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ABSTRACT

We consider the problem of program clone search, i.e. given a target

program and a repository of known programs (all in executable

format), the goal is to �nd the program in the repository most

similar to the target program – with potential applications in terms

of reverse engineering, program clustering, malware lineage and

software theft detection. Recent years have witnessed a blooming

in code similarity techniques, yet most of them focus on function-

level similarity and function clone search, while we are interested

in program-level similarity and program clone search. Actually, our

study shows that prior similarity approaches are either too slow

to handle large program repositories, or not precise enough, or yet

not robust against slight variations introduced by compilers, source

code versions or light obfuscations. We propose a novel spectral

analysis method for program-level similarity and program clone

search called Programs Spectral Similarity (PSS). In a nutshell, PSS

one-time spectral feature extraction is tailored for large repositories,

making it a perfect �t for program clone search. We have compared

the di�erent approaches with extensive benchmarks, showing that

PSS reaches a sweet spot in terms of precision, speed and robustness.

CCS CONCEPTS

• Security and privacy → Software reverse engineering; Mal-

ware and its mitigation.
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1 INTRODUCTION

Binary code similarity approaches identify similarities or di�er-

ences [31] between pieces of assembly code (e.g., basic blocks, bi-

nary functions or whole programs). We focus on program-level

similarities (coined program similarity in the following), that is,
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computing a similarity index between whole programs which is

capable of telling at which degree two programs are similar – with

potential applications in terms of reverse engineering, program

clustering, malware lineage and software theft detection.

Program clone search. Given a query composed of a target pro-

gram and a repository, the program clone search ranks repository

programs by their program similarity to the target program. The

search is successful if the most similar program is a clone of the

target program. These clones may be (i) compiled with slightly

di�erent compiler chains, or (ii) produced from a slightly di�erent

version of the source code, or (iii) altered by slight obfuscations.

Applications. Searching program clones between x86 or ARM bi-

naries over a large program repository is necessary when the origi-

nal program written in source code is unavailable, which happens

with commercial o�-the-shelf (COTS), legacy programs, �rmware

or malware. For example, detecting malware clones is a major is-

sue [4, 18, 57, 73], as most malware are actually variants of a few

major families active for more than �ve years1. Another applica-

tion is the identi�cation of libraries [3, 20, 32, 36, 69, 70], which is

both a software engineering issue and a cybersecurity issue due to

vulnerabilities inside dynamically linked libraries. The problem of

library identi�cation, while in between programs and functions in

terms of size, is much closer to the case of program clones by its

nature, as libraries are not arbitrary collections of functions and

require inter-procedural analysis. The situation is similar for patch

and �rmware analysis [75], or software theft detection [20, 32, 58],

which also need to consider a global view of the code.

In all these cases, we see function clone search as only a proxy to a

problem that is by nature at the level of programs.

Prior work. Given its potential applications and challenges, the

�eld of similarity detection has been extremely active over the

last two decades, starting from the pioneering work of Dullien

in 2004 [22, 23] on call-graph isomorphisms and the popular Bin-

Di� tool for recognizing similar binary functions among two re-

lated executables. Other approaches include for example symbolic

methods [28], graph edit distances [34, 44] and matching tech-

niques [4, 73]. Interestingly, the last �ve years have seen a strong

trend toward machine learning based approaches to binary function

similarity [19, 52, 55, 74, 77]. Overall, most prior work focuses on

function clone search and function-level similarity.

The challenges. Program clone search presents speci�c challenges

compared to standard function similarity. (1) As already stated, it re-

quires comparing programs, i.e. much larger objects than functions,

hence similarity checks must be scalable in typical program sizes;

(2) We do not consider two programs taken in isolation, but a target

program and a (possibly large) program repository, hence the need

for very e�cient similarity checks that will be iterated over all the

1https://www.cisa.gov/uscert/ncas/alerts/aa22-216a
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programs in the repository; (3) The repository could contain similar

but slightly di�erent programs, due to variations in compilers or

code versions. Clone search must be robust to such variations; (4)

Finally, the technique must work equally well on stripped binary

codes (where symbols have been removed at compile time), han-

dle the case where external function names are unavailable (for

example IoT device �rmware), and handle lightweight obfuscations

(such as adding deadcode, or hiding literal identi�ers).

All these constraints do not �t well with prior work on similarity,

as state-of-the-art is increasingly focused on function-level simi-

larities2, with unclear scalability toward the program-level case.

For example, we found in our experiments that SMIT [34] takes

more than 43 hours to compute a similarity index between the main

library of Geany and the cp command, while DeepBinDi� [21] is

reported to take 10 minutes to compute basic bloc matching on

small binaries from the Coreutils package.

Goal. From the program clone search point of view, there is a strong

need for a binary-level program-level similarity technique that is

precise, robust to slight variation, and fast enough to operate over

large code bases. This is exactly what we want to address in this paper.

Our proposal. We explore the application of spectral graph analy-

sis [14] to the problem of program clone search. It seems a very good

starting point as, on graphs, it is both a�ordable and competitive

against graph edit distances (GED) [66] in terms of precision, while

GED is arguably a very good (but expensive to compute) notion of

graph similarity. Yet, programs are not standard graphs: on the one

hand programs seen as graphs can be very large (especially at the

binary level), while on the other hand they are highly structured

due to their function hierarchy.

We take advantage of this speci�city and propose Program

Spectral Similarity (PSS), the �rst spectral analysis tailored to

program similarity. The techniques extract eigenvalues related fea-

tures from both function call graphs and control �ow graphs, and

take advantage of a preprocessing step (done once for the whole

program repository) to achieve similarity checks in time linear in

the number of functions of the program (done for each program in

the repository), making it a perfect �t for program clone search –

most prior works have at least a quadratic runtime.

We experimentally show that PSS outperforms state-of-the-art

approaches and is resilient to code variations as well as lightweight

obfuscations (e.g., instruction substitution, bogus control �ow, con-

trol �ow �attening). Moreover, PSS does not rely on literal identi-

�ers (e.g., function names, constant string values), making it robust

against a range of basic obfuscations. In our experiments, a program

clone search with PSS (optimized version) takes on average less

than 3s (0.3s and 0.4s for Linux and IoT benchmarks) where, as a

comparison, the function embedding Gemini [74] requires roughly

2 minutes per clone search.

