DE LA RECHERCHE A L'INDUSTRIE

Recovering high-level
conditions from binary

programs

09/11/2016
FM 2016

Adel Djoudi
Sébastien Bardin
Eric Goubault

www.cea.fr

wiuis digiteo Llist

@ Introduction

Outline

@ Introduction

® Standard solutions and drawbacks

® Template-based conditions recovery

® Experiments

® Conclusion

Llist p. 2/34

Llist

o=
‘;IIF.v..-’

L?

001011010101
100010101101
010110101010
001011010101
100010101101
100010101101
010110101010

@ Introduction

Binary code analysis

source code

binary code

source analysis

XProprietary software
XAnalysis of malware
X Compiler independent
XMulti-languages progs

binary analysis

/ Proprietary software
/ Analysis of malware
/ Compiler independent
/ Multi-languages progs

p. 3/34

@ Introduction

Binary code analysis

F- source analysis
- -
source code XProprietary software
i 4 XAnalysis of malware
[] XCompiler independent
s XMulti-languages progs
Data Types| If...then...else
While, for, until \Var names|
Jump targets| |Functions
\ . .
001011010101 binary analysis
100010101101
010110101010 / Proprietary software
001011010101 bi d / Analvsis of mal
100010101101 Inary coae MELPATE CIFIMELNETRS
100010101101 / Compiler independent
010110101010

/ Multi-languages progs

Llist

p. 3/34

@ Introduction

Challenges of binary

90b8 5400 9000 S5dc3

Entry point

aoee

c645

48bf

ebp fcon

mov ebp,.esp fcea
mov ds:0x80ebf48,0x1 0600

mov eax,ds:0xB0ebfds fre1
cmp eax,0x9 fcoe
ja 80490f6 0100

c645
feee
fcee
feeo
oiee
. c645
fdee 750f c7e5 48bf
0000 0oes dfeo 0ee0

mov eax, [eax*4+0x80bel48]
jmp eax

code analysis (1)

5589 e5c7 8548 bfee
0000 5dc3 5589 e5c7
00bB8 4500 0000 S5dc3

BBce 45fa
00e9 d901 0080 c645

7d
Code or Data ? ;‘;
oo r

0000 e58BE 0180 ©b0ed
c645 fBEO c645 f9ee
740f c705 48bf @e0dB
00e9 5901 0000 c645
f900 c645 fab3 BO7d
750a c785 4Bbf @eds
750a c785 48bf @ed8
740f c705 48bf @ed8
B0e% 0501 00BO c645
fo01 c645 fa@l BO7d
OeDB 0400 D0DDO eY9ed
c645 f701 c645 feee

p. 4/34

@ Introduction

Challenges of binary code analysis (

(O Low-level semantics of data

o Machine arithmetic, bit-level operations
o Systematic usage of untyped memory [big array]
Difficult for current formal techniques

(O Low-level semantics of control

o No clear distinction data/instructions
o Dynamic jumps (jump eax)
No easy syntactic recovery of CFG

(O Diversity of architectures and instruction sets

o Too many instructions (ex. X86, = 900 instructions)
o Modeling issues : side effect, addressing mode, ...
No platform independent concise formalism

Llist p. 5/34

@ Introduction

Challenges of binary code analysis (2)

Nice progress since 2004
(O Low-level semantics of data

o Machine arithmetic, bit-level operations
o Systematic usage of untyped memory [big array]
Difficult for current formal techniques REIL [Zynamics]
BIL [CMU]
DBA [CEA, LaBRI]
RREIL [TUM] ...

Intermediate la

(O Low-level semantics of control

o No clear distinction data/instructions
o Dynamic jumps (jump eax)

No easy syntactic recovery of CFG CodeSurfer/x86 [GrammaTech]
Jakstab [TU Miinchen]

CFGBuilder [CEA]

| \

CFG recovery

(O Diversity of architectures and instruction sets
o Too many instructions (ex. X86, = 900 instructions) Tesis EETEEE
o Modeling issues : side effect, addressing mode, ... SAGE [Microsoft]

