
Active Disjunctive Constraint Acquisition

Grégoire Menguy1 , Sébastien Bardin1 , Arnaud Gotlieb2 , Nadjib Lazaar3
1CEA LIST, Université Paris Saclay, France
2Simula Research Laboratory, Oslo, Norway

3LIRMM, University of Montpellier, CNRS, France
{first.name}@cea.fr, arnaud@simula.no, nadjib.lazaar@lirmm.fr

Abstract
Constraint acquisition (CA) is a method for learning users’
concepts by representing them as a conjunction of constraints.
While this approach works well for many combinatorial prob-
lems over finite domains, some applications require the acqui-
sition of disjunctive constraints, possibly coming from logi-
cal implications or negations. In this paper, we propose the
first CA algorithm tailored to the automatic inference of dis-
junctive constraints, named DCA. A key ingredient there is
to build upon the computation of maximal satisfiable sub-
sets. We demonstrate experimentally that DCA is faster and
more effective than traditional CA with added disjunctive
constraints, even for ultra-metric constraints with up to 5
variables. We also apply DCA to precondition acquisition
in software verification, where it outperforms the previous
CA-based approach PRECA, being 2.5 times faster. Specifi-
cally, in our evaluation DCA infers more preconditions in just
5 minutes than PRECA does in an hour, without requiring
prior knowledge about disjunction size. Our results demon-
strate the potential of DCA for improving the efficiency and
scalability of constraint acquisition in the disjunctive case,
enabling a wide range of novel applications.

1 Introduction
Constraint programming (CP) (Rossi, Van Beek, and Walsh
2006) has made considerable progress over the last forty
years, becoming a powerful paradigm for modelling and
solving combinatorial problems. However, modelling a
problem as a constraint network still remains a challenging
task that requires expertise in the field. As part of knowl-
edge acquisition, several constraint acquisition (CA) sys-
tems have been introduced to support the uptake of con-
straint technology by non-experts. Based on querying an
oracle that classifies samples as solutions and non-solutions,
an active CA system automatically learns a constraint sys-
tem that represents a concept the user has in mind. This is
an active field of research, with many proposed extensions,
for example allowing partial queries (Bessiere et al. 2013;
Bessiere et al. 2020), incomplete answers (Tsouros, Ster-
giou, and Bessiere 2020), arguments (Shchekotykhin and
Friedrich 2009), or acquisition of qualitative constraint net-
works (Belaid et al. 2022).

Handling disjunctions. Still, classical CA is naturally
dedicated to the acquisition of conjunctions of constraints.

This thwarts its application to broader contexts. Indeed,
some problems of interest such as ultrametric constraints
(Gent et al. 2003), some global constraints (Régin 2010) or
recently precondition acquisition (Menguy et al. 2022) are
disjunctive by essence. As current CA systems lack a prin-
cipled framework to handle disjunctive behaviours, disjunc-
tive constraints have to be either manually added to the input
language of CA or automatically generated (up to a given
size) by an enumeration algorithm. For instance, in precon-
dition acquisition, function mbedtls aes setkey enc
from the mbedtls cryptographic library 1 requires adding
a disjunctive precondition of 7 atomic constraints. By using
an incremental enumeration of all disjunctive constraints,
this precondition can hardly be generated in less than two
hour of CPU time on a standard machine. Deciding which
disjunctions are needed in classical CA systems or finding
an efficient generation method of relevant disjunctive con-
straints is an important but still open problem that can be
viewed as a search problem in a lattice-organized search
space.

Contributions. In this paper we propose a new CA ap-
proach that acquires networks with disjunctive constraints
in a principled manner. Our contributions are threefold:

• We propose DCA the first inference framework extending
CA to infer conjunctions of disjunctive constraints (Sec-
tion 3). It elegantly leverages maximal satisfiable subsets
(MSS) enumeration (Liffiton and Malik 2013) to render
CA more expressive to efficiently handle disjunctions;

• We prove that DCA enjoys good theoretical properties
(Section 3.3). Especially, it shares the same guarantees
as usual CA, showing that DCA is an appropriate general-
ization of CA for disjunctive contexts. Notably, DCA al-
ways terminates, generates informative queries only, and
returns a result that agrees with all tested queries. More-
over, if the target concept can be expressed as a conjunc-
tion of disjunctive constraints from the input set of con-
straints, then DCA infers it (Theorem 1);

• We evaluate2 in Section 4 our new learning framework
DCA over two different benchmarks: a general bench-

1https://github.com/Mbed-TLS/mbedtls
2Artifacts available: https://github.com/binsec/dca

https://github.com/Mbed-TLS/mbedtls
https://github.com/binsec/dca

mark formed of randomly generated disjunctive con-
straints, ultrametric and domain constraints and a precon-
dition inference benchmark from (Menguy et al. 2022).
In particular, we show that DCA is especially well-
suited for precondition inference as queries are automati-
cally answered by systematically calling the program un-
der analysis. Regarding the above-mentioned example
from mbedtls that timeouts in 2h with traditional CA,
DCA infers the disjunctive precondition in less than 2min
(102sec in average).

To the best of our knowledge, DCA is the first active CA
method to handle disjunctive problems. It makes CA more
flexible, removing the need to model disjunctive behaviours
as a unique constraint – which needs expertise from the user.

2 Background
We now describe the necessary background on constraint ac-
quisition, its applications and MSS enumeration, which will
be leveraged throughout this paper.

2.1 Constraint Acquisition (CA)
CA process (Bessiere et al. 2013; Bessiere et al. 2017) can
be seen as an interplay between a CA-Agent (learner) and a
source of information (user or oracle3). For that, the CA-
Agent needs to share some common vocabulary to commu-
nicate with the user. This vocabulary is a finite set of vari-
ables X taking values in a finite domain D. A constraint
c defined over a subset of variables from the vocabulary is
a relation specifying which values of these variables are al-
lowed. A constraint network (CN) is a set C of constraints.
An example e ∈ D|X| satisfies a constraint c if its projection
on c variables is in the solutions set of c, noted, sol(c). An
example e is a solution of C iff it satisfies all constraints in
C. Thus, a CN represents a conjunction of constraints.