We set up a strong comprehensive evaluation framework (14 com-

petitors and 3 baselines) to systematically compare PSSwith state-of-

the-art methods, covering string based methods [69, 70], graph edit

distance [27, 34], N-grams [33], vector embedding [19, 52, 55, 74],

standard spectral methods [27] and matching algorithms [4, 73].

Our experiments cover our own dataset of diverse open-source

2According to Haq and Caballero [31], since 2014, among 40 binary code similarity
approaches, only 7 approaches have taken programs as input.

projects along with classical Coreutils, Di�utils, Findutils, and Binu-

tils packages along two dimensions (optimization levels and code

versions) for a total of 950 programs. Moreover, we consider part of

the BinKit dataset [43] (98K samples), covering four optimization

levels, 9 compilers, 8 architectures and 4 obfuscations. Finally, we

gather 19, 959 IoT malware and 84, 992 Windows goodware.

Contribution. As a summary, we claim the following:

• A novel technique named PSS (together with its optimization

%(($ ) for code similarity (Section 4), tailored to program

clone search over large repositories. PSS is the �rst spectral

technique tailored to program-level similarity. Especially,

PSS takes advantage of a preprocessing step to perform latter

similarity checks in time linear w.r.t. the number of functions

in the program, making it a perfect �t for program clone

search over large repositories;

• A comprehensive evaluation framework for program clone

search (Section 5), encompassing (1) 97,760 programs from

BinKit [43], 19,959 IoT malware, 84,992 Windows programs

and a smaller Linux dataset of 950 programs, and (2) three

baselines and 14 state-of-the-art methods – 10 of them being

reimplemented. The complete framework is available online,

which is rare in this �eld [54];

• Experimental evidence (Sections 5) that PSS reaches a sweet

spot in terms of speed, precision and robustness, making it

a perfect �t for program clone search, where prior works

in the �eld are more specialized to function-level similarity

evaluation. Especially, PSS appears to scale well and to retain

good precision in demanding clone search scenarios (cross-

compilers, cross-architecture or obfuscation);

• Finally, as another notable result, we show that prior work

targeting function clones cannot cope with program clones

due to scalability issues.

Besides providing a novel and e�cient method for program

clone search, our results also shed new light on prior work on code

similarity. First, we make the case for the program clone search

application scenario and show that it behaves di�erently enough

than the well-studied pairwise function similarity setting, requiring

dedicated methods. Second, we are the �rst to pinpoint the sepa-

ration in prior work between techniques using literal identi�ers

and those that do not. As a side result, during our experiments,

we identify two simple methods based on literal identi�ers (string

values and external function names), which despite their simplic-

ity, appear to perform well when these identi�ers are available.

These methods came from the simpli�cation of ideas coming from

the state-of-the-art in library identi�cation by using literal iden-

ti�ers [20, 32, 69, 73]. Third, we show the potential of dedicated

spectral methods for program clone search. Overall, we believe that

these results pave the way for novel research directions in the �eld.

Research artifacts are available on Zenodo [9].

2 PROBLEM STATEMENT

2.1 Program Clone Search Procedure

Given an unknown target program % and a program repository ',

the goal is to identify a clone of % in '.

809



Scalable Program Clone Search through Spectral Analysis ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

A clone of a program % is de�ned as follows:

• A program & compiled from the same source code ( as % ,

but with a di�erent compiler toolchain is a clone of % . For

example, % has been compiled with GCC v9.1 using the opti-

mization level -O0 from the source code ( , and & has also

been built from ( using the same compiler but another opti-

mization level, say -O3;

• A program & compiled from another version of % source

code is a clone of % . For example, both instances of the git

application compiled from two source code versions, say

v2.35.2 and v2.37.1, are clones.

In the last case, we have to be a bit careful. Indeed, we can only con-

sider incremental versions of an application or library, not major

revisions that completely change the source code. In our experi-

ments, the newest and oldest versions of most packages are usually

separated by 4 years. However, it goes up to 15 years for the most

standard packages: Coreutils, Di�utils, and Findutils.

Unknown
Program

Similarity
Checks

Query Preprocessing Features
Repository

1: svn
2: git
3: cmp
........

0.82
0.65
0.49
....

Similarity Metric

svn

Figure 1: Architecture of a program clone search procedure

Figure 1 illustrates a clone search procedure architecture. Note

that all along, we suppose that there is no exact copy of % in the

repository '. The repository is a database containing enough in-

formation for a clone search procedure. As a result, in practice, a

repository is quite an extensive program database w.r.t. the applica-

tion domain (�rmware, plagiarism, malware, etc.).

An evaluation of clone search procedures should take into con-

sideration the three criteria below in order to be realistic:

• The e�ciency w.r.t. both the size of the unknown target

program and the size of the repository,

• The robustness not only to compiler toolchains but also to

slight program variations coming from di�erent source code

versions,

• The ability to deal with stripped programs. Moreover, ex-

ternal symbols are not necessarily available when dealing

with �rmware, lightweight obfuscations, or yet from payload

extracted from packers[13].

As we said previously, the main di�erence between program

clone search and function clone search is the size of the binary

codes, which is much larger in the case of programs.

At a high level, all program clone search procedures work in a

similar way. The repository is already built, and the query process

is divided into three steps:

(1) Query preprocessing. Upon query, we receive the target

program % . We can perform some preprocessing at this step,

extracting relevant features for the rest of the procedure;

(2) Similarity checks. For each program & ∈ ', we perform
a similarity check with a similarity metric " on (%,&) –
possibly taking advantage of the preprocessing – and record

the computed similarity index" (%,&);

Table 1: Clone searches results

Framework Average Total runtime

precision@1 (preprocess. time included)

Asm2Vec [19] † 0.7 35h

Gemini [74] † 1 17h

SAFE [55] † 0.95 160h

UDi� [52] † 1 140h

LibDB [70] † 1 2h

PSS 1 26s

(includ. 26s of preprocess)
† learning time not included

(3) Decision. The program &14BC with the highest similarity

index is considered the most similar. The program clone

search succeeds if &14BC is a clone of % , otherwise it fails.

