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Most software analysis techniques focus on bug reachability. However, this approach is not ideal for security

evaluation as it does not take into account the difficulty of triggering said bugs. The recently introduced notion

of robust reachability tackles this issue by distinguishing between bugs that can be reached independently

from uncontrolled inputs, from those that cannot. Yet, this qualitative notion is too strong in practice as it

cannot distinguish mostly replicable bugs from truly unrealistic ones. In this work we propose a more flexible

quantitative version of robust reachability together with a dedicated form of symbolic execution, in order to

automatically measure the difficulty of triggering bugs. This Quantitative Robust Symbolic Execution (QRSE)
relies on a variant of model counting, which allows to account for the asymmetry between attacker-controlled

and uncontrolled variables. While this specific model counting problem has been studied in AI research

fields such as Bayesian networks, knowledge representation and probabilistic planning, its use within the

context of formal verification presents new challenges. We show the applicability of our solutions through

security-oriented case studies, including real-world vulnerabilities such as CVE-2019-20839 from libvncserver.

CCS Concepts: • Security and privacy→ Formalmethods and theory of security; Logic and verification;

Software security engineering; • Theory of computation→ Program reasoning; Program analysis.

Additional Key Words and Phrases: automated verification, static analysis, symbolic execution

1 INTRODUCTION

Context & Problem.Many software analysis problems are reduced to the reachability of a specific

condition, for example local assertions indicating bugs such as buffer overflows or null pointer

dereference. Yet this notion of reachability is too weak for the purpose of vulnerability assessment

as it only proves that the bug exists within a particular context but does not ensure that the latter

can be reliably triggered by an attacker. For example, a bug may require a specific stack base address,

while it is out of the attacker’s control when protections such as ASLR
1
are enabled.

Recent works [Girol et al., 2021, 2022] introduced the stronger notion of robust reachability to

determine whether attackers can reproduce a bug reliably. A bug is robustly reachable if attackers
can choose some program inputs (under their control) that triggers the bug with absolute certainty

regardless of the value of the other input (outside their control). Unfortunately, robust reachability

may be too strong in practice, as it can only highlight bugs for which optimal attackers will obtain

systematic success, while a high-probability success is often sufficient. There is thus a need for a

more nuanced notion of robustness, together with appropriate tooling.

Goal & Challenges. Our work aims to enable quantitative assessment of the success rate of an

attack by developing a quantitative counterpart to robust reachability, similarly to quantitative

information flow [Heusser and Malacaria, 2010] for non-interference [Goguen and Meseguer, 1982]

or to the shift from model checking to probabilistic model checking [Aziz et al., 1996].

Proposal.We split program inputs into attacker-controlled inputs 𝑎 and uncontrolled inputs 𝑥 . We

define quantitative robustness as the maximum proportion of uncontrolled inputs 𝑥 ∈ 𝑋 triggering

the bug with a fixed controlled input 𝑎 ∈ 𝐴.

1
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In this work, we set up the stage for an automated formal treatment of quantitative robustness,

providing formal definition, studying its properties and proposing a bounded-verification algorithm

based on symbolic execution. This algorithm relies on the ability to compute path-wise quantitative

robustness, which is both a counting and an optimization problem, as we need to find the maximum

number of uncontrolled inputs triggering the bug for a fixed controlled input. This underlying

counting problem is thus very different from those commonly used in quantitative verification,

such as model counting [Valiant, 1979] and projected model counting [Aziz et al., 2015]. Still, it

has already been studied for the propositional case in some AI-related fields under the name of

𝑓 -E-MAJSAT [Littman et al., 1998].

Unfortunately, existing solvers [Fremont et al., 2017, Huang, 2006, Lee et al., 2018, Majercik and

Boots, 2005, Pipatsrisawat and Darwiche, 2009] are optimized for specific application domains

(e.g., probabilistic planning), which is often detrimental for our purpose. We thus propose a new

parametric approximate algorithm specially optimized for quantitative robustness.

Contributions. We claim the following contributions:

• We define a quantitative pendant of robust reachability called quantitative robustness

(Section 4), which generalize both reachability and robust reachability. Interestingly, quanti-

tative robustness behaves better on branches than robust reachability, allowing incremental

reasoning. We also discuss the relationship with existing quantitative formalisms such as

probabilistic temporal logics and games;

• We propose Quantitative Robust Symbolic Execution (QRSE) (Section 5), a variant of symbolic

execution for computing quantitative robustness. We show that QRSE does not strictly

require path merging, contrary to robust reachability analysis, re-establishing the traditional

symmetry in deduction power between symbolic execution [Cadar and Sen, 2013] and

bounded model checking [Clarke et al., 2004] which was broken in the case of robust

reachability;

• We propose a method reducing path-wise quantitative robustness with finite variable

domains (e.g., bitvectors and arrays) to 𝑓 -E-MAJSAT (Section 6), a counting problem

studied in some sub-fields of AI. As off-the-shelf methods turn out to be too inefficient or

imprecise for our purposes, we introduce a novel parametric algorithm allowing to tune the

trade-off between precision and performance via a novel (approximated) technique we call

relaxation (Section 7.3);

• We have implemented these ideas in two tools: BINSEC/QRSE and the Popcon solver

(Section 8). First experiments on security-oriented case studies (including real-world vul-

nerabilities such as CVE-2019-20839 from libvncserver) demonstrate that QRSE enables

fine-grained bug triage compared with symbolic execution and robust symbolic execution,

and that relaxation solves more problems arising from QRSE than prior techniques while

minimizing approximation.

Quantitative robustness is a new approach to assess the replicability of a bug, offering better

flexibility than its qualitative counter part. We believe this is an interesting step toward security-

relevant quantitative program analysis. Surprisingly, while quantitative robustness possibly opens

new opportunities for formal methods in security analysis, it also draws new connections with

notions originating from different fields of AI.

2 MOTIVATING EXAMPLE

Consider Figure 1, a case of two network servers incorrectly using uninitialized memory to

determine the privileges of clients, loosely inspired by a vulnerability in the doas sudo-like
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command (CVE-2019-15900). Whether a client can perform a sensitive operation depends on

a privilege_level which is accessed through the get_privilege_level getter. We want to

analyze a bug causing this getter to incorrectly return uninitialized memory.

/* main privilege levels */

#define DEFAULT_LEVEL 1

#define OPERATOR_LEVEL 100

#define ADMIN_LEVEL 9000

/* commands */

#define DROP_PRIVILEGE 0

#define DROP_PRIVILEGE_LEGACY 1

#define GET_VERSION 2

#define SUDO 3

uint32_t uninit; /* random data */

uint32_t privilege_level = DEFAULT_LEVEL;

void set_privilege_level(uint32_t new) {

privilege_level = new;

}

uint32_t get_privilege_level () {

// bug: return uninitialized memory

return uninit;

}

void prog1(uint32_t command , uint32_t argument) {

if (command == GET_VERSION) {

/* harmless */

} else {

/* command is sudo */

if (get_privilege_level () == OPERATOR_LEVEL) {

set_privilege_level(ADMIN_LEVEL );

}

}

}

void prog2(uint32_t command , uint32_t argument) {

switch (command) {

case GET_VERSION: /* harmless */ break;
case DROP_PRIVILEGE:

case DROP_PRIVILEGE_LEGACY:

if (argument <get_privilege_level ()) {

set_privilege_level(argument );

}

}

}

Fig. 1. prog1 and prog2 are both vulnerable, but the second more than the first

We consider network attackers who can send one request under the form of a pair (command,
argument) passed to either prog1 or prog2 depending on the version of the server. They cannot

influence other parameters, most notably uninitialized memory uninit.
Can attackers obtain an equal or greater privilege level than ADMIN_LEVEL by submitting a carefully

chosen command and argument?

prog1: happens when the formula 𝑓1 ≜ command ≠ 2 ∧ uninit = 100 is satisfied.

prog2: same with 𝑓2 ≜ command ∈ {0, 1} ∧ 9000 ≤ argument < uninit.

In prog1, when attackers play perfectly by choosing command = 1, they need to be lucky: only one

value of uninit out of 232 lets them win. However in prog2, for command = 1 and argument = 9000

more than 99% of the values that uninit can take will let attackers achieve their goal. Our goal is

to develop a method which allows to automatically recognize this fact.

Qualitative Methods. Traditional bug finding techniques based on standard reachability, such as

symbolic execution [Schwartz et al., 2010] or bounded model checking [Biere et al., 2003], are of

little use here, as both attacks are reachable, i.e. 𝑓1 and 𝑓2 both admit at least one solution. On the

other hand, robust reachability [Girol et al., 2021, 2022] requires that the attack always works for at

least one controlled input: ∃command, argument.∀uninit. 𝑓𝑥 . In this case it is too strict as neither

prog1 nor prog2 satisfy it. Overall, qualitative methods based on either standard reachability or

robust reachability cannot distinguish between the two attacks.

Standard Model Counting.Where these qualitative techniques fail to distinguish both vulnerabil-

ities, a more quantitative one may bear fruit. For example, we can compare the number of solutions

of 𝑓1 and 𝑓2, or rather their density in a search space of size 2
96
. This is reminiscent of probabilistic

symbolic execution [Geldenhuys et al., 2012]. For 𝑓1, this density is
(232−1)×232

2
96

≃ 2.3 · 10−10, and for
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𝑓2 it is
(232−9001) (232−9000)

2
96

≃ 2.3 · 10−10. Unfortunately, these values are very close, and worse, they

compare in order opposite to what we expect: 𝑓1 > 𝑓2.

Our Approach. The missing ingredient here is to take into account the threat model: in the worst

case attackers will choose the best possible input, i.e. command = 1 and argument = 9000, but they

cannot influence the value of uninit. We need to compute the number of solutions for the value

of command and argument most favorable to attackers:

prog1 max

command
argument

|{uninit | 𝑓1}| = |{100}| = 1 (1)

prog2 max

command
argument

|{uninit | 𝑓2}| = | [9001; 232 − 1] | = 2
32 − 9001 (2)

These numbers can be compared fairly as the search space has the same size (2
32
). In the general

case we will consider a proportion of inputs, which we call quantitative robustness. Quantitative
robustness does align with our intuition: it is low (2.3 · 10−10) for prog1 but high (∼ 0.9999979043)

for prog2, showing that the attack on prog2 is much more replicable that the one on prog1.
The problem on boolean formulas in eqs. (1) and (2) is known as 𝑓 -E-MAJSAT [Littman et al.,

1998]. A few dedicated solvers have been developed in the AI community but, although some of

them [Huang, 2006, Majercik and Boots, 2005] can obtain eq. (1) in a few seconds, none we have

tried could obtain eq. (2) even at the price of reasonable approximation.