In addition, the CA-Agent owns a language Γ of bounded
arity relations from which it can build constraints on spec-
ified sets of variables from the vocabulary. The constraint
bias, denoted by B, is a set of constraints built from Γ on
(X,D), from which the CA-Agent builds a constraint net-
work. We say that a CN C is representable by B iff C ⊆ B.
A set of constraint C (e.g., the bias) is said to be complete
iff for each constraint c ∈ C, its negation c′ ≡ c is in C too.
A concept is a Boolean function f over D|X|. A represen-
tation of a concept f is a constraint network C for which
f−1(true) equals the solutions set of C. A membership
query (or simply a query) takes an example e and asks the
user to classify it. The answer is yes iff e is a solution of the
user concept. A query e is, thus, said to be positive (resp.
negative) if its answer is yes (resp. no) and is noted e+

(resp. e−) to emphasize its classification. For any example
e, κ(e) denotes the set of all constraints in B rejecting e.

We now define convergence. Given a set E of examples
labeled by the user yes or no, we say that a network C agrees
with E if C accepts all examples labelled yes in E (noted
E+) and does not accept those labelled no (noted E−). The

3The standard CA terminology employs user, yet we some-
times use oracle to highlight the fact that it can be automated.

learning process has converged on the network L ⊆ B if (i)
L agrees with E and (ii) for every other L′ ⊆ B agreeing
with E, we have L′ ≡ L.

CONACQ is a CA-Agent that submits membership queries
to a user (Bessiere et al. 2017). CONACQ uses a concise rep-
resentation of the learner’s version space into a clausal for-
mula. Formally, any constraint c ∈ B is associated with a
Boolean atom a(c) stating if c must be in the learned net-
work. CONACQ starts with an empty theory and iteratively
expands it by generating and submitting to the user an infor-
mative example. An informative example ensures to reduce
the version space independently from the user’s answer. If
no informative example remains, this means that we con-
verged and CONACQ returns the learned network.

2.2 User-based Handling of Disjunctive
Constraints

CA has been used in different scenarios, from schedul-
ing (Beldiceanu and Simonis 2012) to robotics (Paulin,
Bessiere, and Sallantin 2008). Still, the high number of
queries that must be classified by the user and the limitation
to conjunctive constraints limit its practical usage.

In prior work, we recently show (Menguy et al. 2022) that
CONACQ-like CA is especially well adapted to precondition
inference, a program analysis task. Indeed, in such a case,
the number of queries is not a limitation, because queries
are automatically answered by calling the compiled program
over a set of inputs. This led to PRECA, the first contract
inference framework based on CA. However, state-of-the-
art CA can only infer conjunctions of constraints. Thus,
we proposed to let the user include useful disjunctions in
the bias directly, so that disjunctive preconditions can be in-
fered. However, deciding which disjunctions shall be in-
cluded in the bias remains on the shoulder of the user. As
an help to the user, given the analyzed program function F ,
PRECA includes all Horn clauses of size ≤ max(i, 1) + 1,
where i is the number of F integer inputs. While such a
heuristics works on simple examples, it does not scale well
and cannot handle complex examples, as the number of dis-
junctive constraints rapidly explodes.

2.3 Maximal Satisfiable Subset (MSS)
Maximal satisfiable subsets are extensively used in knowl-
edge comprehension. The following presents basic defini-
tions which will be used all along the paper.
Definition 1 (MSS). Given a UNSAT set of constraints C,
M ⊆ C is a maximal satisfiable subset (MSS) of C iff M is
SAT and for all constraints c ∈ C \M , M ∪ {c} is UNSAT.
We note MSSC the set of all the MSS of C.
Example 1. Let X = {x}, D = 0..9 and C = {x ≥ 2, x <
2, x ≥ 8, x < 8}. C has 3 MSSes: {x < 2, x < 8}, {x ≥
2, x < 8}, and {x ≥ 2, x ≥ 8}.

Enumeration. Multiple MSS enumeration algorithms
have been proposed (Bailey and Stuckey 2005; Liffiton and
Malik 2013; Liffiton and Sakallah 2005; Van Loon 1981;
Gleeson and Ryan 1990). Some are specialized to han-
dle specific constraint types (Van Loon 1981; Gleeson and

Ryan 1990) while others are constraint-agnostic (Bailey
and Stuckey 2005; Liffiton and Malik 2013; Liffiton and
Sakallah 2005). In the former case, enumeration often relies
on linear programming constructions. In the latter case, such
specific constructs are not available. Thus, approaches like
DAA (Bailey and Stuckey 2005) traverse the search space by
generating partial candidates through hitting sets computa-
tion. On the other hand, MARCO (Liffiton and Malik 2013)
maintains a power set map representing the search space as
a boolean formula. They generate candidate solutions which
are extended into MSSes if they are satisfiable.

3 Disjunctive Constraint Acquisition (DCA)
After having presented how the usual hypothesis and defini-
tions of CA translate into the context of disjunctive CA, we
describe DCA in detail, which infers disjunctive constraint
network in an active manner. As far as we know, DCA is the
first CA method specifically designed for disjunctive scenar-
ios. We then demonstrate that DCA offers the same strong
theoretical guarantees as traditional CA methods. Lastly, we
propose several optimizations to accelerate inference.

3.1 From CA to DCA
CA assumes that the target concept CT , given a bias B,
is representable by B, i.e., can be expressed as a conjunc-
tion of constraints from B. It can then provide clear cor-
rectness and termination guarantees (Bessiere et al. 2013;
Bessiere et al. 2017). However, this assumption limits its
expressivity, making it difficult to infer disjunctive behav-
iors since the disjunctions must be present in B, significantly
increasing its size and hampering inference. In this work,
we limit the bias to atomic constraints, without including
disjunctive constraints into B, unlike classical CA. During
the inference process, the disjunctions will be automatically
formed and inferred.

Definition 2 (
∨

-representability). Let C be a CN and C be
a set of constraints. We say that C is

∨
-representable by

C iff it is composed of constraints that are either in C or are
disjunctions of constraints from C. More formally, C is a CN
s.t., for all ci ∈ C, ci is in C or there exists ci1, ..., cik ∈ C,
s.t., ci = ci1 ∨ ... ∨ cik∨

-representability generalizes usual representability to
handle disjunctions of constraints. In the following, we aim
to infer a CN CT that is

∨
-representable by B.

Classical CA not only infers the target concept as a con-
junction of constraints but also ensures that it only generates
informative (i.e., irredundant) queries, which can prune the
search space regardless of their classification. In our sce-
nario, an informative query is defined as follows, given a
bias B and a set of queries E:

Definition 3 (Informative query). Given a bias B and a set
of queries E. A query e ̸∈ E is informative if it is not clas-
sified the same way by all CN

∨
-representable by B, that

agree with E.