2.2 Motivating Example

Let us consider a repository containing 1420 libraries obtained from

the compilation of 20 libraries3 with four optimization levels, �ve

versions of GCC, four versions of clang, and to the 32 and 64 bits x86

platforms. Next, let us imagine we have the 20 libraries as targets

(compiled for x86 32 bits with gcc 6.4 and the -O2 optimization

level).

Lifting function-level clone searches in order to detect program-

level clones is attractive. However, to obtain a similarity index

between two programs from function embedding methods, we

need to �nd a distance between two sets of function embeddings.

Let 4<143B (%) be the set of function embeddings of a program % . A

�rst solution is to perform a matching between the two sets. Such

matching could be an instance of the assignment problem where

assigning a function embedding G of % to a function embedding ~

of % ′ has a cost ∥G − ~∥2. However, this problem has complexity

$ (=3) where = is the number of functions. We relax the matching

so that a function embedding of a program % can be assigned to

multiple function embeddings of a program % ′.
We de�ne � as the similarity metric for an embedding 4<143B:

� (%, % ′) := −
∑

G∈4<143B (% )
min

~∈4<143B (% ′ )
∥G − ~∥2 (1)

We consider the following function-level methods and lift them

to programs as just explained:Asm2Vec [19],Gemini [74], SAFE [55],

UDi� [52]. We also consider LibDB [70], which is directly designed

for libraries (i.e., large pieces of code).

Results. We report in Table 1 the average precision@1, equivalent

to the proportion of successful clone searches, as well as clone

searches total runtime. PSS is precise and successful in all clone

searches. Most function-level methods can also �nd a clone in all

clone searches. However, PSS takes only 26s in total, while pure

function embedding methods take from 17h with Gemini to 160h

with SAFE. Even with pre-�ltering, LibDB is close to 2h. Moreover,

PSS runtime is due to its preprocessing; the total similarity checks

runtime is negligible. As a result, PSS scales up to large repositories

with good precision.

3From packages libiconv, coreutils, libtool, gss, gdbm, libtasn1, gsl, libmicrohttpd, osip,
readline, gsasl, lightning, recutils, gmp, libunistring, and glpk.
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3 BACKGROUND

Graph similarity, GED and spectral distance. As programs can

be naturally seen as graphs, any good notion of graph similarity is

in principle a good candidate for a good program similarity metric.

Graph edit distance (GED) is such a good notion [29]. GED is the

smallest cost of an edit path between two graphs, i.e. the smallest

transformation going from one of the graphs to the other. Graph

edit operations typically include removing or adding a vertex or an

edge. Yet, the main drawback of GED is that its computation is NP-

hard. Worst, usual approximations have a complexity of$ (=3) [68]
where = is the number of nodes in the graph, which is far too

expensive for graphs coming from programs. As an example, the

graph edit distance method SMIT [34] is the slowest method we

have tested (cf. Table 4), with 3634 hours of computation on a task

where our method takes 1h18m.

The spectral distance between graphs provides an interesting

trade-o�, as it gives a decent approximation of the graph edit dis-

tance between graphs [72] for an a�ordable linear cost once eigen-

values are computed. We introduce spectral analysis and de�ne

spectral distance hereafter.

Spectral (Graph) Analysis. Spectral graph analysis is a method

used to investigate properties of graphs by studying the eigenval-

ues (or, spectrum) of standard matrices associated with the graph,

such as the adjacency matrix or the Laplacian matrix. Patterns and

structures within the graph can be identi�ed, providing key insights

about how the graph nodes are interconnected. Distances between

graph spectra are called spectral distances. The starting intuition

for using graph spectrum is that two isomorphic graphs have the

same spectrum; however, the converse is not true. Nevertheless,

the spectrum may be used as a proxy for graph similarities.

More formally, an undirected graph � = (+ , �) of = vertices is

represented by an = × = adjacency matrix �, where 08, 9 is one if

(+8 ,+9 ) ∈ � and zero otherwise. Let 38 be the degree of the vertex+8 .

It is useful to compute the Laplacian matrix [14] ! of G. An eigen-

value _ and its corresponding eigenvector ®D is a solution to the equa-
tion: (! − _� ) ®D = ®0. The spectrum is the set {_1 (�), . . . , _ |� | (�)}
where _1 (�) ≥ . . . ≥ _ |� | (�) and where |� | is the number of

vertices in � . The enhanced Lanczos algorithm [60] computes the

spectrum in time $ (3=2), where 3 is the average degree of � . We

de�ne the spectral distance between�1 and�2 (analogous to[39]):

B� (�1,�2) :=
√

∑<8= ( |�1 |, |�2 | )
8=1 (_8 (�1) − _8 (�2))2.

4 PROGRAM SPECTRAL SIMILARITY (PSS)

Spectral analysis is suitable for comparing graphs because it pro-

vides quantitative metrics, such as spectral distances, which can

be used to compare key graph properties regarding connectivity,

structure, and distribution. This approach also allows for the nor-

malization of graph size, enabling fair comparisons among varying

graph scales. However, computing the spectrum of a graph is cubic

in its number of nodes. Therefore, applying spectral analysis to a

whole program CFG is too expensive. Moreover, the CFG itself is

not stable with respect to compiler toolchains, optimizations and

obfuscations.

As a result, our key insight is that a program has more structure

than a mere graph: there is a call graph over functions while local

functions hold their own control �ow graph. We take advantage of

this hierarchical structure to devise a quick and stable similarity

metric called Program Spectral Similarity (PSS).

The PSS method is based on the combination of two criteria.

• The �rst measure is the spectral distance between call graphs,

including both internal and external calls4. Moreover, most

compiler optimizations have a small-scale e�ect on the call

graph, as they only impact the content of functions;

• The second measure is a coarse spectral analysis of function

control �ow graphs, simply considering their number of

edges, as it is related to the sum of the eigenvalues as shown

below. Since we use only one number to represent a function

CFG, we can �t these numbers into a vector comparable to

the eigenvalues vectors. Adding function embeddings to the

second measure is left for further work.

By the way, we tried to consider only the control �ow graphs,

and we found that the results were worse than when both above

criteria were considered.