Taking inspiration from existing knowledge-compilation based algorithms, we propose a new

technique called relaxation that offers an interesting trade-off between performance and precision.

Coupling this solver with a quantitative variant of symbolic execution, we are able to automatically

estimate the quantitative robustness of the two programs. For prog2we obtain that the quantitative

robustness of privilege escalation is comprised between 0.9963 and 1 in about 1 second. This is

enough to conclude that there are many more initial states that let attackers exploit the vulnerability

in prog2 than in prog1. We interpret this as a sign that this bug is likely more severe in prog2
than in prog1.

Conclusion. Qualitative program analysis techniques based on reachability and robust reachability

cannot distinguish prog1 from prog2, whereas in practice attackers have many more opportunities

to trigger the bug in prog2. Quantitative robustness clearly discriminates between the two, but this

is not only because it is quantitative. Compared to probabilistic symbolic execution [Geldenhuys

et al., 2012], quantitative robustness fits security contexts better by using a variant of model counting

which can distinguish between attacker-controlled inputs and uncontrolled inputs.

3 BACKGROUND

A program 𝑃 is represented as a transition system with transition relation → over the set of states

S. A trace is a succession of states respecting →; the set of traces of a program 𝑃 is 𝑇 (𝑃). Each
state has a corresponding location in the code of the program, a path is a succession of locations.

The initial state is determined by the input 𝑦 of the program and 𝑃 |𝑦 is a program identical to 𝑃

but executed on input 𝑦.

Reachability. For 𝑂 a set of finite traces, we say that 𝑂 is reachable in 𝑃 when 𝑇 (𝑃) ∩𝑂 ≠ ∅,

meaning that 𝑃 admits a trace reaching the goal.

Robust Reachability. Let input 𝑦 be a pair (𝑎, 𝑥) of controlled inputs 𝑎 ∈ A chosen by attackers

and uncontrolled inputs 𝑥 ∈ X unknown to attackers and uninfluenced by them. We say that 𝑂 is
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robustly reachable [Girol et al., 2021, 2022] when ∃𝑎 ∈ A .∀𝑥 ∈ X.𝑇

(
𝑃 | (𝑎,𝑥 )

)
∩𝑂 ≠ ∅, meaning

that for some controlled input 𝑎 the target is reached regardless of inputs 𝑥 .

Data: bound 𝑘 , target 𝑂

1 for path 𝜋 in GetPaths (𝑘) do
2 𝜙 := GetPredicate(𝜋,𝑂)
3 if ∃𝑖 . 𝜙 (𝑖) then return true

4 end

5 return false

Algorithm 1: Reachability of 𝑂 by symbolic execution

Symbolic Execution. Reachability can be proved by Symbolic Execution (SE) [Cadar and Sen,

2013], as shown on Algorithm 1. SE enumerates all paths 𝜋 and converts them to SMT formulas
2

pc
𝑂
𝜋 (𝑖) called path constraints expressing the constraints over inputs 𝑖 triggering 𝜋 and reaching

the goal 𝑂 . It then checks whether this formula is satisfiable, in which case 𝑂 is reachable. SE is

correct, i.e. detected targets are reachable, and 𝑘-complete, i.e. any reaching path of length up to 𝑘 is

detected.

Robust Symbolic Execution. Robust Symbolic Execution (RSE) [Farinier et al., 2018a, Girol et al.,
2021, 2022] proves robust reachability by replacing satisfiability tests ∃𝑎, 𝑥 . pc𝑂𝜋 (𝑎, 𝑥) in SE by

∃𝑎.∀𝑥 . pc𝑂𝜋 (𝑎, 𝑥), i.e. robust reachability. It is correct, but not 𝑘-complete. For 𝑘-completeness, path

merging [Hansen et al., 2009] is required: path constraints are merged together as

∨
𝑖 pc

𝑂
𝜋𝑖
(𝑎, 𝑥).

4 QUANTITATIVE ROBUSTNESS

In this section, we provide a generic framework for quantitative robustness, with potentially infinite

input domains and including various useful properties.

4.1 Threat Model

We adopt same threat model as Girol et al. [2021, 2022], with inputs split between controlled inputs
𝑎 ∈ A and uncontrolled inputs 𝑥 ∈ X. The goal of attackers is to reach a finite set of traces

corresponding to a vulnerability. We assume that programs are deterministic, although sources of

randomness can be modeled as uncontrolled inputs.

This threat model fits the scenario of attackers sending a single request to a non-interactive

system in order to perform some sort of exploit. In particular, the underlying vulnerability may not

be reliably triggerable, requiring multiple attempts depending on the chosen input. For example,

attackers may attempt to exploit an uninitialized variable, such as in our motivating example from

Figure 1, by repeatedly sending requests until its value is exploitable. Since smart attackers try to

maximize their chances, analysis must focus on the worst case scenario, i.e. an optimal input.

The downside of this threat model is that it excludes interactive systems, however it ensures

proof methods remain tractable.

4.2 Formal Definition

We define quantitative robustness as the maximal proportion of uncontrolled inputs that reaches

the target for a fixed controlled input. In order to handle infinite input domains, i.e. natural n-uples,

we thus need to define a notion of density of a subset. One way of achieving this is to extend the

notion of asymptotic density to n-uples.

2
Typically, quantifier-free conjunctive formulas over some theories such as integers, bitvectors, arrays, etc.
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Definition 4.1 (Asymptotic Density for n-uples). Let 𝑌 ⊂ 𝑋 ⊂ N𝑛 . When 𝑛 = 1, the asymptotic

density of 𝑌 in 𝑋 is 𝑑𝑋 (𝑌 ) = lim𝑖→∞
|{𝑦∈𝑌/𝑦<𝑖 } |
| {𝑥∈𝑋/𝑥<𝑖 } | . We extend this definition for 𝑛 > 1 as the

following:

𝑑𝑋 (𝑌 ) ≜ lim

𝑖→∞

|{(𝑦1, ..., 𝑦𝑛) ∈ 𝑌/𝑦1 + ... + 𝑦𝑛 < 𝑖}|
|{(𝑥1, ..., 𝑥𝑛) ∈ X/𝑥1 + ... + 𝑥𝑛 < 𝑖}|

We can now give our formal definition of quantitative robustness. Let us consider a program 𝑃

and a target set of finite traces 𝑂 .

Definition 4.2 (Quantitative robustness). We define the quantitative robustness 𝑞 (𝑃,𝑂) of 𝑂 in 𝑃

as the following:

𝑞 (𝑃,𝑂) ≜ sup

𝑎∈A
𝑑X

({
𝑥 ∈ X | 𝑇

(
𝑃 | (𝑎,𝑥 )

)
∩𝑂 ≠ ∅

})
Proposition 4.3. If both X and A are finite, we get the following:

𝑞 (𝑃,𝑂) ≜ 1

|X| max

𝑎∈A

���{𝑥 ∈ X | 𝑇
(
𝑃 | (𝑎,𝑥 )

)
∩𝑂 ≠ ∅

}���
In the case of our motivating example (Figure 1), we thus get 𝑞

(
𝑝𝑟𝑜𝑔1,𝑂𝑝𝑟𝑜𝑔1

)
= 1

2
32

and

𝑞
(
𝑝𝑟𝑜𝑔2,𝑂𝑝𝑟𝑜𝑔2

)
= 2

32−9001
2
32

.

Proposition 4.4. Extreme values of quantitative robustness correspond to already known properties:
𝑞(𝑃,𝑂) = 0 ⇐⇒ 𝑂 is not reachable

𝑞(𝑃,𝑂) = 1 ⇐⇒ 𝑂 is robustly reachable

Intuitively, quantitative robustness allows to distinguish bugs which are mostly robust from

those which are not, i.e. quantitative robustness is measured above a tolerance threshold given by

the user – typically a security expert. For example, in our case study from Section 8.5 we consider

a quantitative robustness of 0.2 highly concerning (i.e., in practice, deserving further attention by a

security expert), and a quantitative robustness lower than 10
−6

as mere noise.

Scope & Limitations. This definition inherits some limitations of robust reachability. As mentioned

previously, interactive systems are not accounted for. In addition, we limit our discussion to the

reachability of a (possibly infinite) set of finite traces, which already encompasses critical scenarios

such as buffer and stack overflows, use-after-free and control-flow hijacking. Handling more

advanced properties such as hyperproperties (e.g., secret leakages) or infinite traces (e.g., denial of

service) is left for future work, although it should be straightforward for hyper-safety properties

such as non-interference.

In addition, this approach assumes that uncontrolled inputs are uniformly distributed, which

may not be the case in practice. However this is a common assumption in quantitative analysis,

even though it is not always explicitly stated. Also, determining input distributions is certainly a

challenge of its own in practice. Tackling these issues is out of the scope of this work.

4.3 Quantitative Robustness and Path Merging

One limitation of robust reachability is the need for path merging [Girol et al., 2021], which

complicates program analysis in practice. This issue can be mitigated for quantitative robustness

thanks to some properties we will now highlight.

Robust reachability can be lost at a branch depending on uncontrolled input and recovered later

when paths meet again. Consider Figure 2, a case where path merging is necessary for robust

reachability. The program 𝑃 has two paths 𝜋1 and 𝜋2 starting at a location 𝑠 selected depending on

an uncontrolled boolean input 𝑥 and joining again at location ℓ . Neither 𝜋1 nor 𝜋2 satisfy robust
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void main(a, x) {

if (x) x++; // 𝜋1

else x--; // 𝜋2

if (!a) bug(); // ℓ

}

Fig. 2. An example where path merging is required in RSE (taken from Girol et al. [2021])

reachability, yet ℓ is robustly reachable. Robust reachability can thus “reappear” from non-robust

paths quite unpredictably, thus we are forced to merge all paths for the sake of completeness.