This definition of informativeness matches the one given
in classical CA (Bessiere et al. 2017). The only difference is

that the considered CN can contain disjunctions. For exam-
ple, let the bias B be {x > 0, x ≤ 0, y > 0, y ≤ 0} and the
set of positive queries E = {e+1 = (x ← 1, y ← 1), e+2 =
(x ← 0, y ← 0)}. In classical CA, where only conjunc-
tions of B are allowed, no informative queries are left apart.
However, in our case, the query e3 = (x ← 1, y ← 0) is
informative as x ≤ 0 ∨ y > 0 classifies it negatively while
x > 0 ∨ y ≤ 0 classifies it positively.

3.2 The DCA Framework
To infer disjunctions automatically with good guarantees,
we rely on MSS enumeration (Liffiton and Malik 2013).

Observe that, in Example 1, MSSC forms a partition of
D|X|. That is, all e ∈ D|X| are solutions of one and only
one MSS of C. This is not always the case. For example, the
constraint set C = {x > 2, x = 2} has only 2 MSSes: x > 2
and x = 2, which do not induce a partition of D|X|. In fact,
such property holds for all complete constraint sets.
Proposition 1 (Partition). Let C a complete nonempty set
of constraints over a domain D|X|. Then MSSC induces a
partition of D|X|.

Proof. (sketch.) We prove that all elements of D|X| are a
solution of exactly one MSS of C. Let e ∈ D|X|. First,
e cannot be a solution of two distinct MSS M1 and M2.
Otherwise, M1 ∪M2 would be SAT (contradicts with MSS
definition). Second, note that there is always an MSS M s.t.,
e |= M . Indeed, C being complete, M = {c ∈ C | e |= c}
is an MSS accepting e (for each c ∈ C, either e |= c and
c ∈M or e ̸|= c and c ∈M , so M ∪ {c} is UNSAT).

Thus, given e ∈ D|X|, there exists a unique M ∈ MSSC
s.t., e |= M . We note it MSSC(e) and can be understood as
the most precise approximation of e modulo C. When CT

is
∨

-representable by B, MSSes become especially useful.
Indeed, being the most precise approximations of elements
in D|X|, we know that all elements in a MSS share the same
classification. Checking only one element per MSS is then
enough to deduce the classification of all elements of D|X|.
Proposition 2 (MSS classification). Let C be a nonempty,
complete set of constraints and CT be the target constraint
network

∨
-representable by C. For each M ∈ MSSC , all el-

ements e ∈ sol(M) share the same classification w.r.t. CT .

Proof. (sketch.) Let M ∈ MSSC and e1, e2 ∈ sol(M).
Then, for all, c ∈M, e1 |= c∧e2 |= c. Moreover, for all c ∈
C \M, e1 ̸|= c ∧ e2 ̸|= c (otherwise M ∪ {c} would be SAT
and M would not be an MSS). As such, we know that for all
c ∈ C, e1 |= c⇔ e2 |= c. As such, for each disjunction δ in
CT , e1 |= δ ⇔ e2 |= δ. Thus e1 |= CT ⇔ e2 |= CT .

From Proposition 2 directly follows that given a
nonempty complete constraint set C, checking only one so-
lution of each MSS of C is enough to know the classification
of the full domain. This leads to the DCA algorithm pre-
sented in Algorithm 1. It takes a nonempty complete bias
and enumerates all its MSS. For each enumerated MSS M ,
a membership query e ∈ sol(M) is picked to check its clas-
sification. If it is not classified positively, the result L is

Algorithm 1: DCA

In : A nonempty complete bias B
Out : A CN L that agrees with all examples

1 begin
2 L← ⊤
3 foreach M ∈ MSSB do
4 pick e ∈ sol(M)
5 if ask(e) ̸= yes then
6 L← L ∧ ¬M

7 return L

updated, at line 6, to remove sol(M) from it – disjunctions
are introduced here by adding ¬M i.e., the negation of M .
When all MSS have been checked, DCA returns the solution
L. The DCA algorithm relies extensively on MSS enumera-
tion. It may rely on any enumeration algorithm ensuring ter-
mination, correctness, and completeness, like DAA (Bailey
and Stuckey 2005) or MARCO (Liffiton and Malik 2013).

3.3 Theoretical Analysis
We now show the guarantees of DCA: it terminates, asks
only informative queries, returns a concept that agrees with
all checked queries and is correct under some hypothesis.
Then we compare DCA guarantees to usual CA ones.

Proposition 3 (Termination). DCA terminates.

Proof. It directly follows the fact that B is finite and MSS
enumeration terminates.

Proposition 4. DCA generates informative queries only.

Proof. (sketch.) Let B be the bias, E be the set of already
generated queries, and L the inferred concept until now. Let
e∗ be a newly generated query. The query e∗ is associated
with an MSS of B: MSSB(e

∗). For each query e ∈ E,
e ̸|= MSSB(e

∗). Thus L and L ∪ {¬MSSB(e
∗)} agree with

E but classify e respectively as positive and as negative.

Proposition 5. DCA returns a constraint network L that
agrees with each classified queries.

Proof. (sketch.) Let B be a complete bias and E be the
generated query set. Then for each e− ∈ E−, we know that
¬MSSB(e

−) has been added to L at line 6. Thus, e− ̸|= L.
Furthermore, for each e+ ∈ E+, we know that ¬MSSB(e

+)
has not been added to L. Moreover, for all other MSS of B
different from MSSB(e

+), noted M , we know that e+ ̸|= M
– as the set of MSS induces a partition of the domain. Thus
e+ |= ¬M and e+ |= L.

Theorem 1 (Correctness). Given a complete atomic bias B
and a target concept CT

∨
-representable by B. DCA re-

turns a network L s.t. L ≡ CT .

Proof. (sketch.) DCA enumerates all MSS of B, picks a
unique query inside it, and updates the candidate solution ac-
cording to the classification. From Proposition 2, we know

that all elements of an MSS of B share the same classifi-
cation. Thus, at line 5, we not only know the classification
of e but also of all elements of MSSB(e). Moreover, from
Proposition 1, we know that the domain is partitioned by
the set of MSSes of B. So through MSS enumeration at
line 3, DCA deduces the classification of each element of
the domain. Moreover, as DCA terminates (Proposition 3)
and agrees with all queries (Proposition 5), it is correct.