No platform independent concise formalism OSMOSE [CEA]
Mayhem [ForAllSecure]

| \,

Llist p. 5/34

@ Introduction

Challenge : High-level condition recovery

() High-level conditions translated into low-level
flag predicates

If ... then ... else

() Conditional jumps depend on flags and not
directly on registers

(O Serious problem for formal analysis

o abstract interpretation : precision
o symb exec : solving cost

Llist p. 6/34

@ Introduction

PowerPC translation example

if (ax > bx) X = -1; CRL := (ax < bx)
1 X =1: CR.G := (ax > bx)
eLse - ’ CR.E := (ax = bx)
if (CR-G) goto 11
X :=1
goto 12
11: X :=-1
12:
compilation
disassembly
cmpd ax, bx
bg 11
1i X, 1
b 12
11: 1i X, -1
12: Easy with relation propagation [folklore]

Llist p.7/34

@ Introduction

X86 translation example

if (ax > bx) X = -1; OF := ((ax{31,31}#bx{31,31}) &
o (ax{31,31}# (ax-bx) {31,31}));
else X = 13 SF := (ax-bx) < 0;
ZF := (ax-bx) = 0;
if (= ZF A (OF = SF)) goto 11
X:=1
goto 12
11: X :=-1
12:
compilation
disassembly

cmp ax, bx

jg 11
mov X, 1
jmp 12
11: mov X, -1
12: The real difficulty

Llist p. 8/34

@ Introduction

Problem with formal approaches

4: cmp x 100; | ZF := (x=100) x> T
5: je a; if (ZF) then goto a | x,ZF » T,[0,1]
a:... x,ZF — T,[1,1]

Condition evaluation does not allow operand refinement

Problem with symbolic execution also

Llist p. 9/34

@ Introduction

Goal & achievements

Goal : Source-level like reasoning

- through high-level condition recovery

"> \what we want : sound, generic, precise in practice

"> template-based condition recovery
"> implementation in BINSEC/VA

= other binary-level tricks [see the paper]

A\

A\,

Applications

"> formal methods : abstract interpretation, symbolic execution
"> help the reverse engineering
Llist p. 10/34

@ Standard solutions and drawbacks

Outline

@ Introduction

® Standard solutions and drawbacks

® Template-based conditions recovery

® Experiments

® Conclusion

Llist p.11/34

@ Standard solutions and drawbacks

Logic-based recovery (1)

4: cmp x 100; | ZF := (x=100)
5: je a; if (x=100) then goto a

x> T
x> T

x +— [100,100]

() ldea : flag predicate = operand predicate

- ?
() Problem : flag predicate <= operand predicate

() Solution :

o use abstract interpretation to propagate flag expressions
o substitute flags by corresponding expressions at conditions
o simplify conditions to recover operand predicates

[folklore] solution Generic & sound in simple cases only

Llist

p. 12/34

Llist

@ Standard solutions and drawbacks

Logic-based recovery (2)

4: cmp x 100; | ZF := (x=100)
5: je a; if (x=100) then goto a

x— T
x> T

x ~ [100,100]

ZF o T
ZF — (x = 100)

ZF v (x = 100)

() Abstract domain D¥ 2 Flag — Expr

p. 13/34

@ Standard solutions and drawbacks

Logic-based recovery (2)

4: cmp x 100; | ZF := (x=100) x> T ZF —» T
5: je a; if (x=100) then goto a | x+ T ZF ~ (x = 100)

x - [100,100] | ZF — (x = 100)

() Abstract domain D¥ 2 Flag — Expr

() Propagation

flag := e;
X =€
flag := e3

p. 13/34

List

@ Standard solutions and drawbacks

Logic-based recovery (2)

4: cmp x 100; | ZF := (x=100)
5: je a; if (x=100) then goto a

x— T
x> T

x ~ [100,100]

ZF o T
ZF — (x = 100)

ZF v (x = 100)

() Abstract domain D¥ 2 Flag — Expr

() Propagation

flag 1= e; flag = e
X =€
flag := e3

List

p. 13/34

@ Standard solutions and drawbacks

Logic-based recovery (2)

4: cmp x 100; | ZF := (x=100)
5: je a; if (x=100) then goto a

x— T
x> T

x ~ [100,100]

ZF o T
ZF — (x = 100)

ZF v (x = 100)

() Abstract domain D¥ 2 Flag — Expr

() Propagation

flag 1= e; flag = e
X = e flag = T if (x e* e)
flag := e3

List

p. 13/34

@ Standard solutions and drawbacks

Logic-based recovery (2)