However this is not the case with quantitative reachability due to the following property:

Proposition 4.5 (Quantitative robustness pseudo-conservation). Let 𝜋1, . . . , 𝜋𝑛 be paths
in a program 𝑃 and 𝑃 |𝜋1,...,𝜋𝑛 the restriction of 𝑃 to 𝜋1, . . . , 𝜋𝑛 . There exists 1 ≤ 𝑖 ≤ 𝑛 such that:

𝑞 (𝑃 |𝜋𝑖 ,𝑂) ≥ 1

𝑛
𝑞 (𝑃 |𝜋1,...,𝜋𝑛 ,𝑂)

Proof. For convenience, we note:

𝑅𝑒𝑎𝑐ℎ𝑖𝑛𝑔 (𝑃, 𝑎,𝑂) ≜
{
𝑥 ∈ X | 𝑇

(
𝑃 | (𝑎,𝑥 )

)
∩𝑂 ≠ ∅

}
and 𝑅𝜋 (𝑎) ≜ 𝑅𝑒𝑎𝑐ℎ𝑖𝑛𝑔 (𝑃 |𝜋 , 𝑎,𝑂).

Lemma 4.6 (Quantitative robustness of merged paths). Let 𝜋 and 𝜋 ′ be two paths in a
program 𝑃 .

𝑞

(
𝑃 |𝜋,𝜋 ′

,𝑂

)
≤ 𝑞 (𝑃 |𝜋 ,𝑂) + 𝑞

(
𝑃 |𝜋 ′

,𝑂

)
Proof of the lemma. For any 𝑎 ∈ A, 𝑅𝜋,𝜋 ′ (𝑎) = 𝑅𝜋 (𝑎) ∪ 𝑅𝜋 ′ (𝑎) by def. and 𝑑X (𝑅𝜋,𝜋 ′ (𝑎)) ≤

𝑑X (𝑅𝜋 (𝑎)) + 𝑑X (𝑅𝜋 ′ (𝑎)). Thus sup𝑎∈A 𝑑X (𝑅𝜋,𝜋 ′ (𝑎)) ≤ sup𝑎∈A 𝑑X (𝑅𝜋 (𝑎)) + sup𝑎∈A 𝑑X (𝑅𝜋 ′ (𝑎))
and 𝑞

(
𝑃 |𝜋,𝜋 ′

,𝑂

)
≤ 𝑞 (𝑃 |𝜋 ,𝑂) + 𝑞

(
𝑃 |𝜋 ′

,𝑂

)
. □

By contradiction, if 𝑞 (𝑃 |𝜋𝑖 ,𝑂) < 1

𝑛
𝑞 (𝑃 |𝜋1,...,𝜋𝑛 ,𝑂) for all 𝑖 from 1 to 𝑛, then by Lemma 4.6,

𝑞 (𝑃 |𝜋1,...,𝜋𝑛 ,𝑂) < 𝑛 × 1

𝑛
𝑞 (𝑃 |𝜋1,...,𝜋𝑛 ,𝑂) which is absurd. □

In our example, either 𝜋1 or 𝜋2 has quantitative reachability at least
1

2
, thus ℓ can still be detected

without path merging by halving the detection threshold. We will take advantage of this property

to avoid resorting to path merging in Section 5.

5 QUANTITATIVE ROBUST SYMBOLIC EXECUTION

In this section, we propose a method to enumerate all locations with quantitative robustness above

a given threshold 𝑄 . Our solution is based on symbolic execution, with an oracle ComputePQR
(𝑃, 𝜋,𝑂) able to compute the Path-wise Quantitative Robustness 𝑞 (𝑃 |𝜋 ,𝑂) of any path 𝜋 . While

we consider here possibly infinite domains, we show how to compute ComputePQR (𝑃, 𝜋,𝑂) for
finite input sets in Sections 6 and 7.

5.1 From RSE to QRSE
We adapt RSE [Girol et al., 2021, 2022] by replacing the universal satisfiability test ∃𝑎.∀𝑥 . pc𝑂𝜋 (𝑎, 𝑥)
with the quantitative robustness test ComputePQR(𝑃, 𝜋,𝑂) ≥ 𝑄 . This way we can enumerate paths

reaching the goal with quantitative robustness above the threshold 𝑄 . We call this technique QRSE.
More specifically, operating this substitution on RSE yields QRSE (Algorithm 2) and on RSE with
path merging (RSE+) yields QRSE with path merging (QRSE+) (Algorithm 3).
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Data: bound 𝑘 , target 𝑂 , threshold 𝑄

1 for path 𝜋 in GetPaths (𝑘) do
2 𝜒 := ComputePQR(𝑃, 𝜋,𝑂)
3 if 𝜒 ≥ 𝑄 then

/* 𝑂 has quantitative

robustness ≥ 𝜒 */

4 return (true, 𝜒)

5 end

6 return false

Algorithm 2: QRSE

Data: bound 𝑘 , target 𝑂 , threshold 𝑄

1 𝑝𝑎𝑡ℎ𝑠 = ∅
2 for path 𝜋 in GetPaths (𝑘) do
3 𝑝𝑎𝑡ℎ𝑠 := 𝑝𝑎𝑡ℎ𝑠 ∪ {𝜋}
4 𝜒 := ComputePQR(𝑃, 𝑝𝑎𝑡ℎ𝑠,𝑂)
5 if 𝜒 ≥ 𝑄 then

/* 𝑂 has quantitative

robustness ≥ 𝜒 */

6 return (true, 𝜒)

7 end

8 return false

Algorithm 3: QRSE+ (with path merging)

Proposition 5.1 (Correctness of QRSE and QRSE+). If QRSE or QRSE+ reports a target 𝑂 with
quantitative robustness 𝜒 , then 𝑞 (𝑃,𝑂) ≥ 𝜒 .

Proof.

Lemma 5.2 (Monotonicity of qantitative robustness of paths). Let 𝜋 be a path in a
program 𝑃 .

𝑞 (𝑃 |𝜋 ,𝑂) ≤ 𝑞 (𝑃,𝑂)

Proof of the lemma. 𝑅𝑒𝑎𝑐ℎ𝑖𝑛𝑔 (𝑃 |𝜋 , 𝑎,𝑂) ⊆ 𝑅𝑒𝑎𝑐ℎ𝑖𝑛𝑔 (𝑃, 𝑎,𝑂) ∀𝑎 ∈ A, thus 𝑞 (𝑃 |𝜋 ,𝑂) ≤
𝑞 (𝑃,𝑂) by definition. □

If QRSE reaches 𝑂 , there is a path 𝜋 s.t. 𝑞 (𝑃 |𝜋 ,𝑂) = 𝜒 . Then by Lemma 5.2, 𝑞 (𝑃,𝑂) ≥ 𝜒 . □

Proposition 5.3 (𝑘-completeness of QRSE+). We note 𝑃 |≤𝑘 the restriction of program 𝑃 to traces
of length at most 𝑘 . Let 𝑄 be a detection threshold. Assuming solver termination, if 𝑞

(
𝑃 |≤𝑘 ,𝑂

)
≥ 𝑄

then QRSE+ reports 𝑂 with quantitative robustness 𝜒 between 𝑄 and 𝑞
(
𝑃 |≤𝑘 ,𝑂

)
.

Proof. In 𝑃 |≤𝑘 , for each possible input, there is at most one maximal path of length at most 𝑘

(and all its prefixes). When QRSE+ has explored all paths, the path constraint will be equivalent

to reaching 𝑂 . The oracle on the merged path constraint will therefore return the desired value

𝑞

(
𝑃 |≤𝑘 ,𝑂

)
. If a subset of paths has quantitative robustness between 𝑄 and 𝑞

(
𝑃 |≤𝑘 ,𝑂

)
, QRSE+

may return early. □

Approximations. If we can only approximate 𝑞 (𝑃 |𝜋 ,𝑂) with ComputePQR(𝑃, 𝜋,𝑂), we retain

some guarantees: with a lower bound QRSE is still correct and with an upper bound QRSE+ is still

𝑘-complete.

5.2 Getting Rid of Path Merging

RSE requires path merging for 𝑘-completeness [Girol et al., 2021]. In addition, Proposition 5.3

suggests that it may also be the case for QRSE. However, we want to avoid it for two main reasons:

first, some paths can be hard to execute symbolically (e.g. because they contain exotic system calls,

dynamic jumps, etc.), and second, merged path constraints are often more complex and harder to

solve. In the quantitative case, we can show that QRSE (no path merging) is as complete as QRSE+
(path merging) under a reasonable assumption (Assumption 5.4).
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Assumption 5.4 (Badly scaling path merging assumption). We assume that merged paths
constraints are more difficult to solve than their constituents [Hansen et al., 2009, Kuznetsov et al.,
2012], and that there is an integer 𝜅 such that, when merging the paths constraints of more than 𝜅
paths together, the resulting path constraint is so large and/or complex that our implementation of the
oracle ComputePQR will return UNKNOWN.

Proposition 5.5 (QRSE vs QRSE+). Under the badly scaling path merging assumption, all locations
reported by QRSE+ as having quantitative robustness above the threshold 𝑄 are also reported by QRSE
with the threshold 𝑄/𝜅.

Proof. Let𝑂 be a target reported by QRSE+with threshold𝑄 . By the badly scaling path merging

assumption (Assumption 5.4), there are paths 𝜋1, . . . , 𝜋𝑛 with 𝑛 ≤ 𝜅 s.t. the oracle can compute

𝜒 ≜ ComputePQR(𝑃, 𝜋1, . . . , 𝜋𝑛,𝑂) with 𝜒 ≥ 𝑄 . By Proposition 4.5, there is a path 𝜋𝑖 such that

𝑞 (𝑃 |𝜋𝑖 ,𝑂) ≥ 𝑄/𝑛 ≥ 𝑄/𝜅. Thus QRSE detects 𝑂 through path 𝜋𝑖 with the threshold 𝑄/𝜅. □

In practice, this means that if path merging turns out to be a problem for QRSE+ with threshold

𝑄 , then one can run QRSE with threshold 𝑄/𝜅 and have the guarantee of finding all targets with

quantitative robustness above𝑄 but no targets with quantitative robustness below𝑄/𝜅 . The second
point ensures we keep a good signal-to-noise ratio. This principle will be illustrated in our second

case study about libvncserver (Section 8.6).

6 PATH-WISE QUANTITATIVE ROBUSTNESS AS A COUNTING PROBLEM

We now focus on a practical way of implementing the ComputePQR (𝑃, 𝜋,𝑂) for Path-wise Quantita-
tive Robustness.We will restrict ourselves from now on to the case of finite input domains.We present

the technique for propositional logic, yet the technique itself can be applied to other theories that

reduces to it, for example bitvectors with arrays and floats.

The main result here is to show that computing quantitative robustness for a single path reduces

in this setting to a variant of model counting called 𝑓 -E-MAJSAT. We will then provide in Section

7 a novel approximation technique for 𝑓 -E-MAJSAT.