The PSS method proceeds into two independent steps: the pre-

processing step, which is done once and for all, and the similarity

check step, which is made for each candidate.

4.1 Preprocessing

.mempcpy

mempcpy

main

sub_403780

.exit

.bindtextdomain sub_402380 .setlocale

.getopt_long .__fprintf_chk

Figure 2: A call graph

Given a program % , the preprocessing �rst begins by building the

function call graph�� of % , including local and external (API) calls.

An example of a function call graph is given in Figure 2. It contains

external calls such as a call to mempcpy as well as local functions

such as sub_403780. From this, we extract two key vector-features

(®E, ®F) of % as follows:

• From an undirected version of the call graph�� , we compute

the spectrum Λ = {_1 (��), . . . , _= (��)}, and we compute

®E := Λ

∥Λ∥2 , the normalized spectrum of the call graph;

• We compute the number of edges � = (41, 42, . . . , 4: ) from
each control �ow graph �8 of local functions in descending

order, and we normalize � as previously: ®F :=
�

∥� ∥2 . External
functions are ignored at this step since we do not have access

to their control �ow. Note also that the number of edges is

a simple sort of spectral measure since it is related to the

spectrum by the relation 2 × 48 =
∑

_ 9 (�8 ).
Recall that | | · | |2 is the Euclidean norm. We normalize features

®E and ®F to deal with di�erences between program sizes.

4Call graphs are useful for a number of tasks. For example, GraphEvo [71] has been
able to understand software evolution through call graphs.
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4.2 Similarity Check

Given two programs, %0 and %1, the preprocessing step has com-

puted features ( ®E0, ®F0) from %0, and ( ®E1, ®F1) from %1. The similarity

check outputs a similarity index by averaging two measures. The

�rst measure (2) is related to call graphs, while the second (3) is

related to function control �ow graphs. Then, the similarity metric

PSS is de�ned as the average of both above measures (Equation 4).

B8<�� (%0, %1) :=
√
2 −

√

√

√

√<8= ( | ®E0 |, | ®E1 | )
∑

8=0

(

E0,8 − E1,8
)2

(2)

B8<��� (%0, %1) :=
√
2 −

√

√

√

√<8= ( | ®F0 |, | ®F1 | )
∑

8=0

(

F0,8 −F1,8
)2

(3)

PSS(%0, %1) :=
B8<�� (%0, %1) + B8<��� (%0, %1)

2
√
2

(4)

4.3 The PSSO Optimization

We found out that PSS preprocessing may be quite long over large

programs (cf. our own "Windows dataset" in Section 5.5, where

computing all eigenvalues of a call graph takes 16.95 seconds per

program clone search.). In order to tackle this issue, instead of

computing the complete spectrum Λ, we propose to compute only

the �rst  greater eigenvalues so that Λ = {_1 (��), . . . , _ (��)}.
For this, we can take advantage of a variant of the Lanczos algorithm

proposed by the ARPACK library [49].

We plot in Figure 3 the preprocessing runtimes and precision

scores (see Section 5.2) for di�erent values of  from 30 to 180 on

our "Windows data set". We remark that runtimes grow quickly

with  , going from 0.06s to 1.31s. On the other hand, there is

little change in the precision score between 50 and 150; the score

varies from 0.4657 to 0.4664. We select 100 as the value for  since

the preprocessing runtime per clone search is only 0.39s, and the

precision score is already 0.4661.

We thus propose %(($ , an optimized version of PSS that com-

putes only the �rst  = 100 greater eigenvalues.

4.4 Method Runtimes

Recall that a repository is a database of preprocessed programs. A

given unknown target program is �rst preprocessed, then, from

the extracted features, a similarity check is made on the repository.

It is clear that the query runtime linearly depends on the size of

the repository. In other words, for a repository size of" , and = the

number of functions inside a program, if the runtime of a similarity

check is ) (=) and the preprocessing runtime is %) (=), then the

complexity of a query is bounded by" ×) (=) + %) (=). As a result,
all methods with similarity checks with superlinear time complexity

are not feasible over large repositories of large codes, which is

con�rmed by our experiments.

PSS and %(($ runtimes. Graphs and Laplacian matrices are sparse

in our application domain, o�ering quick eigenvalues computation.

Nevertheless, the complexity of the query prepossessing, described

in Section 4.1, is still $ (3=2), where = is the number of functions

and 3 is the average number of calls per function. However, once

Figure 3: Impact on the Windows dataset of the number of

largest eigenvalues computed by PSS optimized version

Table 2: Complexity of program clone search procedures

Method Class Similarity Preprocess.‡
check†

SMIT [34] GED $ (=4) $ (3=)
CGC [73] Matching $ (=4) $ (3=)
MutantX-S [33] N-gram $ (1) $ (8)
Asm2Vec [19] Functions ML $ (=2) $ (=)
Gemini [74] Functions ML $ (=2) $ (=)
SAFE [55] Functions ML $ (=2) $ (=)
UDi� [52] Functions ML $ (=2) $ (=)
LibDX [69] Strings $ (B) $ (B)
LibDB [70] Functions ML $ (=2 + B) $ (= + B)

and Strings

DeepBinDi� [21] ML $ (=3<3) no preproc.

PSS Spectral $ (=) $ (3=2)
PSS$ Spectral $ (=) $ (3=)
=: # functions, 8: # instructions , B: # constant string values

3 : # calls per function,<: # basic blocks in a function,

† between two programs

‡ performed once for the whole clone search

such prepossessing is done, the runtime of a similarity check, de-

scribed in Section 4.2, is $ (=). Moreover, the runtime of the query

preprocessing of %(($ is reduced to $ (3=).
Comparison with prior work. That is in contrast with function

embeddingmethodswhich have a similarity check runtime of$ (=2)
on this problem using a direct adaptation (see Section 2.2 for further

details). Moreover, DeepBinDi� [21] contains a step with a linear

assignment between basic blocs with a runtime of$ (=3<3). Worse,

both the graph edit distance approximation SMIT [34] and the

matching method of Xu et al. [73] have a complexity of $ (=4).
However, the runtime of MutantX-S [33], designed to scale up to

large repositories, is only $ (1) – yet experiments (Tables 8 and 9

in Section 5.7) show that its robustness is not fully satisfactory.
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5 SYSTEMATIC EVALUATION

We evaluate the potential of PSS in terms of speed, precision and

robustness – the ability to overcome changes in compilation.