4: cmp x 100; | ZF := (x=100)
5: je a; if (x=100) then goto a

x— T
x> T

x ~ [100,100]

ZF o T
ZF — (x = 100)

ZF v (x = 100)

() Abstract domain D¥ 2 Flag — Expr

() Propagation

flag 1= e; flag = e
X = e flag = e
flag := e3

List

p. 13/34

@ Standard solutions and drawbacks

Logic-based recovery (2)

4: cmp x 100; | ZF := (x=100) x> T ZF —» T
5: je a; if (x=100) then goto a | x+ T ZF ~ (x = 100)

x - [100,100] | ZF — (x = 100)

() Abstract domain

() Propagation

flag := e;
X =€
flag := e3

List

D¥ 2 Flag — Expr

flag — e
flag — e
flag = T if (e # €3)

flag — e3

p. 13/34

@ Standard solutions and drawbacks

Logic-based recovery (2)

4: cmp x 100; | ZF := (x=100) x> T ZF —» T
5: je a; if (x=100) then goto a | x+ T ZF ~ (x = 100)
a: x + [100,100] | ZF ~ (x = 100)

() Abstract domain

() Propagation

flag := e;
X =€
flag := e3

List

D¥ 2 Flag — Expr

flag — e
flag — e
flag = e;

flag — e3

p. 13/34

@ Standard solutions and drawbacks

Logic-based recovery (3)

() Usage (at conditional instruction)

flag := e flag - e

X = e flag = e;
if (flag)... flag — T
flag := e3 flag — e3

Llist p.14/34

@ Standard solutions and drawbacks

Logic-based recovery (3)

() Usage (at conditional instruction)

flag := e flag - e

X = e flag = e;
if (flag)... flag — T do nothing!
flag := e3 flag — e3

Llist p.14/34

@ Standard solutions and drawbacks

Logic-based recovery (3)

() Usage (at conditional instruction)

flag := e flag - e

X = e flag = e;

if (rewrite(ey))... flag = e
flag := e3 flag — e3

Llist p.14/34

@ Standard solutions and drawbacks

Logic-based recovery (3)

() Usage (at conditional instruction)

flag 1= e; flag = e

X = e flag = e;

if (rewrite(ey))... flag = e

flag := e3 flag — e3
Problem solved ! Not yet... J

Llist p.14/34

@ Standard solutions and drawbacks

Example

4: cmp x y; | OF := ((x{31,31}#y{31,31}) & x,y + [0,11],[10,20]
(x{31,31}# (x-y){31,31}));

SF := (x-y) < 0;

ZF := (x-y) = 0;

5: jg a; if (= ZF A (OF = SF)) then goto a | x,y ~ [0,11],[10,20]

ai... x,y ~[0,11],[10,20]

?
~(x-y = 0) A ((x(a1,31}=¥{31,31)) & (xqa1,313=(x=y) (31,31})) = (x-y<0) <
x>y

Llist p. 15/34

@ Standard solutions and drawbacks

Example

4: cmp x y; | OF := ((x{31,31}#y{31,31}) & x,y + [0,11],[10,20]
(x{31,31}# (x-y){31,31}));

SF := (x-y) < 0;

ZF := (x-y) = 0;

5: jg a; if (= ZF A (OF = SF)) then goto a | x,y = [0,11],[10,20]

ai... x,y ~[0,11],[10,20]

Relation propagation does not help

?
~(x-y = 0) A ((x(a1,31}=¥(31,31})) & (xqa1,313=(x=y) (31,31})) = (x-y<0) <
x>y

List

p. 15/34

@ Standard solutions and drawbacks

Natural high-level predicate

4: cmp x y; | OF := ((x{31,31}#y{31,31}) & x,y + [0,11],[10,20]
(x{31,31}#(x-y) {31,31}));
SF := (x-y) < 0;
ZF := (x-y) = 0;
5: jg a; if (x > y) then goto a x,y + [0,11],[10,20]
a:... x,y +~[11,11],[10,10]