DCA vs. CA. Usual constraint acquisition methods
(Bessiere et al. 2013; Bessiere et al. 2017) enjoy clear the-
oretical guarantees. They terminate, generate informative
queries only, and return a CN agreeing with all seen queries.
Moreover, if the target concept can be represented as a con-
junction of constraints from the bias CT , then constraint ac-
quisition returns a CN L equivalent to CT . DCA enjoys the
same good theoretical guarantees adapted to the disjunctive
scenario. Still, as DCA relies on a weaker hypothesis, it may
ask more queries than standard CA. While it may be an im-
portant limitation in some contexts involving human experts,
it is not the case when the oracle (user) can be automated
(Menguy et al. 2022).

Complexity. Learning constraint networks through mem-
bership queries is a well-known challenging task (Bessiere
et al. 2017). Our approach addresses this problem while
introducing an additional level of complexity with disjunc-
tions. The computational complexity of DCA is primarily
determined by the worst-case scenario of exponential-time
enumeration of the MSS. Still, we demonstrate in our ex-
perimental evaluation that DCA can already handle in an ef-
ficient way practical code analysis tasks of significant in-
terest. Still, future directions could focus on reducing such
complexity under certain assumptions.

4 Experimental Evaluation
Our experimental evaluation aims to answer the following
three Research Questions:
RQ1 How does DCA compare to the classical CA CONACQ

approach? We compare CONACQ and DCA to infer
disjunctive constraints. As CONACQ cannot automat-
ically infer disjunctions, we added all disjunctions of
size up to some threshold into its bias.

RQ2 Can DCA be leveraged for precondition inference?
We apply DCA to the precondition inference appli-
cation of CA (Menguy et al. 2022). We especially
compare DCA to PRECA over a dataset of real-world
functions. We also evaluate how the approaches are
impacted by the disjunction size present in the target
preconditions – including the purely conjunctive case.

RQ3 How is DCA impacted by bias size? We apply DCA
over three bias sizes and compare it to PRECA over
the precondition inference use-case.

Implementation We implemented DCA in JAVA, and re-
lied on the CHOCO (Prud’homme, Fages, and Lorca 2014)
constraint solver for testing the satisfiability of the learnt

constraint network and MINISAT SAT solver (Eén 2006) for
the generation of informative queries. For MSS enumera-
tion, DCA leverages the MARCO (Liffiton and Malik 2013)
algorithm which proved to be faster than DAA (Bailey and
Stuckey 2005) in our context.

4.1 Experimental Design
In order to respond to the three raised RQs, we performed
two experiments on two distinct benchmarks. The first
benchmark is formed of simple disjunctive constraints com-
posed of random constraints, one global constraint and ultra-
metric constraints. The second benchmark is extracted from
the precondition inference application.

Disjunctive Constraint Benchmark (DCB). This bench-
mark is composed of three different constraint families,
namely random, domain and ultrametric constraints. We se-
lected these constraints in order to ensure a sufficient level
of diversity in the benchmark.
• Random. As a baseline, we randomly generated disjunc-

tive constraints named RANDn,d with n ∈ {2, 3, 4} be-
ing the number of variables and d ∈ {2, 3, 4} the maxi-
mum disjunction size considered. These disjunctive con-
straints are composed of the atomic constraints Xi = Xj ,
Xi ̸= Xj , Xi > Xj , and Xi ≤ Xj . For example,
RAND3,2 aims to infer the constraint (X1 ̸= X2 ∨ X0 =
X2)∧ (X1 ≤ X2 ∨X0 > X2)∧ (X1 > X2 ∨X0 ≥ X2).
For each configuration, we randomly generate one con-
straint network.

• Domain Constraint. Global constraints often capture a
combination of disjunctive constraints. To complement
our benchmark, we selected the DOMAIN(X, [X1, .., Xn])
global constraint, noted DOMn, to explore the acquisi-
tion of disjunctive constraints over finite domains. This
constraint, which is formally defined in the catalogue of
global constraint4, is true iff ∀i ∈ 1..n,X = i iff Xi = 1.
Note that X ∈ 1..n and Xi ∈ 0..1. This is one of the sim-
plest global constraints that capture disjunctive relations.

• Ultrametric Constraints. The ultrametric constraint
UM3(X,Y, Z) (Moore and Prosser 2008) stands for

X > Y = Z∨Y > X = Z∨Z > X = Y ∨X = Y = Z

having 3 variables and 4 disjuncts. In our benchmark,
we generalized the ultrametric constraint to a family of
constraints as follows UMk+1 =

∧
V ∈2X∧|V |=k UMk(V),

where k ≥ 3 is the number of variables. So, UMk contains
k variables and an ever-growing number of constraints
with 4 disjuncts.

Precondition Inference Benchmark (PIB). To evaluate
DCA on precondition acquisition, our dataset considers 60
real C functions for which preconditions have to be in-
ferred. It includes all functions available in the public
repository5 associated to the (Menguy et al. 2022) publi-
cation: all functions from string.h, all functions from

4sofdem.github.io/gccat/gccat/Cdomain constraint.html
5https://zenodo.org/record/6513522#.ZBGqLnWYWV4

(Seghir and Kroening 2013; Sankaranarayanan et al. 2008)
some functions from the DSA benchmark (https://tinyurl.
com/tvzzpvmm), Frama-C WP test suite (https://tinyurl.
com/ycxdbjf3), Siemens suite (Hutchins et al. 1994), the
book Science of Programming (Gries 2012). We also con-
sider some functions from the mbedtls cryptographic library.
Overall, our benchmark PIB extends the one from (Menguy
et al. 2022) with functions having highly disjunctive precon-
ditions. In particular, PIB functions have in between 1 and
8 inputs and 39 over 60 have disjunctive preconditions with
clauses of size between 2 and 7. Note that 21 functions have
conjunctive-only preconditions. We choose to keep them in
the evaluation as users do not know at first sight if precon-
ditions are disjunctive or not. It also allows evaluating DCA
over fully conjunctive problems to evaluate its overhead.

To answer RQ3, we consider different bias configurations
presented in Table 1. The Min bias configuration considers
biases with only constraints and variables requested to ex-
press the inferred preconditions The Avg bias configuration
considers biases with only requested constraints but applied
to all combinations of variables. Finally, the Max bias con-
figuration considers all possible constraints from a given in-
put language similar to the one presented in (Menguy et al.
2022), applied to all combinations of variables. Thus, given
a function under analysis, its minimal bias is a subset of its
average bias which is itself a subset of the maximal bias.

Table 1: Statisitics of the biases (in terms of atomic constraints)
used for precondition inference

min size max size mean size

Min bias 2 32 7.5
Avg bias 2 62 11
Max bias 2 76 18.5

Setup We ran our experiments with different time budgets
(from 1s to 1h, excluding bias generation time). Experi-
ments are done on a machine with 6 Intel Xeon E-2176M
CPUs and 32 GB of RAM.