Then, we consider here the following Research Questions:

RQ1 What are the fastest methods for clone search?

RQ2 What are the most precise methods for clone search?

RQ3 What are the most robust methods for clone search?

RQ4 What is the impact of each component of PSS?

5.1 Datasets

Basic dataset. We �rst collect a limited dataset of 950 programs

to study the full range of methods along di�erent optimization

levels and code versions. The average program has a size of 442 KB.

This dataset covers the Coreutils, Di�utils, and Findutils packages

compiled with GCC v5.4 on the x86 architecture, and taken from the

DeepBinDi� [21] dataset. Moreover, we add the Binutils package as

well as 15 open-source projects , including Bash, Code::Blocks, Dia,

Graphviz, Geany, Git, Lua, Make, OpenSSH, OpenSSL, Perl, Ruby,

SDL, SVN, and VLC, compiled by GCC v9.4 on an x86 architecture.

Each unique source code comes in four di�erent version levels, and

four di�erent optimization levels. These programs are all clones of

each other.

BinKit dataset. To study scalable methods along di�erent opti-

mization levels, compilers, architectures, and obfuscations, we reuse

two Linux programs datasets from BinKit [43]:

• Normal: From 51GNU software packages, 235 unique source

codes were extracted. They are compiled with 288 di�erent

toolchains for a total of 67,680 programs of an average size

of 201 KB. It covers eight architectures (arm, x86, mips, and

mipseb, each available in 32 and 64 bits), nine compilers (�ve

versions of GCC and four versions of Clang), and the four

optimization levels from -O0 to -O3;

• Obfuscation: Four obfuscation options (instruction substitu-

tion (SUB), bogus control �ow (BCF), control �ow �attening

(FLA), and all combined) are considered using Obfuscator-

LLVM [40] as a compiler. The same architectures and opti-

mization levels as before are covered, for a total of 30,080

programs of an average size of 514 KB.

IoT Malware dataset. We consider 19,959 IoT malware samples,

with an average size of 84 KB, from MalwareBazaar5, submitted be-

tween March 2020 and May 2022, spanning 8 architectures (mostly

arm, mips, motorola and sparc). Using available meta-data from

antivirus reports and YARA rules, we split the data into only three

families of clones: 12,357 Mirai, 5,842 Gafgyt, and 1,760 Tsunami.

Windows dataset. We assemble a dataset of 84,992 benign pro-

grams running under Windows operating systems (x86, Visual

Studio). This amounts to more than 50GB of raw programs, with

an average size of 771 KB. Excluding security updates, the dataset

contains more than 28,000 dynamic-link libraries. Samples are di-

vided by target platforms (e.g., Windows 7). We consider that two

programs sharing the same �le name and the same target platform

are clones, yielding 49,443 programs with a clone.

5https://bazaar.abuse.ch

5.2 Methodology

A test �eld (), ') comprises targets set ) and a repository '. We

break down Basic datasets along version levels and optimization lev-

els. For instance, the test �eld (-O0,-O1) of the subdataset "Coreutils

Option" consists of a repository of Coreutils programs compiled

with -O1 paired with the same programs but compiled with -O0 as

targets. Similarly, we break down BinKit datasets along optimiza-

tion levels, compilers, architectures, and obfuscations.

Measures of success: precision@1. Program clone search is an

information retrieval task. The standard evaluation metrics of in-

formation retrieval are precision and recall. This study uses the

evaluation metric described in the Asm2Vec paper [19], that is Pre-

cision at Position 1 (precision@1). Precision@1 is equal to one if

and only if a clone of the target is the most similar program in the

repository, as ranked by a similarity metric. We de�ne the precision

score of a similarity metric as the average precision@1 for every

target in every test �eld against a repository.

5.3 Competitors

We evaluate 14 competitors, 3 baselines and two new heuristics

based on literal identi�ers (constant string values and external

function names) (cf. Table 3). 8 of these frameworks have been

adapted (A) to the case of program clone search, as it was not their

primary objective (e.g., function embedding). Moreover, 10 had to

be reimplemented (R) because the original implementation was

unavailable or due to inherent challenges in e�ectively utilizing the

original implementation within the speci�c domain of clone search.

As highlighted by Marceli et al. [54], code similarity artifacts are

rarely available, and even when they are, they are often incomplete.

Baseline. We �rst investigate basic heuristics such as �B8I4 , the size

of the program, and �B8I4 , the size of the disassembled program.

For instance, the similarity metric �B8I4 is de�ned as �B8I4 (0, 1) :=
−|0 − 1 |, where 0 and 1 are program sizes in bits. We also consider

a crude shape of the call graph. Let =1 and 41 (respectively =2 and

42) be the number of vertices and edges of the �rst (respectively

second) call graph. Then the similarity measure Shape is de�ned as:

(ℎ0?4 (=1, 41, =2, 42) :=
min(=1, =2)
max(=1, =2)

× min(<1,<2)
max(<1,<2)

Standard spectral methods. From the spectral method developed

by Fyrbiak et al. [27], we derive two methods. The �rst, ASCG (A)

(R), is based on the call graph. Let - and . be the two spectrums

in descending order of Laplacians of the two call graphs. There is a

normalization - ′
:= -/-0 and . ′

:= ./.0. Then:

�(�� (- ′, . ′) := −
<8= ( |- ′ |, |. ′ | )

∑

8=0

�

�- ′
8 − . ′

8

�

�

Likewise, we derive a method based on the control �ow graph,

ASCFG (A) (R). Instead of computing the spectrum from the call

graph, we select the top 1000 eigenvalues from a reduced control

�ow graph as vectors - and . .