() ldea : flag predicate = natural operands predicate

() Problem :

o only simple high-level predicates can be handled by
non-relational abstract domains

o complex flag predicates can hide simple high-level predicates

Llist p. 16/34

@ Standard solutions and drawbacks

Natural high-level predicate

4: cmp x y; | OF := ((x{31,31}#y{31,31}) & x,y + [0,11],[10,20]
(x{31,31}#(x-y) {31,31}));
SF := (x-y) < 0;
ZF := (x-y) = 0;
5: jg a; if (x > y) then goto a x,y + [0,11],[10,20]
a:... x,y +~[11,11],[10,10]

() ldea : flag predicate = natural operands predicate

() Problem : — ,
o only sim EXIStIng solutions e handled by
non-rela Flag patterns
o complex Virtual flags e high-level predicates

Llist p. 16/34

@ Standard solutions and drawbacks

Pattern-based recovery (1)

() Depend on operations cmp / sub / test and their use
() Possible to ensure soundness

() Rely on decoding information

Sound, precise but architecture specific

Compilers may use their own patterns

list p. 17/34

@ Standard solutions and drawbacks

Pattern-based recovery (2)

High level predicates for conditional jump instructions (x86) !

flag predicate cmp Xy sub x y test x y
predicate predicate 2 predicate
ja, jnbe ~CF A —~ZF X >y y x #0 x&y #0
jae, jnb, jnc -CF X2uy true true
jb, jnae, jc CF X<yy x' %0 false
jbe, jna CF v ZF X<,y true x&y =0
je, jz ZF xX=y x =0 x&y =0
jne, jnz -ZF Xty X' #0 x&y # 0
jg, jnle ~ZF A (OF = SF) x>y x >0 (x&y # 0)A
(x=0vy=0)
jge, jnl (OF = SF) xzy true (x=0vy=0)
jl, jnge (OF + SF) X<y x' <0 (x<0Ay<0)
jle, jng ZF v (OF + SF) X<y true (x&y =0)v
(x<0Ay<0)

1. G. Balakrishnan, T. Reps : WYSINWYX : What You See Is Not What You eXecute
2. X' =x-y
3. CF = OF = False

p. 18/34

@ Standard solutions and drawbacks

Non-standard examples

example retrieved condition patterns
or eax, O if (eax = 0) then goto ... X

je ...

cmp eax, 0 if (eax = 0) then goto ... X
jns ...

sar ebp, 1 if (ebp = 0) then goto ... X

je ...

dec ecx if (ecx = 0) then goto ... X

jig ...

How many necessary patterns ?

Llist p. 19/34

@ Standard solutions and drawbacks

Summary & proposal

Approach archi. Sound Complete
independent enough

Patterns X v /X v /X

Logic-based v v X

Llist p. 20/34

@ Standard solutions and drawbacks

Summary & proposal

Approach archi. Sound Complete
independent enough
Patterns X v /X v /X
Logic-based v v X
Template-based v v v

Template-based approach

B direct extension of logic-based approach

B may combine with patterns (better recovery, speed)

Llist

p. 20/34

©® Template-based conditions recovery

Outline

@ Introduction

® Standard solutions and drawbacks

® Template-based conditions recovery

® Experiments

® Conclusion

List p. 21/34

©® Template-based conditions recovery

Example

4: cmp x y; | OF := ((x{31,31}#y{31,31}) & x,y — [0,11],[10,20]
(x{31,31}#(x-y){31,31}));

SF := (x-y) < 0;

ZF := (x-y) = 0;

5: jg a; if (= ZF A (OF = SF)) then goto a | x,y +~ [0,11],[10,20]

a:... x,y ~[0,11],[10,20]

?
~(x-y = 0) A ((x(a1,31}=y(31,31}) & (xqa1,313=(x=y) (31,31})) = (x-y<0) <

x>y

Llist p.22/34

©® Template-based conditions recovery

Template-based recovery (1)

Abstract domain |D¥ 2 Flag — Expr

Propagation : same as in logic-based approach

(O Complex predicates often hide simple predicates

(O Only a few templates : >, .. <, s, 2,¢. <ys, = #
(O Try to find the appropriate one through equivalence checking
(O Optimization :

o Do it only once per loc (cache)

o Cheap pruning through filtering

Llist p. 23/34

©® Template-based conditions recovery

Template-based recovery (2)