6.1 Preliminary: Propositional Formulas

The set F of propositional formulas is defined recursively as variables 𝑣 ∈ V and negations (¬𝑓 ),
conjunctions (𝑓 ∧𝑔) and disjunctions (𝑓 ∨𝑔) of formulas 𝑓 , 𝑔 ∈ F . We note𝑉 (𝑓 ) the set of variables
appearing in a formula 𝑓 .

A literal is a variable or the negation of a variable and a clause is a finite conjunction or disjunc-

tion of literals. Propositional formulas are usually given in Conjunctive Normal Form (CNF), i.e.
conjunctions of disjunctive clauses.

A partial valuation is a partial mapping from a subset ofV to the set of booleans B ≜ {⊤,⊥}. We

note 𝑓 |𝑚 the application of a partial valuation𝑚 to a formula 𝑓 , where variables 𝑣 in the domain of

𝑚 are replaced by𝑚(𝑣). For example, for 𝑓 = 𝑣1 ∧ (¬𝑣1 ∨ 𝑣2) and𝑚 = {𝑣1 ↦→ ⊤} we get 𝑓 |𝑚 = 𝑣2.

A valuation is complete for 𝑓 when its domain contains 𝑉 (𝑓 ), i.e. it associates all variables to a

boolean value; it thus maps 𝑓 itself to a boolean.

A complete valuation𝑚 is a model of a formula 𝑓 if 𝑓 |𝑚 = ⊤. We note 𝑀 (𝑓 ) ≜ {𝑚 ∈ B𝑉(𝑓 ) |
𝑓 |𝑚 = ⊤} the set of models of a formula 𝑓 and ♯ (𝑓 ) ≜ |𝑀 (𝑓 ) | its cardinal. For example, the models

of 𝑣1 ∧ (𝑣2 ∨ ¬𝑣2) are {𝑣1 ↦→ ⊤, 𝑣2 ↦→ ⊥} and {𝑣1 ↦→ ⊤, 𝑣2 ↦→ ⊤}.

6.2 The 𝑓 -E-MAJSAT Problem

For any propositional formula with free variables partitioned in two sets, 𝑓 -E-MAJSAT consists in

finding an assignment to variables in the first set maximizing the number of solutions for the other:
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Definition 6.1 (𝑓 -E-MAJSAT [Littman et al., 1998]). Let 𝑓 ∈ F and a partition of variables

𝐴 ⊎ 𝑋 = 𝑉 (𝑓 ).
emajsat𝐴 (𝑓 ) ≜ max𝑎1,...,𝑎𝑛∈B𝐴 ♯

(
𝑓 |𝑎1,...,𝑎𝑛

)
In the following, we will assume that all propositional formulas are expressed in CNF . As usual

with functional problems, there is a companion decision problem called E-MAJSAT which tests

whether 𝑓 -E-MAJSAT is above a given threshold, e.g. 2 |𝑋 |−1
. Variables in 𝐴 are called choice

variables and variables in 𝑋 are called chance variables. 𝑓 -E-MAJSAT reduces to SAT when

𝑋 = ∅ and to ♯SAT when 𝐴 = ∅ thus is at least as hard as these problems. E-MAJSAT is

NP
PP
-complete [Littman et al., 1998], meaning that it would become NP with a PP oracle.

6.3 Path-WiseQuantitative Robustness

The distinction between choice and chance variables mirrors the threat model of quantitative

robustness, the former representing controlled inputs and the latter uncontrolled inputs. Assuming

that path-constraints can be encoded as propositional formulas, we can thus conflate 𝑓 -E-MAJSAT

and path-wise quantitative robustness.

We represent inputs as boolean variables: 𝑎 ≜ (𝑎1, . . . , 𝑎𝑛) and 𝑥 ≜ (𝑥1, . . . , 𝑥𝑚). We define two

formulas ℎ𝑎 (𝑎) and ℎ𝑥 (𝑥) specifying valid inputs: ♯ (ℎ𝑎) = |A| and ♯ (ℎ𝑥 ) = |X|.

Proposition 6.2. For a path constraint pc𝑂𝜋 expressed as a propositional formula, path-wise quan-
titative robustness can be reduced to 𝑓 -E-MAJSAT as follows:

𝑞(𝑃 |𝜋 ,𝑂) =
emajsat𝑎

(
ℎ𝑎 (𝑎) ∧ ℎ𝑥 (𝑥) ∧ pc

𝑂
𝜋 (𝑎, 𝑥)

)
♯ (ℎ𝑥 )

Path constraints are typically encoded as SMT formulas to benefit from the great expressiveness

of theories supported by SMT solvers. However, it is possible to reduce some theories to SAT

by bitblasting such that there is a unique corresponding model in the resulting formula for each

one of the original, thus preserving model counts. More specifically, arrays can be eliminated by

eager application of the read-over-write axiom of the theory and bitvectors can be bitblasted by

mimicking the logical gates used in processors.

However, there is a major obstacle to the practical applicability of Proposition 6.2: solving

𝑓 -E-MAJSAT.

7 EFFICIENT APPROXIMATION OF 𝑓 -E-MAJSAT

In this section we turn to the problem of solving 𝑓 -E-MAJSAT on a bitblasted path constraint. As

quantitative robustness is only a hint for one dimension of exploitability, approximate methods are

acceptable, yet efficiency is paramount to ensure practical applicability. Existing methods turn out

to be either precise but too slow, or too coarse. We propose a novel approximation method that

gives good results in practice.

7.1 Preliminary: Decision-DNNF Normal Form

Several techniques to solve 𝑓 -E-MAJSAT rely on a normal form called decision Decomposable
Negational Normal Form (decision-DNNF) [Fargier and Marquis, 2006].

Definition 7.1 (decision-DNNF). A formula in decision-DNNF is a DAG with the following nodes:

True and False nodes. ⊤ and ⊥.
Decomposable And node.

∧𝑛
𝑖=1 𝑓𝑖 , where for 1 ≤ 𝑖, 𝑗 ≤ 𝑛, 𝑉 (𝑓𝑖 ) ∩𝑉

(
𝑓𝑗
)
= ∅ and the children

(𝑓𝑖 )1≤𝑖≤𝑛 are in decision-DNNF .
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Decision or Ite ("if-then-else") node. ite(𝑣, 𝑓 , 𝑔), where 𝑓 and 𝑔 are formulas in decision-
DNNF and 𝑣 is a variable such that 𝑣 ∉ 𝑉 (𝑓 ), 𝑣 ∉ 𝑉 (𝑔).
If additionally 𝑉 (𝑓 ) = 𝑉 (𝑔) then the formula is said to be smooth.

This definition is slightly non-standard: literals are normally included, butwe replace 𝑣 by ite(𝑣,⊤,⊥)
and ¬𝑣 by ite(𝑣,⊥,⊤).

ite(𝑎)

ite(𝑎)

ite(𝑥)

⊥⊤

∧

ite(𝑥)

⊤⊥

ite(𝑎)

⊥⊤

Fig. 3. a decision-DNNF

An example is given in Figure 3. By convention, 𝑉 (⊤) = 𝑉 (⊥) = ∅, ♯ (⊤) = 1, ♯ (⊥) = 0. For

smooth Ite nodes, we have ♯ (ite(𝑣, 𝑓 , 𝑔)) = ♯ (𝑓 ) + ♯ (𝑔). Without smoothness, one must reason

about pairs (♯ (𝑓 ) ,𝑉 (𝑓 )) instead of ♯ (𝑓 ), rendering the formal treatment considerably heavier. As

per usual in the literature, we present the formalism on smooth formulas only, which does not

incur a loss of generality [Darwiche, 2000] since a formula can be made smooth in polynomial time.

Model Counting and Compilation. Model counting of a formula in decision-DNNF can be done

in linear time [Darwiche, 2001] (the algorithm is a special case of Definition 7.3). This reduces model

counting to the process of converting a CNF formula to an equivalent decision-DNNF formula, which

is called compilation. D4 [Lagniez and Marquis, 2017], C2D [Darwiche, 2004] and Dsharp [Muise

et al., 2012]
3
are examples of decision-DNNF compilers.

Compilation is significantly more expensive than model counting: it comprises roughly 96% of

runtime on our test suite (see Section 8.3).

For a partial valuation 𝑎 ∈ B𝐴 and a formula 𝑓 in decision-DNNF it is possible to compute 𝑓 |𝑎
also in decision-DNNF as follows: replace ite(𝑣, 𝑔, ℎ) by 𝑔 if 𝑣 ∈ 𝐴 and 𝑎(𝑣) = ⊤, ℎ if 𝑣 ∈ 𝐴 and

𝑎(𝑣) = ⊥, otherwise do nothing. We can thus compute ♯
(
𝑓 |𝑎

)
in linear time.

Layering. For 𝑓 -E-MAJSAT on decision-DNNF formulas, one needs an extra constraint compared

to model counting:

Definition 7.2. A formula in decision-DNNF is (𝐴,𝑋 )-layered if 𝑉 (𝑓 ) ⊆ 𝐴 ⊎ 𝑋 and for any Ite

node ite(𝑣, 𝑓 , 𝑔), we have 𝑣 ∈ 𝑋 =⇒ 𝑉 (𝑓 ) ⊆ 𝑋 .

In other words, Ite nodes on variables in 𝐴 are on top and those on variables in 𝑋 below. This is

the case on Figure 3 with 𝐴 = {𝑎} and 𝑋 = {𝑥}.
Some decision-DNNF compilers such as Dsharp [Muise et al., 2012] can produce layered decision-

DNNF as it can be used for projected model counting [Lagniez and Marquis, 2019], but this is

significantly more expensive than unconstrained (non-layered) compilation.

3
The latter two officially output a looser normal form called deterministic Decomposable Negational Normal Form (d-
DNNF) [Darwiche, 2001] but actually produce decision-DNNF .
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7.2 Preliminary: Solving 𝑓 -E-MAJSAT with Decision-DNNF Normal Form

One straight-forward way to solve 𝑓 -E-MAJSAT using layered decision-DNNF is by mapping And

nodes to multiplication, chance Ite nodes to addition and choice Ite nodes to maximum [Huang,

2006, Pipatsrisawat and Darwiche, 2009]. This algorithm is known as Constrained. It also produces

a witness valuation, i.e. a valuation 𝑎 such that 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑 (𝑓 ) = ♯
(
𝑓 |𝑎

)
.