Graph edit distance. We implement various basic GED based

methods. First, we implement GED-0 (A) (R), a basic computation

of the GED applied between call graphs. The algorithm goes back

to the work of Sanfeliu and Fu [66]. Second, we implement GED-L

(A) (R), a computation of the GED between call graphs with labels.
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The algorithm is presented by Fyrbiak et al. [27]. In our application,

labels are sets of external function names. Third, we implement the

speci�c GED computation of Hu et al. [34] called SMIT (R). We do

not integrate the indexing tree of SMIT as we are more interested

in their GED measure.

Matchings. We compare with the matching algorithm CGC (R)

from Xu et al. [73]. This algorithm needs three parameters along

with a complete classi�cation of mnemonics. We perform prelimi-

nary works to �nd good values for these parameters.

Table 3: Methods included in the evaluation

Framework Class A R Similarity LIR

check

�B8I4 Baseline $ (1)
�B8I4 Baseline $ (1)
Shape Baseline $ (1)
ASCG [27] Spectral $ (=)
ASCFG [27] Spectral $ (1)
GED-0 [66] GED $ (=3)
MutantX-S [33] N-gram $ (1)
Asm2Vec [19] Function ML $ (=2)
Gemini [74] Function ML $ (=2)
SAFE [55] Function ML $ (=2)
DeepBinDi� [21] ML $ (=3<3)
PSS Spectral $ (=)
PSS$ Spectral $ (=)
GED-L [27] GED $ (=3)
SMIT [34] GED $ (=4)
CGC [73] Matching $ (=4)
UDi� [52] Function ML $ (=2)
LibDX [69] Strings $ (B)
LibDB [70] Strings and $ (=2 + B)

Function ML

StringSet Strings $ (B)
FunctionSet Strings $ (=)
A: Adapted for program clone search, R: Reimplemented

LIR: Some literal identi�ers are required

N-gram. We reproduce MutantX-S (R) from the work of Hu et

al. [33]. We extended it to multiple architectures. Each program is

represented by the frequencies of 4-grams obtained from the opcode

sequence. These frequencies are embedded into a 4096-dimension

vector by hashing.

Function embeddings. As previously, we use the similarity metric

� to compare sets of vector embeddings (refer to Equation 1 in

Section 2.2). We �rst consider Asm2Vec (A) [19]. We employ an

unsupervised training strategy on the Basic dataset inspired by

the original paper. Multiple training phases are performed, with

each time one optimization level for training and one for testing.

Then, we take Gemini (A) embedding from Xu et al. [74] in an

optimistic setting. We build a version of the basic dataset retaining

function names and employ these as ground truths for training.

Moreover, we use the embedding of Massarelli et al. [55] with SAFE

(A). We downloaded a pre-trained model made available by one of

the authors6. Lastly, we reproduceUDi� (A) (R) from the framework

of Liu et al. [52]. It is tailored to binary function similarity between

versions. We sample 25% of the UDi� dataset7 as our training set.

UDi� incorporates external function names and in-out degrees in

the call graphs.

DeepBinDi�. The framework DeepBinDi� from Duan et al. [21]

attempts to match basic blocs between two binaries. The similarity

metric computes the number of matched basic blocs by DeepBinDi�

between two programs. Due to its runtime, we were unable to per-

form experiments, and it is only considered inside the preliminary

evaluation.

LibDX. We reproduce the framework LibDX (R) fromKim et al. [69].

It extracts constant string values from well-de�ned read-only sec-

tions of programs. Constant string values are compared with match-

ings and the tf–idf statistic.

LibDB. We reproduce the framework LibDB (R) from Kim et al. [70].

They combine function embeddings and matchings, while using

constant string values as pre-�lters. We reimplemented LibDB with

our trained Gemini model and ScaNN [30] as the nearest vector

search engine.

Function set method. Xu et al. [73] describe a simple method

that �rst matches functions between two programs by using only

external function names and mnemonics similarities. Then, the

similarity measure is computed by a distance over the two function

sets. We simplify this idea and invent the similarity metric Function-

Set, which computes the Jaccard similarity index8 between external

function names. Let �0 be the external function names set of a

program 0. The similarity metric is: �D=2C8>=(4C (0, 1) := |�0∩�1 |
|�0∪�1 | .

String set method . We invent a straightforward metric that com-

pares constant string values inside programs. Let (0 be the set of

all constant string values of a program 0. The similarity metric is:

(CA8=6(4C (0, 1) := |(0∩(1 |
|(0∪(1 | .

We present in Table 3 the characteristics of the di�erent methods

considered here. We record the runtime complexity of a similarity

check between two programs. We note with =,<, and B , the number

of functions, basic blocs in a function CFG, and literal identi�ers re-

spectively. We indicate whether a method requires literal identi�ers.

Note that machine learning approaches require a learning phase,

and Gemini and GCG require manual mnemonics classi�cation.

Implementation. Disassembly is implemented by running the

IDA Pro disassembler v7.5 along with a script from the Kam1n0

assembly analysis platform9. See the recent survey of Pang et al. [62]

on disassembling for more details. Our experiments are run on a

cloud server node containing two CPUs with a frequency of 2.10

GHz and 20 cores per CPU. All reported runtimes are equivalent to

runtimes using only one core.

6https://github.com/facebookresearch/SAFEtorch
7https://twelveand0.github.io/AlphaDi�-ASE2018-Appendix
8https://en.wikipedia.org/wiki/Jaccard_index
9https://github.com/McGill-DMaS/Kam1n0-Community
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Table 4: (RQ0) Total runtimes on the Basic dataset

BB8I4 ≤ 1h30m

DB8I4 ≤ 1h30m

Shape ≤ 1h30m

ASCG ≤ 1h30m

MutantX-S ≤ 1h30m

PSS ≤ 1h30m

PSS$ ≤ 1h30m

LibDX ≤ 1h30m

StringSet ≤ 1h30m

FunctionSet ≤ 1h30m

ASCFG 128h

GED-0 81h

GED-L 46h

SMIT 3634h

CGC 171h

Asm2vec ‡ 141h

Gemini ‡ 102h

SAFE ‡ 655h

UDi� ‡ 642h

LibDB ‡ 16h

fast methods selected for further analysis

‡: Learning time not included

5.4 Preliminary Evaluation: Method Selection

First, we want to identify methods unable to scale to large benchmarks,

in order to not consider them in further analysis. We perform a speed

assessment on the basic dataset of 950 programs, and remove the

methods unable to achieve it in less than 1h30m.