() Usage at condition : cond

() Retrieve potential operands : x and y from cond

flag := cond flag — cond
x:i=e flag — cond

if (flag)... flag —» T
flag := cond flag — cond

() Assert the equivalence of cond with :

cond & x >, y cond & x <, y cond & x =,y cond & x <, y
cond & x >y cond & x <y cond & x =2y cond & x <y
cond & x =y cond & x # y st X, ¥ Esyntax cond

() If no assertion is satisfied then do nothing

Llist p.24/34

©® Template-based conditions recovery

Template-based recovery (2)

() Usage at condition : cond

() Retrieve potential operands : x and y from cond

flag := cond flag — cond
x:i=e flag — cond

if (flag)... flag— T do nothing!
flag := cond flag — cond

() Assert the equivalence of cond with :

cond & x >, y cond & x <, y cond & x =,y cond & x <, y
cond & x >y cond & x <y cond & x =2y cond & x <y
cond & x =y cond & x # y st X, ¥ Esyntax cond

() If no assertion is satisfied then do nothing

Llist p.24/34

©® Template-based conditions recovery

Template-based recovery (2)

() Usage at condition :

cond

() Retrieve potential operands : x and y from cond

flag := cond
X:i=e

if (template(cond))...

flag := cond

() Assert the equivalence

cond & x >, y cond
cond & x >y cond
cond & x =y cond

flag — cond
flag — cond
flag — cond

flag — cond

of cond with :

= x <,y cond & x 2,y cond & x <,y
= x <y cond & x =2y cond & x <y
S X FY st. X, ¥ Esyntax cond

() If no assertion is satisfied then do nothing

Llist

p. 24/34

©® Template-based conditions recovery

Optimization 1 : Normalization cache

() Low-level condition saved in the cache at address a together
with the retrieved high-level condition

() If the same condition at the same address a is met later in the
analysis, the saved high-level condition can be safely reused

flag := cond flag — cond
x:i=e flag — cond

if (template(cond))... flag — cond (cond, template(cond))
flag := cond flag — cond

Llist p. 25/34

©® Template-based conditions recovery

Optimization 1 : Normalization cache

() Low-level condition saved in the cache at address a together
with the retrieved high-level condition

() If the same condition at the same address a is met later in the
analysis, the saved high-level condition can be safely reused

flag := cond flag — cond'

x:i=e flag — cond'
if(flag)... flag — cond' (cond, template(cond))

flag := cond flag — cond'

Llist p. 25/34

©® Template-based conditions recovery

Optimization 1 : Normalization cache

() Low-level condition saved in the cache at address a together
with the retrieved high-level condition

() If the same condition at the same address a is met later in the
analysis, the saved high-level condition can be safely reused

flag := cond flag — cond'
x:i=e flag — cond'

if (template(cond))... flag — cond' (cond, template(cond))
flag := cond flag — cond'

If cond = cond'

Llist p. 25/34

©® Template-based conditions recovery

Optimization 1 : Normalization cache

() Low-level condition saved in the cache at address a together
with the retrieved high-level condition

() If the same condition at the same address a is met later in the
analysis, the saved high-level condition can be safely reused

flag := cond flag — cond'
x:i=e flag — cond'

if (template(cond"))... flag — cond' (cond', template(cond'))
flag := cond flag — cond'

Llist p. 25/34

©® Template-based conditions recovery

Optimization 2 : Templates filtering

() Substitute operands in cond with special values

() Evaluate cond to eliminate obvious impossible predicates

?
-(x-y = 0) A ((X{31,31}=Y{31,31}) & (X{31,31}=(X‘Y){31,31})) = (x-y<0) = x oy

Eval 1 : cond[0/x, 0/y]=0= ¢ ¢ {=,<,<,,2,>,}
Eval 2 : cond[0/x, 1/y]=0= ¢ & {#,<,<,}
Eval 3 : cond[0/x,-1/y]=1= o ¢ {>,}

Llist p. 26/34

s

©® Template-based conditions recovery

Tricky examples

example retrieved condition patterns templates
or eax, 0 if (eax = 0) then goto ... X v
je ...

cmp eax, 0 if (eax 2 0) then goto ... X v
jns ...

sar ebp, 1 if (ebp = 0) then goto ... X v
je ...

dec ecx if (ecx 2 0) then goto ... X v
jg .-

add ecx, Oxfffefefe if (ecx = Oxfffefefe) goto ... X v
jae ...