Definition 7.3 (Constrained algorithm [Huang, 2006]). For 𝑓 in (𝐴,V\𝐴)-layered smooth decision-
DNNF , we defines the count 𝐶 (𝑓 ) and the witness valuation𝑤𝐴 (𝑓 ) as follows:

𝑓 𝐶 (𝑓 ) 𝑤𝐴 (𝑓 )
⊤ 1 𝑎⊥
⊥ 0 𝑎⊥
ite(𝑣, 𝑔, ℎ) with 𝑣 ∉ 𝐴 𝐶 (𝑔) +𝐶 (ℎ) 𝑎⊥
ite(𝑣, 𝑔, ℎ) with 𝑣 ∈ 𝐴 max(𝐶 (𝑔),𝐶 (ℎ)) 𝑤𝐴 (ℎ) [𝑣 := ⊥] if 𝐶 (𝑔) < 𝐶 (ℎ)

𝑤𝐴 (𝑔) [𝑣 := ⊤] otherwise∧𝑛
𝑖=1 𝑔𝑖

∏𝑛
𝑖=1𝐶 (𝑔𝑖 ) 𝑤𝐴 (𝑔1) | | . . . | |𝑤𝐴 (𝑔𝑛)

With 𝑎⊥ the partial valuation where all variables in 𝐴 are mapped to ⊥, 𝑎[𝑣 := 𝑥] the valuation
mapping 𝑣 to 𝑥 and other variables 𝑣 ′ to 𝑎(𝑣 ′), and 𝑎 | |𝑏 the concatenation of valuations 𝑎 and 𝑏.

Proposition 7.4. 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑 (𝑓 ) = emajsat𝐴 (𝑓 ).

In practice, this algorithm performs poorly due to the cost of constrained compilation. Note that

Definition 7.3 can be used on a non-layered formula, yielding an upper bound [Huang, 2006]. We

call this algorithm Unconstrained.

Proposition 7.5. 𝑈𝑛𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑 (𝑓 ) ≥ emajsat𝐴 (𝑓 ).

Other algorithms such as Complan [Huang, 2006] and Complan+ [Pipatsrisawat and Darwiche,

2009] improve this upper bound using various techniques. In particular, the latter uses a different

upper bound, which we refer to as Oval. As we will see in our experimental evaluation in Section 8.3,

the cost of constrained compilation renders algorithms like Constrained too expensive, while

upper bounds like Oval based on unconstrained compilation are too loose to be applicable for

quantitative robustness.

7.3 Our Proposition: Relaxation

We now propose an algorithm combining the advantages of Constrained (precision) and Oval

(performance). We achieve this by relaxing the layering constraint on decision-DNNF compilation.

Specifically, we compile (𝐴 ⊎ 𝑅,𝑋 \ 𝑅)-layered decision-DNNF instead of (𝐴,𝑋 )-layered, with 𝑅

meant to be small. This allows the compiler to decide on 𝐴 ∪ 𝑅 instead of just 𝐴.

Upper Bound. We adapt Unconstrained to obtain an upper bound on emajsat𝐴 (𝑓 ).

Definition 7.6 (Relaxed upper bound). Let 𝑓 be a formula in (𝐴 ⊎ 𝑅,𝑋 )-layered smooth decision-
DNNF . We define 𝑅𝑒𝑙𝑎𝑥+ (𝑓 ) ∈ N inductively as follows:

𝑓 𝑅𝑒𝑙𝑎𝑥+ (𝑓 )
⊤ 1

⊥ 0

ite(𝑣, 𝑔, ℎ) with 𝑣 ∈ 𝑋 ∪ 𝑅 𝑅𝑒𝑙𝑎𝑥+ (𝑔) + 𝑅𝑒𝑙𝑎𝑥+ (ℎ)
ite(𝑣, 𝑔, ℎ) with 𝑣 ∈ 𝐴 max(𝑅𝑒𝑙𝑎𝑥+ (𝑔), 𝑅𝑒𝑙𝑎𝑥+ (ℎ))∧𝑛

𝑖=1 𝑔𝑖
∏𝑛

𝑖=1 𝑅𝑒𝑙𝑎𝑥
+ (𝑔𝑖 )

Proposition 7.7. 𝑅𝑒𝑙𝑎𝑥+ (𝑓 ) ≥ emajsat𝐴 (𝑓 ).
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Proof. We prove the result by induction on the structure of 𝑓 .

Computing 𝑅𝑒𝑙𝑎𝑥+ (𝑔) for 𝑔 in the lower layer of 𝑓 coincides with computing emajsat𝐴∪𝑅 (𝑔) in
Definition 7.3, but since 𝑉 (𝑔) ∩ 𝑅 = ∅, 𝑅𝑒𝑙𝑎𝑥+ (𝑔) = emajsat𝐴∪𝑅 (𝑔) = emajsat𝐴 (𝑔).

In the case of 𝑅𝑒𝑙𝑎𝑥+ (𝑓𝐴), where 𝑓𝐴 = ite(𝑣, 𝑔, ℎ) with 𝑣 ∈ 𝐴, emajsat𝐴 (𝑓𝐴) = max(emajsat𝐴 (𝑔) ,
emajsat𝐴 (ℎ)). By induction hypothesis, emajsat𝐴 (𝑔) ≤ 𝑅𝑒𝑙𝑎𝑥+ (𝑔) and emajsat𝐴 (ℎ) ≤ 𝑅𝑒𝑙𝑎𝑥+ (ℎ).
As max is non-decreasing in both its arguments, we prove the desired result emajsat𝐴 (𝑓𝐴) ≤
max(𝑅𝑒𝑙𝑎𝑥+ (𝑔), 𝑅𝑒𝑙𝑎𝑥+ (ℎ)).
The same reasoning applies for the product on decomposable And nodes.

The case of a relaxed Ite node is the most interesting one: 𝑓𝑅 = ite(𝑣, 𝑔, ℎ), where 𝑣 ∈ 𝑅. As

𝑣 ∧ 𝑔 and ¬𝑣 ∧ ℎ have no common model, 𝑀 (𝑓𝑅) = 𝑀 (𝑣 ∧ 𝑔) ⊎ 𝑀 (¬𝑣 ∧ ℎ). Therefore, for a
partial model 𝑎 ∈ B𝐴, we have ♯

(
𝑓𝑅 |𝑎

)
= ♯

(
(𝑣 ∧ 𝑔) |𝑎

)
+ ♯ ( (¬𝑣 ∧ ℎ) |𝑎) = ♯

(
𝑔|𝑎

)
+ ♯ (ℎ |𝑎) ≤

emajsat𝐴 (𝑔) + emajsat𝐴 (ℎ). Hence, emajsat𝐴 (𝑓𝑅) ≤ emajsat𝐴 (𝑔) + emajsat𝐴 (ℎ). By induction

hypothesis emajsat𝐴 (𝑔) ≤ 𝑅𝑒𝑙𝑎𝑥+ (𝑔) and emajsat𝐴 (ℎ) ≤ 𝑅𝑒𝑙𝑎𝑥+ (ℎ), and thus emajsat𝐴 (𝑓𝑅) ≤
𝑅𝑒𝑙𝑎𝑥+ (ℎ) + 𝑅𝑒𝑙𝑎𝑥+ (𝑔). □

ite(𝑟 ): +

ite(𝑎): max

ite(𝑥): +

⊥: 0⊤: 1

∧: ×

ite(𝑥): +

⊤: 1⊥: 0

ite(𝑎): max

⊥: 0⊤: 1
For 𝑓 = ite(𝑟, 𝑎 ∧ ¬𝑥, ite(𝑎,¬𝑥, 𝑥)), Proposition 7.7 yields

emajsat{𝑎} (𝑓 ) ≤ max(1, 0) × (0 + 1) +max(0 + 1, 1 + 0) = 2.

Fig. 4. ({𝑎, 𝑟 }, {𝑥})-layered decision-DNNF (black), with Relax upper bound for it (red, Definition 7.6).

The principle is the same as Unconstrained except that relaxed choice Ite nodes map to addition

like chance Ite nodes. An example is given in Figure 4.

Lower Bound. With Constrained, we can compute a witness 𝑤𝐴∪𝑅 (𝑓 ) for emajsat𝐴∪𝑅 (𝑓 ) in
linear time (Definition 7.3). As its model count is maximal for 𝐴 ∪ 𝑅4

, we can expect it to have a

good model count when restricted to 𝐴.

Definition 7.8 (Lower bound). Let 𝑓 a formula in (𝐴 ⊎ 𝑅,𝑋 )-layered smooth decision-DNNF . Let
𝑤 ∈ B𝐴 be a partial valuation coinciding with𝑤𝐴∪𝑅 (𝑓 ) for variables in 𝐴.

𝑅𝑒𝑙𝑎𝑥− (𝑓 ) ≜ ♯
(
𝑓 |𝑤

)
Proposition 7.9. 𝑅𝑒𝑙𝑎𝑥− (𝑓 ) ≤ emajsat𝐴 (𝑓 ).

Quality of the Resulting Interval. We propose Relax, the following algorithm:

Definition 7.10 (Relax). Let 𝑓 be a formula in CNF , 𝐴 ⊎ 𝑋 a partition of its variables and 𝑅 ⊆ 𝑋 .

Let 𝑓 ′ be the compilation of 𝑓 to (𝐴 ⊎ 𝑅,𝑋 \ 𝑅)-layered decision-DNNF .
Relax(𝑓 ) = [𝑅𝑒𝑙𝑎𝑥− (𝑓 ′), 𝑅𝑒𝑙𝑎𝑥+ (𝑓 ′)]

4♯

(
𝑓 |𝑤𝐴∪𝑅 (𝑓 )

)
= emajsat𝑓 (𝐴 ∪ 𝑅)
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Computing the interval is done in linear time in the size of the decision-DNNF . The main

parameter of Relax is 𝑅 the set of relaxed variables. 𝑅 is meant to be small enough to give good

approximation, but large enough to allow tractable compilation. In the edge case where 𝑅 is empty

(no relaxation), the algorithm degenerates to Constrained and the resulting interval becomes a

singleton. Conversely, when 𝑅 = 𝑋 , the algorithm degenerates to Unconstrained.

In general, we guarantee the following:

Theorem 7.11 (Precision of Relax). 𝑅𝑒𝑙𝑎𝑥+ (𝑓 ) ≤ 2
|𝑅∩𝑉(𝑓 ) |𝑅𝑒𝑙𝑎𝑥− (𝑓 )

Proof. With notation 𝐿(𝑓 ) ≜ emajsat𝐴∪𝑅 (𝑓 ).