Results. Results are presented in Table 4. Please note that we could

not experiment on DeepBinDi� [21] (with an observed average

of more than 10 minutes per similarity check, we estimate that

it would have taken more than 20,000h to apply it to the whole

basic benchmark), and the training time of ML based methods

is not counted in the reported timing. Results show a signi�cant

dichotomy between methods, 10 of them being able to succeed in

less than 1h30m (often far less), while the other ten methods require

far more time (from 16h to 3634h).

Conclusion. This preliminary experiment shows that function-

level clone search methods (typically based on ML) [19, 52, 55, 70,

74] or graph-edit distance approaches [27, 34, 66] cannot scale to

program-level clone search. In the following, we will consider only

the scalable-enough methods, namely our three baselines (�B8I4 ,

�B8I4 , Shape), as well as ASCG [27],MutantX-S [33], LibDX [70] and

our own PSS, PSS$ , StringSet and FunctionSet.

5.5 RQ1: Evaluation of Speed

We report in Table 5 the runtimes and the preprocessing time on

each dataset to be fully comprehensive.

Basic. On the Basic dataset containing 950 programs, our method is

the slowest and takes 1h18m. Nearly everything is spent during the

prepossessing. The adapted spectral method for call graph ASCG

has similar runtimes. %(($ takes only 15m8s, the optimization

dividing the runtime of PSS by more than 5. LibDX takes 1m4s, and

StringSet 38s. The N-gram method MutantX-S and the FunctionSet

method are very fast and take less than ten seconds.

BinKit. On the BinKit dataset, which contains 97,760 programs of

an average size of 313 Ko, PSS takes 190h, %(($ 116h, andMutantX-

S is slower with 220h. With literal identi�ers, LibDX and StringSet

are much slower (1965h and 542h, resp.). FunctionSet is fast (37h).

IoT Malware. On the IoT dataset containing 19,959 IoT malware,

PSS takes only 2h9m. It is faster than MutantX-S (3h34m). Sur-

prisingly, %(($ is a bit slower than PSS and takes 2h12m. Among

Table 5: (RQ1) Total runtimes. Include preprocessing time.

Signi�cant preprocessing times reported in "( )".

Dataset Basic BinKit IoT Windows

# Programs 1K 98K 20K 85K

BB8I4 6s 43h 47m 8h41m

DB8I4 5s 43h 47m 8h45m

Shape 1m22s 21h25m 21m26s 4h16m

ASCG 1h18m 143h 1h23m 243h

preproc. (1h18m) (81h) (19m12s) (228h)

MutantX-S 4s 220h 3h34m 41h

PSS 1h18m 190h 2h9m 263h

preproc. (1h18m) (81h) (16m42s) (233h)

PSS$ 15m8s 116h 2h12m 31h29m

preproc. (15m6s) (14h3m) (33m3s) (5h23m)

LibDX 1m4s 1965h 7h47m 170h

StringSet 38s 542h 9h21m 253h

FunctionSet 3s 37h 7m47s 27h34m

Table 6: (RQ1) Runtimes per clone search (sec). Include pre-

process. time. Signi�cant preprocess. times reported in "( )".

Dataset Basic BinKit IoT Windows

# Programs 1K 98K 20K 85K

BB8I4 < 0.01 0.11 0.14 0.63

DB8I4 < 0.01 0.11 0.14 0.63

Shape 0.02 0.05 0.06 0.31

ASCG 1.42 (1.42) 0.37 (0.21) 0.25 (0.06) 17.68 (16.60)

MutantX-S < 0.01 0.57 0.64 3.00

PSS 1.41 (1.41) 0.49 (0.21) 0.39 (0.05) 19.17 (16.95)

PSS$ 0.27 (0.27) 0.30 (0.04) 0.40 (0.10) 2.29 (0.39)

LibDX 0.02 5.09 1.40 12.43

StringSet 0.01 1.40 1.69 18.47

FunctionSet < 0.01 0.10 0.02 2.01

methods using literal identi�ers, FunctionSet is fast, with less than 8

minutes in total. LibDX takes 7h47m, while StringSet is the slowest

with 9h21m.

Windows. PSS takes 263h on the Windows dataset. That is far

higher thanMutantX-S (41h) and a bit higher than StringSet (253ℎh).

However, %(($ takes less than 32 hours. Table 6 reports average

runtimes per clone search. We can see that PSS preprocessing time

can sometimes be important, e.g., on large Windows binaries (

16.95s on similarity checks). First, note that preprocessing time does

not increase with the repository size. Second, %(($ is especially

optimized for such cases, and its preprocessing time remains low

in all cases.

Conclusion (RQ1)

PSS is often roughly as fast asMutantX-S on larger datasets, yet

it struggles on large Windows programs. %(($ remedies this

default and is consistently faster than other approaches, but

the baselines and FunctionSet. Interestingly, StringSet is slow

on large benchmarks.

815



Scalable Program Clone Search through Spectral Analysis ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

Table 7: (RQ2) Precision scores

Dataset Basic BinKit IoT Windows

�B8I4 0.17 0.166 0.819 0.196

�B8I4 0.16 0.062 0.787 0.445

Shape 0.19 0.297 0.818 0.389

ASCG 0.24 0.554 0.759 0.444

MutantX-S 0.38 0.354 0.870 0.472

PSS 0.38 0.619 0.863 0.475

%(($ 0.38 0.619 0.862 0.466

LibDX 0.70 0.882 0.707 0.044

StringSet 0.94 0.970 0.922 0.501

FunctionSet 0.87 0.500 0.644 0.426

Random 0.02 0.004 0.477 < 0.001

5.6 RQ2: Evaluation of Precision

We compute precision scores on each dataset. We report the results

in Table 7.

BinKit. PSS and %(($ attain a score of 0.619 on BinKit, while the

other spectral method ASCG has only 0.554. MutantX-S is well

behind with 0.354. In fact, we show in Table 8 that it achieves

scores of 0.01 in cross-architecture scenarios as well as against

obfuscations. With literal identi�ers, StringSet attains 0.970 and

LibDX 0.882. The FunctionSet method has only a score of 0.500.