test al, 0x8 if ((al & 0x8) # 0) goto ... v X
jne ...

stos [edi],eax if (DF) goto ... X X
and edx, eax if (PF) goto ... X X
jp ...

shr ecx, 1 if (=CF) goto ... X X
jae ...

cmp [esp+0x64],eax if (=ZFA(OF=SF)) goto ... X X

mov eax, [esp+0x24]

ig ...

p. 27/34

@ Experiments

Outline

@ Introduction

® Standard solutions and drawbacks

® Template-based conditions recovery

® Experiments

® Conclusion

Llist p. 28/34

@ Experiments

BINSEC Platform Overview

(r)

Simulation:

Loader - Flat, regions, low-level
DBA regions semantics

<:> - Dynamic disassembly <‘,:| DBA
Stub

 Decoder + Static analysis:
inst-level and
block-level

simplification - Generic fixpoint comp.

- CFG recovery

Disassembler

* p;zg;;]m- - (closed/degraded mode)
simplification (N)
Path DSE
selector

r
.

list p.29/34

@ Experiments

BINSEC Platform Overview

e Front-end [loader, decoder, disassembly, simplifications]

e Simulator

o Generic static analyzer

e Dynamic Symbolic Execution [ISSTA16, SANER16, BlackHatEU16]

Loader - Flat, regions, low-level
DBA regions semantics

<;:\l> - Dynamic disassembly <:| DBA
. ’ Stub

Static analysis:

Decoder +
inst-level and
block-level
simplification

- Generic fixpoint comp.
- CFG recovery
- (closed/degraded mode)

Path
selector
PINSEC K&)

e Developed in OCaml [=50 000 loc] [TACAS 2015]
o Within the BINSEC project [CEA, IRISA, LORIA, Univ-Genoble]

Disassembler
+ program-
level
simplification

Llist p. 29/34

@ Experiments

BINSEC Platform Overview

Static analysis

e Generic fixpoint computation f - - \
Simulation:
e Sound CFG recovery
e Precision recovery via SMT solvers - Flat, regions, low-level
e Dedicated domains to binary code DBA R SEmETES
q . - Dynamic disassembly <:| DBA
e High-level condition recovery
Static analysis: Stub

inst-level and
block-level
simplification

- Generic fixpoint comp.
- CFG recovery

Disassembler

* p;ggg;]m- - (closed/degraded mode)
simplification (. N)
Path e ol pse
N selector
\. J
PINSEC (- [>
SMT,

\ _

Open source and available at : http://binsec.gforge.inria.fr/tools.html

Llist p. 29/34

@ Experiments

Experiments (1)

progs #IocT #condi #success” F#fail time time,y

(s) (s)
firefox 21488 150 (137) | 134 | 89% (98%) 16 1.40 55.91
cat 6490 132 (125) | 116 | 88% (92%) 16 | 1.08 259.24
chmod 8954 183 (172) | 159 | 87% (92%) 24 1.44 313.17
cp 67199 174 (162) | 152 | 87% (94%) 22 | 479 346.84
cut 7358 148 (138) | 132 | 89% (96%) 16 1.16 211.73
dir 9732 137 (126) | 118 | 86% (94%) 19 | 1.26 201.67
echo 8016 190 (182) | 168 | 88% (92%) 22 1.43 274.60
kill 6911 142 (133) | 125 | 88% (94%) 17 1.17 209.79
In 88837 203 (185) | 177 | 87% (96%) 26 4.88 531.58
mkdir 6347 125 (117) | 109 | 87% (93%) 16 1.01 235.80
Verisec 11552 394 (370) | 370 | 87% (100%) 24 3.31 34.48

[total | 242884 [1978 (1847) | 1760 [89% (95%) [218 | 22.93][2674.81 |

t : number of analysed instructions only

1

* . total number of successfully recovered conditions, ratio w.r.t. total number of conditions (resp. high-level
conditions)

: total number of conditions (resp. high-level conditions). DF, PF and x&y = 0 are not considered high-level.

Llist p. 30/34

@ Experiments

Experiments (1)

progs #Ioc1L #condi #success” #fail time time,y

(s) (s)
16 | 1.40 55.01

firefox 21488 150 (137) | 134 | 89% (98%)

cat 132 (125) | 116 | 88% (92%)

chm o oL o o0

cp .