First we prove that Relax− (f ) ≥ L(f ). Let 𝑤 ∈ B𝐴,𝑤 ′ ∈ B𝑅 such that 𝑤𝐴∪𝑅 (𝑓 ) = 𝑤 | |𝑤 ′
. Each

model 𝑥 of 𝑓 |𝑤𝐴∪𝑅 (𝑓 ) can be mapped to a model𝑤 ′ | |𝑥 of 𝑓 |𝑤 . Therefore, 𝑓 |𝑤𝐴∪𝑅 (𝑓 ) has fewer models

than 𝑓 |𝑤 , which can be written as 𝐿(𝑓 ) ≤ 𝑅𝑒𝑙𝑎𝑥− (𝑓 ).

Then we prove Relax+ (f ) ≤ 2 |R∩V(f ) |L(f ) by induction. We compare rules in Definition 7.6 and

Definition 7.3.

For base cases ⊤ and ⊥, 𝑅𝑒𝑙𝑎𝑥+ (𝑓 ) = 𝐿(𝑓 ).
For an Ite node with variable in 𝑋 , 𝑅𝑒𝑙𝑎𝑥+ (𝑓 ) = 𝐿(𝑓 ) = ♯ (𝑓 ) and 𝑅 ∩ 𝑉 (𝑓 ) = ∅, by layering

hypothesis.

In the case of an And node 𝑓 =
∧𝑛

𝑖=1 𝑔𝑖 , 𝑅𝑒𝑙𝑎𝑥
+ (𝑓 ) = ∏𝑛

𝑖=1 𝑅𝑒𝑙𝑎𝑥
+ (𝑔𝑖 ) ≤ ∏𝑛

𝑖=1 2
|𝑅∩𝑉(𝑔𝑖 ) |𝐿(𝑔𝑖 ) =∏𝑛

𝑖=1 2
|𝑅∩𝑉(𝑔𝑖 ) | ×∏𝑛

𝑖=1 𝐿(𝑔𝑖 ) = 2

∑𝑛
𝑖=1 |𝑅∩𝑉(𝑔𝑖 ) |𝐿(𝑓 ). Given that𝑉 (𝑓 ) = ⊎𝑛

𝑖=1𝑉 (𝑔𝑖 ) we get 𝑅𝑒𝑙𝑎𝑥+ (𝑓 ) =
2
|𝑅∩𝑉(𝑓 ) |𝐿(𝑓 ).
For an Ite node 𝑓 = ite(𝑣, 𝑔, ℎ) with 𝑣 ∈ 𝐴, 𝑅𝑒𝑙𝑎𝑥+ (𝑓 ) = max(𝑅𝑒𝑙𝑎𝑥+ (𝑔), 𝑅𝑒𝑙𝑎𝑥+ (ℎ)) ≤ max(𝐿(𝑔),

𝐿(ℎ)) = 𝐿(𝑓 ).
For a relaxed Ite node, 𝑓 = ite(𝑣, 𝑔, ℎ) with 𝑣 ∈ 𝑅. 𝑅𝑒𝑙𝑎𝑥+ (𝑓 ) = 𝑅𝑒𝑙𝑎𝑥+ (𝑔) + 𝑅𝑒𝑙𝑎𝑥+ (ℎ). By

induction hypothesis, 𝑅𝑒𝑙𝑎𝑥+ (𝑔) ≤ 2
|𝑅∩𝑉(𝑔) |𝐿(𝑔) = 2

|𝑅∩𝑉(𝑓 )\{𝑣} |𝐿(𝑔) and similarly for ℎ. Finally,

𝑅𝑒𝑙𝑎𝑥+ (𝑓 ) ≤ 2
|𝑅∩𝑉(𝑓 )\{𝑣} | (𝐿(𝑔) + 𝐿(ℎ)) ≤ 2

|𝑅∩𝑉(𝑓 )\{𝑣} |×2max(𝐿(𝑔) , 𝐿(ℎ)) = 2
|𝑅∩𝑉(𝑓 ) |

max(𝐿(𝑔),
𝐿(ℎ)) ≤ 2

|𝑅∩𝑉(𝑓 ) |𝐿(𝑓 ). □

In practice, we show in Section 8 that imprecision is often lower than this.

Conclusion. Relax (Definition 7.10) is a parametric algorithm bridging the gap between Con-

strained and Unconstrained: the less relaxed variables there are, the more precise the answer,

but the steeper the computational price.

8 IMPLEMENTATION & EXPERIMENTS

We first describe our implementations of QRSE (Binsec/QRSE) and 𝑓 -E-MAJSAT solving (Popcon),

then we evaluate the practical feasibility and relevance of the ideas developed so far.

8.1 Binsec/QRSE

We modified the binary-level robust symbolic execution engine BINSEC/RSE [David et al., 2016,

Djoudi and Bardin, 2015, Girol et al., 2021] to perform QRSE on executable programs, using Popcon

(see Section 8.2) as a 𝑓 -E-MAJSAT solver. For optimization, the solver is only used for locations

which are reachable (standard SE queries) but not robustly reachable (RSE queries). We also benefit

from BINSEC optimizations, such as heavy array preprocessing [Farinier et al., 2018b].

Our tool only supports uniform distributions for uncontrolled inputs, but it is possible to specify

their domain as intervals and with free-form assumptions. For example, it allows specifying

Address Space Layout Randomization (ASLR) for the initial value of the stack register 𝑒𝑠𝑝 as 𝑒𝑠𝑝 ∈
[0xaaaa, 0xbbbb] and assume 𝑒𝑠𝑝%16 = 0 (alignment).
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8.2 Popcon, a Front-End for 𝑓 -E-MAJSAT Algorithms

For these experiments we implemented Popcon, a front-end for 𝑓 -E-MAJSAT solvers accepting

SMTLib2(QF_BV) and DIMACS input. It transparently converts this input to an appropriate for-

mat for the selected algorithm, including bitblasting with Boolector [Niemetz et al., 2015] (array

blasting is done in BINSEC when necessary), and defers to an existing 𝑓 -E-MAJSAT solver or a

reimplementation when not available. Popcon consists in about 8k lines of Rust.

decision-DNNF-based algorithms (Oval, Constrained, and Complan+, see Section 6.2) are

reimplemented, and compilation is performed using D4 [Lagniez and Marquis, 2017]. As Oval only

provides an upper bound, we combine it with the lower bound from Section 7.3.

Popcon can also submit the formula to solvers based on different principles: (1) dc-ssat [Majercik

and Boots, 2005] is a solver for probabilistic planning problems with arbitrarily many SSAT [Pa-

padimitriou, 1985] quantifier alternations. We use a patched version with a different input format

kindly provided by N.-Z. Lee; (2) ssatABC [Lee et al., 2018] is a solver for 2-quantifier SSAT prob-

lems based on clause selection; (3) Maxcount [Fremont et al., 2017] is an approximate, probabilistic

solver for Max#SAT. Note that these solvers are not explicitly designed for 𝑓 -E-MAJSAT but for

more general problems.

Relaxation. Popcon provides an implementation of Relax (Section 7.3). This is achieved by

querying D4 for a (𝐴 ⊎ 𝑅,𝑋 )-layered decision-DNNF formula instead of a (𝐴, 𝑅 ⊎ 𝑋 )-layered one.

Popcon offers two ways to choose 𝑅 under the constraint that |𝑅 | ≤ 𝑟 , where 𝑟 is a user-controlled

parameter:

DFS(𝑟 ): Starting with 𝑅 = ∅, we patch D4 to add variables it would have decided if not

constrained to 𝑅 until |𝑅 | = 𝑟 . 𝑅 thus contains the first 𝑟 variables the compiler tries to

decide. D4 operates in depth-first search order, hence the name;

BFS(𝑟 ): In this mode we mimic the decisions of model counting by running D4 for model

counting and collecting the 𝑟 top-most decided variables in breadth-first-search order in

the resulting decision tree.

8.3 ResearchQuestions

We aim at providing a first feasibility evaluation of the ideas developed so far. We consider the

following research questions:

RQ1 Is quantitative robustness more precise than reachability and robust reachability?

RQ2 Can we find real examples where QRSE does not need path merging, while RSE does?

RQ3 How does Relax perform compared to state-of-the-art 𝑓 -E-MAJSAT solvers?

8.4 Comparison with Robust Symbolic Execution (RQ1, RQ2)

Let us first compare the results of RSE and QRSE (with RSE+ and QRSE+ the respective variants

with path merging) on Girol et al.’s original benchmark [Girol et al., 2021]. This benchmark is

composed of both synthetic and real-world examples, including the five real-world vulnerabilities
described in Table 1, some with multiple variants. The large discrepancy between the numbers of

visited and unique instructions in some cases is explained by the need to explore long execution

paths. The remaining programs include 4 CTFs and 8 library functions, which constitute synthetic

scenarios on real code, as well as 26 toy examples. While most of these are relatively small (< 1k

visited instructions), a few are on par with the CVEs (up to 100k visited instructions).

The ground truth for the experiment is whether robustness is above 20% and it is run with a

timeout of 1 hour.
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Table 1. Real-world vulnerabilities from Girol et al.’s bench-
mark [Girol et al., 2021]

Vulnerability Instructions

CVE program visited unique

CVE-2019-19307 mongoose 165 89

CVE-2019-15900 doas ∼ 1k ∼ 100

CVE-2015-8370 grub 5k 137

CVE-2019-14192 uboot 32k 256

CVE-2019-20839 libvncserver ∼ 40k 147

Table 2. Results of robust reachability anal-
ysis methods on Girol et al.’s benchmark
[Girol et al., 2021] for proving quantitative
robustness > 20%

Method Results Runtime (s)

OK FN* T** (total)

RSE 37 9 2 11765

RSE+ 40 6 2 10012

QRSE 47 0 1 9348

QRSE+ 46 0 2 10551

*false negatives **timeouts (1 hour)

Discussion Relative to RQ1. As shown in Table 2, the main advantage of QRSE over RSE in terms

of precision is its ability to distinguish instances of high-yet-not-full robustness (> 20%) from those

of low robustness, with the former shown as false negatives for RSE and RSE+ in the results (9 and

6 occurrences here, where both variants of QRSE have no false negatives). We complement these

results in Section 8.5 with a realistic case study where the precision improvements of QRSE over

RSE does matter.