4.2 Experimental Results
We now present results of DCA over our two datasets.

RQ1. We compare DCA and CONACQ over the DCB
dataset. Results are summarized in Table 2. It presents for
CONACQ and DCA the size of the bias considered (|B|), the
number of queries generated (|E|) and the convergence time.
Moreover, the maximum disjunction size for each prob-
lem is stated in the Disj column. Observe that CONACQ
biases’ size explodes while DCA biases do not. Indeed,
CONACQ cannot infer disjunctions. Thus, all combinations
of disjunctions must be added to the bias, hence increas-
ing its size drastically. On the other hand, DCA naturally
infers disjunctions, and its bias only contains atomic con-
straints. Experiments show that DCA handles more complex
cases than CONACQ. Especially, CONACQ cannot handle
the RAND4,3, and RAND4,4 examples in 1h while DCA infer
the correct concepts in 36s and 37s, respectively. On the do-
main constraints, CONACQ only handles the simplest case

sofdem.github.io/gccat/gccat/Cdomain_constraint.html
https://zenodo.org/record/6513522#.ZBGqLnWYWV4
https://tinyurl.com/tvzzpvmm
https://tinyurl.com/tvzzpvmm
https://tinyurl.com/ycxdbjf3
https://tinyurl.com/ycxdbjf3

DOM3 while DCA handles up to DOM9. Over ultra-metric
constraints, DCA handles up to 5 variables while CONACQ
can only handle the three variables case. Moreover, even
in this case, DCA is 100 times faster, taking 0.5s against
50s for CONACQ. Still, on the conjunctive-only prob-
lems (RANDX,1), CONACQ is faster than DCA. Especially,
over RAND4,1, CONACQ infers the correct concept in 1s
against 38s for DCA. However, CONACQ performances are
highly impacted on disjunctive problems (e.g., moving from
RAND4,1 to RAND4,2, CONACQ is 286× slower), while it has
no impact on DCA. Moreover, we observe that even giving
the exact disjunction size needed (CONACQOmniscient col-
umn), CONACQ cannot keep pace with DCA.

Conclusion: DCA is faster and infers more complex con-
straints than CONACQ even if we give it exactly the needed
disjunction sizes. As expected, DCA is not impacted by the
disjunctive behaviors of the target problem, unlike CONACQ.

Table 2: Comparison of DCA and CONACQ over synthetic dataset

CONACQ CONACQomiscient DCA

Disj |B| |E| Time |B| |E| Time |B| |E| Time
RAND2,1 1 6 3 0.2s 6 3 0.3s 6 3 0.2s
RAND2,2 2 18 3 0.4s 18 3 0.3s 6 3 0.2s
RAND2,3 3 26 3 0.4s 14 3 0.2s 6 3 0.2s
RAND2,4 4 26 3 0.4s 6 3 0.2s 6 3 0.2s
RAND3,1 1 18 7 0.5s 18 6 0.3s 18 13 0.9s
RAND3,2 2 162 13 5s 162 13 3.7s 18 13 0.9s
RAND3,3 3 834 13 154s 690 13 43s 18 13 1s
RAND3,4 4 2850 13 817s 2034 13 140s 18 13 0.9s
RAND4,1 1 36 14 1s 36 15 1s 36 75 38s
RAND4,2 2 648 54 286s 648 37 47s 36 75 39s
RAND4,3 3 7176 - TO 6564 - TO 36 75 36s
RAND4,4 4 56136 - TO 48996 - TO 36 75 37s
DOM3 3 834 24 297s 690 24 217s 18 24 0.6s
DOM4 4 9968 - TO 7944 - TO 24 64 1.2s
DOM5 5 122026 - TO 96126 - TO 30 160 3.3s
DOM6 6 -6 - TO -6 - TO 36 384 9.7s
DOM7 7 - - ME - - ME 42 896 44s
DOM8 8 - - ME - - ME 48 2048 233s
DOM9 9 - - ME - - ME 54 4608 1690s
DOM10 10 - - ME - - ME 60 - TO
UM3 4 472 13 50s 252 13 13s 12 13 0.5s
UM4 4 9968 - TO 7944 - TO 24 75 3s
UM5 4 87440 - TO 77560 - TO 40 541 200s
UM6 4 -6 - TO -6 - TO 60 - TO
Disj is the size of the disjunctions in the target CN; |B| is the size

of the bias (note that CONACQ’s bias includes disjunctions of size up
to Disj, while for DCA, it contains only atomic constraints); |E| is
the number of queries generated (note: for DCA, |E| also equals to
the number of B’s MSS); Time is the time taken to converge to a
unique solution excluding bias generation time (if TO, it means that
execution timeouts). Finally, ME stands for memory exhaustion. The
CONACQOmniscient column presents CONACQ results when the user
knows exactly the disjunctions size present in the target network.

RQ2. First, we compare DCA to the original PRECA pro-
posal, which decides the maximum size of disjunctions to
include in the bias with a simple ad-hoc heuristic. Results
are summarized in Table 3. Over the maximal bias, which

6Here even the bias generation takes more than 1 hour

considers all constraints from (Menguy et al. 2022), DCA
infers 51/60 weakest preconditions in 1h against 45/60 for
PRECA. This is due to the fact, that PRECA does not in-
clude disjunctions big enough to infer the correct concept.
Still, even if we give exactly the disjunction sizes present
in the target precondition (PRECA-Omiscient), PRECA is
not able to infer the preconditions in less than 1h. In a more
realistic scenario, where the user enforces a specific disjunc-
tion size threshold (PRECA-|disj| ≤ n), we observe that
considering disjunctions bigger than three is counterproduc-
tive. Especially, for disjunctions of size 3 to 10, the number
of inferred preconditions decreases from 44/60 to 35/60 pre-
conditions in one hour. Overall, DCA is, on average, 2.5×
faster than PRECA on functions where both terminate. Es-
pecially, it infers in 5mins more preconditions than PRECA
in 1h even in the Omiscient scenario. We also evaluate how
PRECA behaves depending on the size of disjunctions in the
target precondition. Results in Table 4 show that PRECA is
as good as DCA over conjunctive-only preconditions (i.e.,
“No disj” column). However, on disjunctive preconditions,
PRECA infers less weakest preconditions and is slower than
DCA. For disjunctions of size 7, DCA infers 51/60 precondi-
tions against 35/60 for PRECA, and is on average 7× faster
on examples where both terminate. Indeed, including dis-
junctions in PRECA’s bias slows PRECA drastically. On
the other side, DCA can infer disjunctions of arbitrary size.
In practice, over the PIB dataset, DCA successfully infers
preconditions with disjunctions of size up to 7.