St’rt o Low overhead, 1% in average (column time vs time,) [1)123

iCITO o Large part of high-level conditions recovered gggg

I .

In e Templates are generic, sound and fully automatic 31.58

mkdir -35.80

Verisec | 11552 | 394 (370) | 370 [87% (100%) | 24 | 331 [| 34.48
[total | 242884 [1978 (1847) | 1760 [89% (95%) [218 | 22.93][2674.81 |

t : number of analysed instructions only
H

total number of conditions (resp. high-level conditions). DF, PF and x&y = 0 are not considered high-level.
* : total number of successfully recovered conditions, ratio w.r.t. total number of conditions (resp. high-level
conditions)

Llist p. 30/34

@ Experiments

Experiments (2)

‘ method ‘ #loc ‘ #cond ‘ #success ‘ F#fail ‘ time ‘ time,y ‘
templates 242834 1978 | 1760 (89%) 218 | 22.93 || 2674.81
logic-based 247894 2260 694 (31%) | 1566 | 0.003 || 2561.64
patterns 229255 1987 | 1357 (68%) 630 | 0.014 || 2373.33

| templates+patterns | 242884 [1978 | 1838 (92%) | 140 | 9.17 [2659.95 |
templates 242834 1978 | 1760 (89%) 218 | 29.76 || 2697.67
w/o cache
templates 242884 | 1978 | 1760 (89%) | 218 | 51.13 || 2726.45
w/o filtering
templates 242884 1978 | 1760 (89%) 218 | 66.52 || 2752.73

w/o cache, filtering

e Templates achieve significantly better results
e Templates have affordable extra cost
e Optimizations allow to win a factor 3x on average

e Templates can be fruitfully combined with patterns

Llist p. 31/34

@ Experiments

Fun application!

cmp eax ebx CF := (eax<,ebx)
cme CF := =CF
jae ... if (=CF) goto

() Standard pattern :
cmp eax ebx —— if(eax =, ebx) goto
jae ...

() The true semantic : if (eax <, ebx) goto

patterns ‘ templates
x | v

Llist p. 32/34

® Conclusion

Outline

@ Introduction

® Standard solutions and drawbacks

® Template-based conditions recovery

® Experiments

® Conclusion

List p. 33/34

® Conclusion

Conclusion

(O Template-based recovery : a sound and generic technique

(O Performs significantly better than state-of-the-art approaches
(O Helps to adapt analyses from source-level to binary-level

(O Can be useful for reverse engineering

O Implemented in BINSEC : [http ://binsec.gforge.inria.fr/tools.html]

Llist p. 34/34

{Questions ?}

List p. 35/34

	. Introduction
	Outline
	Binary code analysis: Why?
	Binary code analysis: Why?
	Challenges of binary code analysis (1)
	Challenges of binary code analysis (2)
	Challenges of binary code analysis (2)
	Challenge: High-level condition recovery
	PowerPC translation example
	X86 translation example
	Problem with formal approaches
	Goal & achievements

	. Standard solutions and drawbacks
	Outline
	Logic-based recovery (1)
	Logic-based recovery (2)
	Logic-based recovery (2)
	Logic-based recovery (2)
	Logic-based recovery (2)
	Logic-based recovery (2)
	Logic-based recovery (2)
	Logic-based recovery (2)
	Logic-based recovery (3)
	Logic-based recovery (3)
	Logic-based recovery (3)
	Logic-based recovery (3)
	Example
	Example
	Natural high-level predicate
	Natural high-level predicate
	Pattern-based recovery (1)
	Pattern-based recovery (2)
	Non-standard examples
	Summary & proposal
	Summary & proposal

	. Template-based conditions recovery
	Outline
	Example
	Template-based recovery (1)
	Template-based recovery (2)
	Template-based recovery (2)
	Template-based recovery (2)
	Optimization 1: Normalization cache
	Optimization 1: Normalization cache
	Optimization 1: Normalization cache
	Optimization 1: Normalization cache
	Optimization 2: Templates filtering
	Tricky examples

	. Experiments
	Outline
	BINSEC Platform Overview
	BINSEC Platform Overview
	BINSEC Platform Overview
	Experiments (1)
	Experiments (1)
	Experiments (2)
	Fun application!

	. Conclusion
	Outline
	Conclusion

	Annexe