Discussion Relative to RQ2. Table 2 also shows that the lack of path merging with QRSE does

not induce incorrect results in any case, i.e., there is always a path with at least 20% robustness

when overall robustness exceeds that threshold. This is interesting as path merging is a potential

source of constraint solving overhead and time out. For example, in comparison, RSE (without path

merging) incurs more false negatives than RSE+ (with path merging). In particular, we detail the

case of one variant of libvncserver where RSE is wrong in Section 8.6.

QRSE also terminates on one more libvncserver variant compared to other methods. This illus-

trates how forgoing path merging can be beneficial in real-world applications.

8.5 Case Study on VerifyPIN [Dureuil et al., 2016] (RQ1)

We complete our answer to RQ1 with a case study on vulnerability-oriented bug triage in the

context of physical fault injection. We consider attackers controlling part of the input and able to

inject a limited number of faults during the program execution. As other the combination of input

choice and faults can be extremely complicated for a human to handle, finding potential attack

traces needs to be partly automated.

This scenario is typical for the evaluation of highly sensitive hardware components such as

smartcards, which must resist sophisticated intrusive attacks such as physical fault injection by

mean of laser beams or electromagnetic waves. Since attempting such attacks can be time consuming

and expensive, security evaluation often also consists in software-level analysis with (simulated)

fault models. However potential attack traces must still be examined by a human to evaluate their

exploitability. Our goal is to reduce the amount of manual work needed by limiting the number of
traces sent to experts, while still discovering all the most dangerous ones.

Target. We consider the VerifyPIN_2 program from FISSC [Dureuil et al., 2016], a standard bench-

mark from the physical fault injection community [Giraud and Thiebeauld, 2004]. It is a procedure

mimicking a typical password checker, including security-related countermeasures. It has two

explicit inputs: the 4-byte entered PIN code 𝑢𝑠𝑒𝑟𝑃𝐼𝑁 and the secret PIN code stored on the card

𝑐𝑎𝑟𝑑𝑃𝐼𝑁 .

While this program is relatively small, with only 60 unique instructions, the complexity resides

in exploring all possible applications of the chosen fault model [Bardin et al., 2023, Lacombe et al.,
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2023]. It is also representative of the size of code snippets considered in the fault analysis literature

with powerful fault models.

Threat Model. We assume that attackers control 𝑢𝑠𝑒𝑟𝑃𝐼𝑁 but cannot influence 𝑐𝑎𝑟𝑑𝑃𝐼𝑁 nor any

uninitialized memory. Regarding faults, we assume that attackers are able to prevent the execution

of single instructions, i.e. effectively replacing them with nop. The question is: “Can such attackers
enter a PIN distinct from the cardPIN and still be granted access?”.

Methodology.We apply the 126 possible 1-byte and 2-byte wide nop faults on VerifyPIN, resulting

in 126mutants, i.e. individual programs including simulated faulty behaviour. We then use symbolic

execution to find potential attacks (vulnerable mutants) and sort them according to quantitative

robustness. This approach is fairly standard in fault analysis [Berthomé et al., 2012], although

all-symbolic analysis is also possible [Bardin et al., 2023, Potet et al., 2014].

We compare the four following approaches (with a time out per query of 3min):

SE as implemented in BINSEC [Djoudi and Bardin, 2015];

RSE as implemented in BINSEC/RSE [Girol et al., 2021];

exact QRSE with Constrained, the most effective exact algorithm as shown in Section 8.7;

approximate QRSE with Relax, the best approximate algorithm as shown in Section 8.7, with

the 𝑏𝑓 𝑠 choice heuristic. To get the best possible answer, we first try with 8 relaxed variables

(tighter bounds) for half the allowed runtime, then with 128 (more consistent).

We distinguish traces which exhibit quantitative robustness above 0.2 (highly concerning) or

below 10
−6

(noise). For relaxed QRSE, we report traces provably in one of these categories, which

are chosen to illustrate two approaches: a conservative analysis where only traces with a provably

low quantitative robustness are dismissed and a more optimistic one where one only analyzes traces
with high quantitative robustness.

Table 3. Comparison of various methods searching for fault attack traces with high robustness

Method

Quantitative Attack traces

Total runtime (s) Timeouts (3min)

robustness (found / truth)

SE > 0% 39/39 66 –

RSE = 100% 0/0 67 –

exact QRSE
> 20% 0/2

2435 13< 10
−6

23/27

∈ [10−6, 20%] 3/10

relaxed QRSE > 20% 2/2

250 0BFS(8) then < 10
−6

27/27

BFS(128) ∈ [10−6, 20%] 10/10

Results. As shown in Table 3, SE reports 39 attack traces while RSE reports none, i.e. no perfect

attack is found. On the other hand, quantitative approaches reports an intermediate number

depending on the threshold. Exact QRSE has 13 timeouts, but still proves that out of the 39 attacks

found by SE, at least 23 are not interesting (< 10
−6
).

Relaxed QRSE is a significant improvement: it never times out while classifying 27 traces as not

interesting and finding two with high quantitative robustness (∼ 0.99 both). Manual analysis on the

traces confirms these results. For example, the lowest quantitative robustness (∼ 2
−56

) corresponds
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to a case where attackers must guess 3 bytes of the cardPIN, the low byte of a register and hope for

the top 3 bytes to be zero. Overall this amounts to 7 bytes, or 56 bits, of luck. On the other hand, the

top 6 detected faults are outside the protected code of VerifyPIN, which proves that the protected

part admits no attack with quantitative robustness above 10
−4

within our threat model.

Conclusion for RQ1. In this case study, QRSE reduced the number of traces to analyze manually

from 39 with standard SE to 12 in the most conservative scenario and 2 in the most optimistic one.

Meanwhile, RSE does not highlight any cases as there are no 100% robust attack traces. Thus here

QRSE helps to focus the attention of security experts on high robustness attack traces better than

RSE, as expected from our initial comparison in Section 8.4. Overall, quantitative robustness is a
much more precise measurement of robustness than robust reachability, which is useful in practice as
we just illustrated.

8.6 Case Study on CVE-2019-20839 (RQ2)

We illustrate the benefits of the absence of path merging in a case study on CVE-2019-20839 from

libvncserver [lib, [n. d.]], an open-source library implementing remote computer-sharing utilities.

The name of a socket file is copied to a fixed size stack buffer without checking its length, resulting

in a stack buffer overflow potentially allowing attackers to overwrite stack data. The security

question is: Can attackers controlling this socket file’s name divert control flow to 0xdeadbeef?
Standard SE tells us it is possible when the top of the stack is at 0xfff02000 and various other

initial conditions are met. But most of those are beyond the control of the attacker, meaning this

information is of little use for vulnerability assessment.

RSE can prove the stronger robust reachability: by choosing the right input, attackers can trigger

the buffer overflow for all initial conditions. However, this requires systematic path merging, which

can be useful when used carefully but detrimental to performancewhen used systematically [Hansen

et al., 2009, Kuznetsov et al., 2012].

As explained in Section 5.2, path merging is not needed in QRSE when only few paths would

need to be merged. Instead, we can attempt to detect single paths with high quantitative robustness.

On this example, QRSE is indeed able to find a single path with quantitative robustness above 20%.

The evidence is weaker than full robust reachability but still a good hint for security.

Conclusion for RQ2. Here QRSE is still able to find a single path with high robustness, which

guarantees that overall robustness is at least equal, while RSE+ is required to prove robust reachabil-

ity. The same issue occurs for the other instances of additional false negatives for RSE compared to

RSE+ in Table 2 (Section 8.4). This reliance on path merging for RSE can also cause scalability issues,

as we saw that QRSE is the only algorithm to terminate on another variant of libvncserver. QRSE
(without path merging) can give a strong indication of robustness by finding a single highly-robust
path, while RSE relies much more on path merging.

8.7 Performance of the Relax Solver (RQ3)

To answer the remaining research questions, we prepared a benchmark composed of 117 𝑓 -E-

MAJSAT instances: 92 SMTLib2 formulas obtained from the original RSE paper Girol et al. [2021],

including the real-world vulnerabilities detailed in Table 1; and 25 SMTLib2 problems generated in

our VerifyPIN case study (RQ1).

The size of these formulas (554 variables and 998 clauses on average after bitblasting) is compa-

rable to what is found in Lee et al. [2018] (331 variables and 3761 clauses on average). Problems are

run on an Intel Xeon E-2176M CPU (2.70GHz) with a timeout of 20 minutes and a memory-out of 2

gigabytes.
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Table 4. Runtime of solvers

Algorithm Average (s) Timeouts*

ok** all***

Exact

constrained 0.6 25.5 9/117

ssatabc N/A 1200 117/117

complan+ 23.7 1190 116/117

dcssat 10.8 79 57/117

Approximate

oval 0.3 9.2 1/117

maxcount N/A 1097 117/117

relax_bfs(8) 1.3 14 2/117

relax_dfs(8) 1.5 7 2/117

relax_bfs(32) 0.5 12.6 2/117

relax_dfs(32) 1 7.7 2/117

relax_bfs(128) 0.3 9.4 1/117

relax_dfs(128) 0.2 4.5 1/117

* 20 minutes ** without timeouts *** with timeouts
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Fig. 5. Number of instances solved by approximate algorithms
under a precision threshold

Exact Methods. Only two exact methods can solve a significant number of instances as shown in

Table 4: dc-ssat (60/117) and Constrained (108/117). The performance of dc-ssat is still quite

poor here, with a high average runtime even without timeouts. However Constrained performs

surprisingly well for what is supposed to be an impractical, naive baseline, although it still times

out 9 times, which significantly impacts performance in practice. This could be due to problems

stemming from program analysis differing significantly from those for which Complan+, ssatABC

and dc-ssat are designed. Approximate algorithms are thus needed to solve more than 108/117

instances, with less timing-out.

Approximated Methods. In order to fairly evaluate approximate algorithms, we must consider

both their time performance and the precision of their result. Let 𝑙 and ℎ be the lower and upper

bounds returned by approximate solvers. We call imprecision the ratio ℎ/𝑙 .
Table 4 shows that Oval terminates on 116 instances with good average runtime. However these

numbers are misleading as precision is not taken into account. As we can see in Figure 5, Oval’s

results are very imprecise, on par with Relax’s worst set up. Also, Maxcount always times out

here, likely for similar reasons as the poor performance of exact solvers.