Conclusion: DCA enables to infer more weakest precon-
ditions than PRECA while requiring no previous knowledge
on disjunction size. Especially, it infers disjunctions of size 7
where PRECA can only infer efficiently disjunctions of size
up to 3. Moreover, DCA is as efficient as PRECA over fully
conjunctive preconditions.

RQ3. Finally, we compared PRECA and DCA over mul-
tiple biases, described in Table 1. Especially, the minimal
bias includes only constraints useful for the inference, ap-
plied to exactly the good variables. Thus, the only task is to
decide how to combine them with disjunctions and conjunc-
tions. Over the minimal bias, we observe the DCA can han-
dle three additional functions compared to the average and
maximal bias. Moreover, we observe that, in 1h, PRECA
infers fewer preconditions (48/60) than DCA even over the
maximal bias (51/60). We also observe a speed-up for DCA
over the average bias, which includes only the needed con-
straints applied to all variables. Especially, compared to the
maximal bias, DCA infers in 1s, 5s and 5 mins, respectively
7, 3, and 2 additional preconditions.

Conclusion: Giving DCA problem knowledge by feeding
it with relevant only constraints is beneficial. In such a case,
it infers more preconditions faster. Moreover, even without
help, i.e., over the maximal bias, DCA outperforms PRECA
over the minimal bias, i.e., with full problem knowledge.

5 Discussion
In the following, we discuss the needed building blocks to
implement DCA and introduce the notion of background

Table 3: Number of weakest precondition inferred by PRECA and DCA depending on the time budget

Min bias Avg bias Max bias

1s 5s 5 mins 1h 1s 5s 5 mins 1h 1s 5s 5 mins 1h
PRECA 34/60 45/60 48/60 48/60 32/60 44/60 46/60 46/60 24/60 36/60 44/60 45/60↰

No disj 21/60 21/60 21/60 21/60 21/60 21/60 21/60 21/60 20/60 21/60 21/60 21/60↰

|disj| ≤ 2 38/60 43/60 44/60 44/60 35/60 42/60 44/60 44/60 21/60 38/60 44/60 44/60↰

|disj| ≤ 3 30/60 44/60 48/60 48/60 26/60 43/60 46/60 46/60 18/60 31/60 42/60 44/60↰

|disj| ≤ 4 30/60 43/60 48/60 48/60 26/60 42/60 45/60 46/60 18/60 29/60 35/60 40/60↰

|disj| ≤ 7 30/60 43/60 48/60 48/60 27/60 42/60 45/60 45/60 18/60 28/60 35/60 35/60↰

|disj| ≤ 10 30/60 43/60 48/60 48/60 27/60 42/60 45/60 45/60 17/60 27/60 35/60 35/60↰

Omniscient 38/60 45/60 48/60 48/60 34/60 44/60 46/60 46/60 26/60 40/60 43/60 45/60
DCA 40/60 45/60 51/60 54/60 38/60 45/60 49/60 51/60 31/60 42/60 47/60 51/60

The gray lines represent the default configurations of the evaluated tools. For PRECA, it considers the version presented in (Menguy
et al. 2022) with its default heuristic to decide on disjunction size to include in the bias. The PRECA-Omniscient line presents
PRECA results when the user knows exactly the disjunctions size present in the target precondition.

Table 4: Comparison of DCA and PRECA depending on the size of dsjunctions in the target preconditions (Maximal bias; TO=1h)

No disj |disj| ≤ 2 |disj| ≤ 3 |disj| ≤ 4 |disj| ≤ 7 |disj| ≤ 10

#WP Time #WP Time #WP Time #WP Time #WP Time #WP Time
PRECA-disj ≤ disj 21/21 0.6s 44/48 7.8s 44/52 38.6s 40/53 166s 35/60 6s 35/60 7s
DCA 21/21 0.8s 44/48 2.4s 48/53 52s (1.2s) 48/53 51s (1s) 51/60 102s (0.8s) 51/60 102s (0.8s)

#WP represents the number of weakest preconditions inferred, and Time is the mean convergence time over successful (i.e., not reaching the timeout) acquisitions, excluding
bias generation (in parenthesis is the mean time where both PRECA and DCA succeed, not printed if the same). Here, for each disjunction size, PRECA is launched with the
same disjunction size. Thus, for the No disj, PRECA considers only conjunctions of atomic constraints. For the |disj| ≤ 2, it includes disjunctions of size up to 2 and so
forth. On the other hand, DCA needs no disjunction size information.

knowledge, usual in CA but which was shown to be useless
in practice for DCA. Then we present its limitations.

Implementing DCA. DCA is a simple and very general
approach for constraint acquisition. To implement the
framework, it only needs a model generation procedure for
boolean formulas and for the underlying theory T. Espe-
cially, unlike CONACQ, DCA does not rely on costly pseudo
boolean solvers. In our experiments, we respectively rely on
the MiniSat and the Choco solvers to find solutions to the
boolean formula representing the search space and to gener-
ate queries. The solver for theory T is only applied to MSSes
of the bias, which are conjunctive only.

Background knowledge in DCA. DCA extends classical
CA-based approaches to handle disjunctive problems. In
Section 3 we show how each CA core concept (bias, infor-
mative queries) translates, except for the background knowl-
edge (Bessiere et al. 2017). Sill, DCA can also include a
background knowledge, containing rules over constraints to
speed up inference. In our context, such background knowl-
edge is composed of minimal unsatisfiable subsets (MUS)
of the bias and enables speeding up MSS enumeration meth-
ods like DAA or MARCO. However, our experiments (not
reported here) show no impact on acquisition time.

Limitations. While DCA shows overall good theoretical
and practical properties, it also comes with a few limitations.
First, it returns a CN that is hard to understand for a human

user. While it may not be crucial in some contexts – e.g.,
when applied to automated program analysis – it may be a
burden for human users. Still, adding a post process may
be enough to simplify the result. Especially, on average,
over the PIB dataset (Max bias), our post process reduces
the size of DCA results (in terms of the number of atomic
constraints) by a factor of 40, returning a CN with the same
size as our ground-truth (mean size before and after sim-
plifications respectively equal 111 and 2.73). Second, the
number of queries can be hard to handle for a human user.
However, we recently showed that in some applicative sce-
narios of interest, CA can be combined with an automated
oracle, strongly alleviating the limitation of the number of
queries. Third, just as CONACQ-like methods, DCA cannot
infer global constraints, but only their specialization over a
fixed set of variables. Finally, DCA relies on membership
queries only. Still, other kinds of queries have been pro-
posed, like partial queries (Bessiere et al. 2013). How to
extend DCA to such queries is an interesting direction.

