847) 1760 ∣ 89% (95%) 218 22.93 2674.81

† : number of analysed instructions only
‡

: total number of conditions (resp. high-level conditions). DF, PF and x&y = 0 are not considered high-level.
⋆

: total number of successfully recovered conditions, ratio w.r.t. total number of conditions (resp. high-level
conditions)

p. 30/34

¹ Experiments

Experiments (1)

progs #loc
†

#cond
‡

#success
⋆

#fail time timeall

(s) (s)

firefox 21488 150 (137) 134 ∣ 89% (98%) 16 1.40 55.91
cat 6490 132 (125) 116 ∣ 88% (92%) 16 1.08 259.24
chmod 8954 183 (172) 159 ∣ 87% (92%) 24 1.44 313.17
cp 67199 174 (162) 152 ∣ 87% (94%) 22 4.79 346.84
cut 7358 148 (138) 132 ∣ 89% (96%) 16 1.16 211.73
dir 9732 137 (126) 118 ∣ 86% (94%) 19 1.26 201.67
echo 8016 190 (182) 168 ∣ 88% (92%) 22 1.43 274.60
kill 6911 142 (133) 125 ∣ 88% (94%) 17 1.17 209.79
ln 88837 203 (185) 177 ∣ 87% (96%) 26 4.88 531.58
mkdir 6347 125 (117) 109 ∣ 87% (93%) 16 1.01 235.80
Verisec 11552 394 (370) 370 ∣ 87% (100%) 24 3.31 34.48

total 242884 1978 (1847) 1760 ∣ 89% (95%) 218 22.93 2674.81

† : number of analysed instructions only
‡

: total number of conditions (resp. high-level conditions). DF, PF and x&y = 0 are not considered high-level.
⋆

: total number of successfully recovered conditions, ratio w.r.t. total number of conditions (resp. high-level
conditions)

p. 30/34

Conclusion

• Low overhead, 1% in average (column time vs timeall)

• Large part of high-level conditions recovered

• Templates are generic, sound and fully automatic

¹ Experiments

Experiments (2)

method #loc #cond #success #fail time timeall

templates 242884 1978 1760 (89%) 218 22.93 2674.81
logic-based 247894 2260 694 (31%) 1566 0.003 2561.64
patterns 229255 1987 1357 (68%) 630 0.014 2373.33

templates+patterns 242884 1978 1838 (92%) 140 9.17 2659.95

templates 242884 1978 1760 (89%) 218 29.76 2697.67
w/o cache
templates 242884 1978 1760 (89%) 218 51.13 2726.45
w/o filtering
templates 242884 1978 1760 (89%) 218 66.52 2752.73
w/o cache, filtering

Conclusion
• Templates achieve significantly better results
• Templates have affordable extra cost
• Optimizations allow to win a factor 3x on average
• Templates can be fruitfully combined with patterns

p. 31/34

¹ Experiments

Fun application!

cmp eax ebx

cmc

jae ...

CF := (eax<uebx)

CF := ¬CF
if (¬CF) goto ...

○ Standard pattern :
cmp eax ebx ⟶ if(eax ⩾u ebx) goto ...

jae ...

○ The true semantic : if (eax <u ebx) goto ...

patterns templates

× ✓

p. 32/34

º Conclusion

Outline

¶ Introduction

· Standard solutions and drawbacks

¸ Template-based conditions recovery

¹ Experiments

º Conclusion

p. 33/34

º Conclusion

Conclusion

○ Template-based recovery : a sound and generic technique

○ Performs significantly better than state-of-the-art approaches

○ Helps to adapt analyses from source-level to binary-level

○ Can be useful for reverse engineering

○ Implemented in BinSec : [http ://binsec.gforge.inria.fr/tools.html]

p. 34/34

Questions ?

p. 35/34

	. Introduction
	Outline
	Binary code analysis: Why?
	Binary code analysis: Why?
	Challenges of binary code analysis (1)
	Challenges of binary code analysis (2)
	Challenges of binary code analysis (2)
	Challenge: High-level condition recovery
	PowerPC translation example
	X86 translation example
	Problem with formal approaches
	Goal & achievements

	. Standard solutions and drawbacks
	Outline
	Logic-based recovery (1)
	Logic-based recovery (2)
	Logic-based recovery (2)
	Logic-based recovery (2)
	Logic-based recovery (2)
	Logic-based recovery (2)
	Logic-based recovery (2)
	Logic-based recovery (2)
	Logic-based recovery (3)
	Logic-based recovery (3)
	Logic-based recovery (3)
	Logic-based recovery (3)
	Example
	Example
	Natural high-level predicate
	Natural high-level predicate
	Pattern-based recovery (1)
	Pattern-based recovery (2)
	Non-standard examples
	Summary & proposal
	Summary & proposal

	. Template-based conditions recovery
	Outline
	Example
	Template-based recovery (1)
	Template-based recovery (2)
	Template-based recovery (2)
	Template-based recovery (2)
	Optimization 1: Normalization cache
	Optimization 1: Normalization cache
	Optimization 1: Normalization cache
	Optimization 1: Normalization cache
	Optimization 2: Templates filtering
	Tricky examples

	. Experiments
	Outline
	BINSEC Platform Overview
	BINSEC Platform Overview
	BINSEC Platform Overview
	Experiments (1)
	Experiments (1)
	Experiments (2)
	Fun application!

	. Conclusion
	Outline
	Conclusion

	Annexe