The Relax Algorithm. Table 4 shows that Relax terminates on 115 to 116 instances depending

on parameters, with low average runtime. Overall, Relax with the dfs relaxed variable selection

heuristic and 8 relaxed variables gives the most precise results as we can see on Figure 5: 115

instances are solved with an imprecision threshold of only 4. In particular, it solves 7 out of the

9 problems which Constrained cannot, while the latter fails to solve any that Relax times out

on. Relax is still fairly precise with 32 relaxed variables, however 128 is clearly too many. See

Appendix A for a more detailed study on the impact of the number of relaxed variables. Note that

the bfs relaxed variable selection heuristic does not seem as good as dfs and that Relax’s results

with 128 relaxed variables are on par with Oval’s.

Figure 6 gives a summary of the performance of all algorithms with an imprecision threshold of

32. Constrained is the best exact algorithm, however approximate approaches can solve more

instances and Relax is the best of them both in terms of solved instances and precision.
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Fig. 6. Cactus plot of various 𝑓 -E-MAJSAT solving algorithms applied to 117 instances from QRSE . Dashed
lines correspond to methods returning an interval [𝑙, ℎ] rather than an exact answer. Only solutions with
imprecision ℎ/𝑙 below 32× are considered solved. The number of solved instances is given in parentheses.
Note that the 𝑦 axis is broken to improve readability.

Conclusion for RQ3. The Relax algorithm performs much better than prior works on the kinds of
instances generated by QRSE, both in terms of speed (very few time outs) and precision. Additionally,
the naïve Constrained algorithm performs surprisingly well.

9 DISCUSSION

Choosing Controlled Inputs. In most instances, choosing controlled inputs should be relatively

straightforward. However if that is not the case, a lower bound on quantitative robustness can still

be obtained by under-approximating the set 𝐴 of controlled inputs. Techniques such as dynamic

analysis (taint propagation) can possibly be leveraged here to discover such under-approximations.

Uncontrolled Inputs Distribution.We assume that uncontrolled inputs are uniformly distributed,

which may not be the case in practice. Thus, it is possible in principle for some uncontrolled inputs

allowing or preventing a vulnerability to be more or less common than others, in which case QRSE
results could be inaccurate. As a first mitigation, user-given assumptions on uncontrolled inputs

can be taken into account within our method, preventing impossible or very rare uncontrolled

input from being taken into account.

Also, while our formal framework could certainly be extended to take into account such input

distribution, this would comewith two significant practical issues. First, estimating such distribution

in practice is certainly a challenge on its own, and the user would be left with this burden. Second,

current model counting techniques do not take input distribution into account, hence we cannot

currently automate such a feature. One way to solve this issue could be to take a probabilistic

sampling approach, although this would come at the cost of weaker formal guarantees.

Finally, note that, to our knowledge, the closest method to QRSE from the literature, probabilistic

symbolic execution [Geldenhuys et al., 2012], has the same limitation.

Handling Richer Theories. Since Binsec uses bitvector and array theories to build path con-

straints, we focused on those when designing our algorithms. However, handling other theories

would be beneficial as it would simplify input specifications for example.

While some solutions have been proposed for handling theories such as string in standard model

counting [Aydin et al., 2015, 2018, Trinh et al., 2017], the state-of-the-art for 𝑓 -E-MAJSAT solvers

has not reached that point yet. In addition, the model counting algorithms proposed there rely on



Quantitative Robustness for Vulnerability Assessment 177:21

structures such as automata [Aydin et al., 2015, 2018] rather than bitblasting and compilation to

decision-DNNF , making an adaptation non trivial.

Practical Usability. As shown in Table 2, the overall runtimes of RSE and QRSE on Girol et al.’s

benchmark [Girol et al., 2021] are on par with each other. In general, QRSE should be at least as

scalable as RSE, although the lesser reliance on path merging is a definite advantage. However all

the shortcomings of symbolic execution still apply: path explosion, unmanageable constraints, high

expertise requirements.

Still, QRSE may have a higher potential for optimization that RSE as high robustness paths can

be preferentially explored, analysis halted when total robustness exceeds a given threshold, paths

selectively merged, etc. There is a clear research direction for performance improvement here. In

addition, it should combine better with traditional optimizations of symbolic execution, such as

concolic execution [Sen et al., 2005] or under-constrained SE [Ramos and Engler, 2015]. Finally,

QRSE could be applied to a few pre-selected paths as part of a broader evaluation process.

10 RELATEDWORKS

10.1 Comparison to OtherQuantitative Formalisms

We designed a quantitative counterpart to robust reachability, which we view as too strict. Quanti-

tative relaxation has already been seen in other domains and is part of a general effort to make

formal verification less “all-or-nothing”: from non-interference [Goguen and Meseguer, 1982] to

quantitative information flow [Heusser and Malacaria, 2010], from traditional model checking to

probabilistic model checking [Aziz et al., 1996, Hansson and Jonsson, 1994] or from symbolic execu-

tion to probabilistic symbolic execution [Geldenhuys et al., 2012]. These different applications give

rise to different counting or probabilistic problems. We rely on 𝑓 -E-MAJSAT while probabilistic

verification builds on standard model counting [Gomes et al., 2008], probabilistic model checking

on Markov chains and quantitative information flow on projected model counting [Aziz et al.,

2015].

Probabilistic Reachability. Program verification is usually encoded as the reachability of an

undesirable condition, thus a natural evolution is to consider the probability of reaching it. For

example probabilistic symbolic execution [Geldenhuys et al., 2012] attempts to compute the proba-

bility
5
of each path, and shows experimentally that one can find bugs by focusing human analysis

on improbable paths. The main difference with our work is that they compute the probability of a

bug happening in a neutral environment, whereas we take into account the presence of an attacker.

Probabilistic Temporal Logics. Probabilistic logics developed formodel checking like pCTL [Hans-

son and Jonsson, 1994] use Markov chains instead of model counting on constraint systems. They

can express the probability of complex events in interactive systems with several rounds of input,

but not systems where two actors have different interests. Mapping the CTL encoding of robust

reachability (EXAF𝜑) to pCTL expresses the probability of reaching the target property for a

specific attacker whose probability transition tables are known. However, in our case attacker

actions should be taken as worst case and are not known a priori. More expressive logics like

MTL2 [Jamroga, 2008], a generalisation of ATL [Alur et al., 2002], can express a worst-case attacker,

but are so general that they lack tractable proof methods.

Quantitative Information Flow. Quantitative information flow attempts to quantify the amount

of information that an attacker can deduce from the observable behavior of a system, interpreted as

leakage of information. Attackers choose public inputs to a system, defenders choose secret inputs

5
Note that they compute model counts and therefore also assume uniformly distributed inputs.
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and attackers attempt to deduce the secret from the public output [Heusser and Malacaria, 2010]. A

central notion is the capacity of the leakage channel: the logarithm of the number of public outputs

𝑧 such that there exists a pair of (public, private) inputs leading to 𝑧. This problem is called projected
model counting [Aziz et al., 2015] and is distinct from our approach based on 𝑓 -E-MAJSAT.

Phan et al. [Phan et al., 2017] automatically build multi-step side-channel attacks maximizing

information leakage. Since the leakage for a given set of observations (and thus the underlying

execution paths) is constant, they fall under the MaxSMT problem, where the goal is to maximize

the sum of weights corresponding to different satisfied constraints. In contrast, the weights of

executions paths in the analogous quantitative robust reachability problem, i.e. the number of

triggering uncontrolled inputs, depend on controlled inputs, hence our reduction to the harder

𝑓 -E-MAJSAT problem.

10.2 Other Related Works

Counting Solvers. Many combinations and extensions are possible. The branch-and-bound algo-

rithms behind Complan and Complan+ can be interrupted at any time to obtain a refined, but not

perfect interval. Our algorithm Relax could be refined by using bounds inspired from Oval instead

of Unconstrained, at the price of significant added complexity. The choice of the set of relaxed

variables has only been partially explored, and is certainly a direction for future work. We could

also get inspiration from a recently proposed CEGAR-based approach to counting [Vigouroux et al.,

2022]. Note finally that some works target model counting beyond propositional formulas (e.g., for

bit-vectors [Kim and McCamant, 2018] or integer polyhedra [De Loera et al., 2004]), which could

guide us for further developments.

Flakiness.When a branch can be reached robustly, but outgoing paths are not robust anymore,

then some dependence on uncontrolled input may be at play. If uncontrolled inputs are non-

deterministic, this strongly suggests [Girol et al., 2021] that the test is flaky (has non-deterministic

outcome), which is an active area of research [Alshammari et al., 2021, Luo et al., 2014, Wei et al.,

2022]. Quantitative robustness could thus be used to detect locations where flakiness is introduced,

in the form of branches with less quantitative robustness than their parent.

11 CONCLUSION

Robust reachability has been recently proposed for identifying bugs or attacks which are replicable

with absolute certainty from those which are not. Yet, this qualitative robust reachability is too

strong to distinguish mostly replicable bugs from unreplicable ones. We solved this issue by

introducing the notion of Quantitative Robustness, together with Quantitative Robust Symbolic
Execution (QRSE), an analysis technique able to find buggy execution paths with high quantitative

robustness. Especially, our approach reduces, in the finite domain case, to a variant of model

counting named 𝑓 -E-MAJSAT. Given the poor performance of existing 𝑓 -E-MAJSAT solvers

on quantitative robustness instances, we developed a new approximate algorithm, Relax. Our

experiments show that quantitative robustness and QRSE can be useful in practice for the purpose

of vulnerability evaluation.
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A IMPACT OF THE NUMBER OF RELAXED VARIABLES ON THE RESULTS OF RELAX

Theoretical upper bound (Theorem 7.11) 2
𝑟
omitted for 𝑟 ≥ 64.

Fig. 7. Box plot of imprecision (upper/lower bound)
of approximate 𝑓 -E-MAJSAT solving algorithms.

Fig. 8. Solved instances within timeout depending
on the number 𝑟 of relaxation variables, regardless
of precision.

The number of instances solved by Relax within timeout increases with the number 𝑟 of relaxed

variables (Figure 8). Up to 8 more instances can be solved with relaxation. The imprecision also

increases with 𝑟 (Figure 7), although it is often orders of magnitude smaller than the theoretical

bound 2
𝑟
(Theorem 7.11). DFS variable order usually yields more precise results, but for 𝑟 = 128

this tendency is broken regarding the median. As expected, when 𝑟 increases we observe similar

behavior to techniques based on fully unconstrained decision-DNNF , like Oval. Relaxation can reach
a sweet spot between precision and efficiency, allowing to solve more instances than exact algorithms
with significantly better approximation than theoretical bounds.
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