6 Related Work
CA has been extensively covered in the literature. Two pri-
mary methodologies have emerged, namely passive learning
and active learning.

Passive CA. Passive learning involves systems acquiring
constraints from a provided set of examples. Some ap-
proaches use positive and negative examples. In particular,
the Conacq.1 algorithm (Bessiere et al. 2007) relies on ver-
sion space learning (Mitchell 1977; Mitchell 1982) to in-

fer a constraint network accepting all positive examples and
rejects all negative examples. The Conacq.1 algorithm is
general-purpose and does not require any specific problem
structure. The Lallouet et al. (Lallouet et al. 2010) pro-
posal also handles positive and negative examples but lever-
ages inductive logic programming to infer the target con-
cept. A limitation of this approach is that the user must pro-
vide the entire problem structure, unlike CONACQ.1. Other
approaches rely on positive examples only (Beldiceanu and
Simonis 2016; Kumar et al. 2019). Among them, a suc-
cessful method is ModelSeeker (Beldiceanu and Simonis
2016). It uses a global constraints catalog to build the ver-
sion space and identify global constraints satisfied by par-
ticular subsets of variables in all examples, such as rows
or columns. However, ModelSeeker can only find con-
straints from the catalog that hold on the specific structures
it can recognize. Orthogonal approaches have also been pro-
posed to perform error-resilient acquisition (Prestwich 2020;
Prestwich 2021). Unlike previous approaches, trying to clas-
sify all examples, such methods consider that some exam-
ples are errors and eliminate them. DCA distinguishes from
all these previous approaches, performing active constraint
acquisition, which enables to enjoy better guarantees and
frees the user from the burden of giving examples himself.

Active CA. Active CA is a specific type of query-directed
learning called exact learning (Angluin 1988; Angluin
2004). In the formalism introduced by Angluin (1987), there
are two types of queries: a membership query, which asks
the user to classify a given example as positive or negative,
and an equivalence query, which asks the user to determine
whether the given concept is equivalent to the target concept.
However, CA restricts itself to asking membership queries
only, as answering equivalence queries is too difficult for
the user which is assumed to be not skilled enough to ex-
press the target networks themselves (Bessiere et al. 2017).
One early example of active CA is the Matchmaker agent
(Freuder and Wallace 1999). The matchmaker suggests ex-
amples to the user as potential solutions to the problem. A
negative response from the user comes with a ”correction”
that indicates why the suggestion (i.e., the example) fails.
The correction consists of one or more of the constraints
that are violated. However, this approach requires sufficient
expertise from the user to express the violated constraints.
CONACQ.2 is an active learning approach for CA, which
has been presented in the literature (Bessiere et al. 2007;
Bessiere et al. 2017). In CONACQ.2, only membership
queries are presented to the user, meaning that the user
is only required to classify examples as solutions or non-
solutions. This makes it less demanding in terms of ex-
pertise compared to other active learning approaches that
require users to answer equivalence queries. This last ap-
proach is closer to ours, and we extensively compared DCA
to it in this article. Especially, DCA also performs active
learning by asking only membership queries. However, un-
like CONACQ.2, which can infer conjunctions of constraints
only, DCA can infer conjunctions of disjunctions.

Disjunction in CA. Traditional CA has limited expressiv-
ity in handling disjunctions, which can be a part of the con-
cept description. Existing CA approaches can only learn
disjunctions that are part of the constraint language form-
ing the learning bias. Beldiceanu and Simonis (2012) pro-
posed ModelSeeker, a system that can capture possible dis-
junctions by learning the conjunction of global constraints
from positive examples. These global constraints can encap-
sulate the disjunctions, like Domain and Disjunctive. Ap-
proaches based on version space learning, such as CONACQ
(Bessiere et al. 2017), QUACQ (Bessiere et al. 2013), require
a constraint to capture the given disjunction, leading to an
increase in the bias size beyond polynomial. This limitation
poses a challenge in effectively handling disjunctions within
the concept description. To address this issue, PRECA is
proposed as an extension of CONACQ for “precondition in-
ference”, which allows disjunctions of limited size in the
bias to ensure its polynomial size. Our approach DCA is able
to infer automatically the needed disjunctions removing the
burden to the user to give the needed disjunctions.

7 Conclusion
We propose DCA the first principled approach for active dis-
junctive constraint acquisition. It generalizes classical CA,
which is restricted to the acquisition of conjunctive con-
straints or disjunctive constraints provided by the user. To
do so, DCA relies on maximal satisfiable subsets enumera-
tion to infer the correct concept with good theoretical prop-
erties. Especially if the input set of constraints is expressive
enough to represent the target concept, then DCA can surely
infer it. We evaluated DCA on two benchmarks composed
of random, ultrametric, domain constraints and one real-
world application scenario, precondition acquisition. Ex-
periments show that DCA is able to handle both cases effi-
ciently. Notably, it outperforms the state-of-the-art CONACQ
and PRECA CA-based frameworks.

8 Acknowledgments
This work has received support from the European Union’s
Horizon 2020 research and innovation programme under
grant agreement No 952215 (TAILOR project) and No
101076911 (AI4CCAM Project), from ICO, the Occitania
Cybersecurity Institute – which is funded by the Occitania
Region in France, and from the National Research Agency
under France 2030 with reference “ANR-22-PECY-0007”.
We thank Joao Marques-Silva who provided insight and ex-
pertise that greatly assisted the work. We would also like
to show our gratitude to the anonymous reviewers for their
insightful suggestions and careful reading.

References
Angluin, D. 1987. Learning regular sets from queries and
counterexamples. Information and computation 75(2).
Angluin, D. 1988. Queries and concept learning. Machine
learning 2:319–342.
Angluin, D. 2004. Queries revisited. Theoretical Computer
Science 313(2):175–194.

Bailey, J., and Stuckey, P. J. 2005. Discovery of minimal
unsatisfiable subsets of constraints using hitting set dualiza-
tion. In Practical Aspects of Declarative Languages: 7th
International Symposium, PADL 2005, 174–186. Springer.
Belaid, M.-B.; Belmecheri, N.; Gotlieb, A.; Lazaar, N.; and
Spieker, H. 2022. Geqca: Generic qualitative constraint
acquisition. In Proceedings of the AAAI Conference on Ar-
tificial Intelligence, volume 36, 3690–3697.
Beldiceanu, N., and Simonis, H. 2012. A model seeker:
Extracting global constraint models from positive examples.
In International Conference on Principles and Practice of
Constraint Programming (CP 2012). Springer.
Beldiceanu, N., and Simonis, H. 2016. ModelSeeker: Ex-
tracting Global Constraint Models from Positive Examples.
In Data Mining and Constraint Programming. Springer.
Bessiere, C.; Coletta, R.; O’Sullivan, B.; and Paulin, M.
2007. Query-driven constraint acquisition. In IJCAI.
Bessiere, C.; Coletta, R.; Hebrard, E.; Katsirelos, G.;
Lazaar, N.; Narodytska, N.; Quimper, C.-G.; and Walsh, T.
2013. Constraint acquisition via partial queries. In Twenty-
Third International Joint Conference on Artificial Intelli-
gence.
Bessiere, C.; Koriche, F.; Lazaar, N.; and O’Sullivan, B.
2017. Constraint acquisition. Artificial Intelligence.
Bessiere, C.; Carbonnel, C.; Dries, A.; Hebrard, E.; Katsire-
los, G.; Lazaar, N.; Narodytska, N.; Quimper, C.; Stergiou,
K.; Tsouros, D. C.; and Walsh, T. 2020. Partial queries for
constraint acquisition. CoRR abs/2003.06649.
Eén, N. 2006. The minisat page. http://minisat. se/.
Freuder, E. C., and Wallace, R. J. 1999. Suggestion strate-
gies for constraint-based matchmaker agents. In Principles
and Practice of Constraint Programming. Springer.
Gent, I. P.; Prosser, P.; Smith, B. M.; and Wei, W. 2003. Su-
pertree construction with constraint programming. In Rossi,
F., ed., Principles and Practice of Constraint Programming.
Springer.
Gleeson, J., and Ryan, J. 1990. Identifying minimally in-
feasible subsystems of inequalities. ORSA Journal on Com-
puting 2(1):61–63.
Gries, D. 2012. The science of programming. Springer
Science & Business Media.
Hutchins, M.; Foster, H.; Goradia, T.; and Ostrand, T. 1994.
Experiments on the effectiveness of dataflow-and control-
flow-based test adequacy criteria. In Proceedings of 16th
International conference on Software engineering. IEEE.
Kumar, M.; Teso, S.; De Causmaecker, P.; and De Raedt,
L. 2019. Automating personnel rostering by learning con-
straints using tensors. In 2019 IEEE 31st International Con-
ference on Tools with Artificial Intelligence (ICTAI). IEEE.
Lallouet, A.; Lopez, M.; Martin, L.; and Vrain, C. 2010. On
learning constraint problems. In 22nd IEEE International
Conference on Tools with Artificial Intelligence. IEEE.
Liffiton, M. H., and Malik, A. 2013. Enumerating infeasibil-
ity: Finding multiple muses quickly. In International Con-

ference on Integration of Constraint Programming, Artificial
Intelligence, and Operations Research (CPAIOR). Springer.
Liffiton, M. H., and Sakallah, K. A. 2005. On finding all
minimally unsatisfiable subformulas. In Theory and Appli-
cations of Satisfiability Testing. Springer.
Menguy, G.; Bardin, S.; Lazaar, N.; and Gotlieb, A. 2022.
Automated program analysis: Revisiting precondition infer-
ence through constraint acquisition. In Proceedings of the
Thirty-First International Joint Conference on Artificial In-
telligence, IJCAI-22. International Joint Conferences on Ar-
tificial Intelligence Organization. Main Track.
Mitchell, T. M. 1977. Version spaces: A candidate elim-
ination approach to rule learning. In Proceedings of the
5th international joint conference on Artificial intelligence-
Volume 1.
Mitchell, T. M. 1982. Generalization as search. Artificial
intelligence 18(2):203–226.
Moore, N. C. A., and Prosser, P. 2008. The ultrametric
constraint and its application to phylogenetics. J. Artif. Int.
Res. 32(1):901–938.
Paulin, M.; Bessiere, C.; and Sallantin, J. 2008. Automatic
design of robot behaviors through constraint network acqui-
sition. In 2008 20th IEEE International Conference on Tools
with Artificial Intelligence.
Prestwich, S. D. 2020. Robust constraint acquisition by
sequential analysis. Frontiers in Artificial Intelligence and
Applications 325:355–362.
Prestwich, S. 2021. Unsupervised constraint acquisition.
In 2021 IEEE 33rd International Conference on Tools with
Artificial Intelligence (ICTAI), 256–262. IEEE.
Prud’homme, C.; Fages, J.-G.; and Lorca, X. 2014. Choco
documentation. TASC 6241.
Rossi, F.; Van Beek, P.; and Walsh, T. 2006. Handbook of
constraint programming. Elsevier.
Régin, J.-C. 2010. Global Constraints: A Survey. 63–134.
Sankaranarayanan, S.; Chaudhuri, S.; Ivančić, F.; and
Gupta, A. 2008. Dynamic inference of likely data precon-
ditions over predicates by tree learning. In Proceedings of
the 2008 international symposium on Software testing and
analysis. ACM.
Seghir, M. N., and Kroening, D. 2013. Counterexample-
guided precondition inference. In European Symposium on
Programming. Springer.
Shchekotykhin, K. M., and Friedrich, G. 2009. Argumen-
tation based constraint acquisition. In ICDM 2009, The
Ninth IEEE International Conference on Data Mining. IEEE
Computer Society.
Tsouros, D. C.; Stergiou, K.; and Bessiere, C. 2020. Omis-
sions in constraint acquisition. In International Confer-
ence on Principles and Practice of Constraint Programming
(CP). Springer.
Van Loon, J. 1981. Irreducibly inconsistent systems of lin-
ear inequalities. European Journal of Operational Research
8(3):283–288.

	Introduction
	Background
	Constraint Acquisition (CA)
	User-based Handling of Disjunctive Constraints
	Maximal Satisfiable Subset (MSS)

	Disjunctive Constraint Acquisition (DCA)
	From CA to DCA
	The Dca Framework
	Theoretical Analysis

	Experimental Evaluation
	Experimental Design
	Experimental Results

	Discussion
	Related Work
	Conclusion
	Acknowledgments