IoT Malware. PSS has a score of 0.863, close to MutantX-S (0.870).

%(($ is very close with 0.862, while ASCG attains 0.759. With

literal identi�ers, StringSet achieves a score of 0.922. Other literal

identi�er methods have some troubles. FunctionSet has a score of

0.644 because only very few external names are available. Moreover,

LibDX attains 0.707 because LibDX extracts constant string values

from read-only sections, which are scarce inside IoT �rmware.

Windows. PSS attains a score of 0.475 on Windows, just above

MutantX-S (0.472) and well above ASCG (0.444). %(($ is a bit be-

hind PSS and MutantX-S with 0.466. Among methods with literal

identi�ers, StringSet attains 0.501. LibDX attains only 0.044. Again,

LibDX extracts constant string values from well-de�ned read-only

sections, which are not prevalent in Windows programs. As before,

FunctionSet has a rather low score here of only 0.426.

Conclusion (RQ2)

PSS and %(($ are usually as precise as MutantX-S except

in cross-architecture and obfuscations scenarios, for which

MutantX-S fails. When literal identi�ers are meaningful,

StringSet is the most precise method in all datasets, while Func-

tionSet and LibDX struggle on IoT and Windows datasets.

5.7 RQ3: Evaluation of Robustness

The last evaluation measures the robustness of the ten clone search

methods that survived the speedtest. For this, we consider four

scenarios with (i) cross-optimization, (ii) cross-compiler, (iii) cross-

architecture and (iv) in the presence of obfuscations. The evaluation

leans on the BinKit dataset that we presented earlier.

Results. We report the most crucial test �eld scores in Table 8.

When literal identi�ers are available, StringSet and LibDX are very

stable in all scenarios. FunctionSet is stable except in scenarios

involving cross-architecture because external function names di�er

between architectures. Note that a strong limitation to this �nding

is that the considered obfuscations do not hide nor encrypt literal

strings and external calls (API), while it is common practice.

PSS and %(($ are much more robust than MutantX-S in cross-

architecture, cross-optimization and obfuscations scenarios. For

instance, MutantX-S falls to 0.02 from the arm to mips architecture,

while PSSmaintains a score of 0.39. The more basic spectral method

ASCG also falls to 0.08 in this scenario. Interestingly, PSS and %(($
perform better in the cross-architecture test �elds than in the (-

O0, -O3) and (-O0, -O2) test �elds. We hypothesize that while the

architecture does not impact that much the produced call graph,

advanced optimizations do – function inlining is precisely turned

on by the -O2 optimization level in both GCC and Clang.

Statistical analysis. A common pitfall of similarity detection is

that a method could in the end consider as similar two programs

based on some side aspects (e.g., architecture, compiler used or

optimization version) irrelevant from the clone search point of view.

We evaluate the sensitivity of the di�erent approaches to such bias

by computing rank-biserial correlations between (a) similarity rank

in new clone searches and (b) sharing an optimization level. We

report average correlations in Table 9 (the lower, the better and less

sensitive). PSS, %(($ , ASCG and LibDX have very small correlations

of less than 0.10. On the other hand, the StringSetmethod correlation

is moderate (0.45), indicating some bias. Surprisingly, this bias does

not seem to impact the robustness of StringSet (Table 8). The N-gram

method MutantX-S has a lower correlation of 0.33 and FunctionSet

has a small correlation of 0.20.

Conclusion (RQ3)

PSS and %(($ are robust to cross-optimization, cross-compiler,

cross-architecture and obfuscations scenarios, whileMutantX-S

su�ers signi�cant precision loss in the cross-architecture and

obfuscations cases.

5.8 RQ4: Ablation Study

In Table 10, we report the precision scores of the two components

of PSS: simCG and simCFG. The �rst is a comparison between

eigenvalues of the call graph, while the second is a comparison

between the number of edges of functions control �ow graphs. PSS

always attains a higher precision score than simCG and simCFG

on every dataset. We remark that simCFG alone is not precise on

the Windows dataset (0.163 vs. 0.459 for simCG). In Table 11, we

report each component’s average runtimes per clone search. As

expected, PSS runtimes are the addition of simCG and simCFG

runtimes. Therefore, PSS is at worse one second slower than simCG.

Conclusion (RQ4)

PSS is more precise than its components for the price of a slight

increase in runtimes.
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Table 8: (RQ2,RQ3) Precision scores on the BinKit dataset

Category Optimization level Cross-compiler Cross-architecture vs. Obfuscation†
O0 O0 O0 O1 O1 O2 gcc-4 clang-4 clang arm arm mips 32

vs. O1 O2 O3 O2 O3 O3 gcc-8 clang-7 gcc mips x86 x86 64 bcf �a sub all

�B8I4 0.04 0.04 0.07 0.19 0.11 0.21 0.11 0.45 0.07 0.03 0.10 0.04 0.04 0.04 0.01 0.08 0.01

�B8I4 0.03 0.03 0.03 0.06 0.05 0.07 0.07 0.09 0.04 0.02 0.05 0.03 0.04 0.02 0.01 0.05 0.01

Shape 0.19 0.07 0.06 0.17 0.11 0.33 0.38 0.65 0.16 0.04 0.16 0.04 0.19 0.25 0.27 0.48 0.23

ASCG 0.40 0.12 0.10 0.43 0.24 0.68 0.78 0.91 0.46 0.08 0.46 0.06 0.59 0.54 0.64 0.78 0.48

MutantX-S 0.04 0.03 0.03 0.43 0.36 0.64 0.67 0.80 0.14 0.02 0.01 0.01 0.06 0.09 0.03 0.54 0.01

PSS 0.54 0.23 0.17 0.59 0.38 0.70 0.79 0.91 0.51 0.39 0.55 0.39 0.66 0.53 0.57 0.82 0.46

PSS $ 0.53 0.24 0.17 0.60 0.39 0.68 0.78 0.90 0.51 0.44 0.54 0.44 0.66 0.52 0.56 0.82 0.46

LibDX 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.86 0.78 0.87 0.89 0.90 0.88 0.87 0.86 0.86 0.86

StringSet 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.96 0.98 0.96 0.97 0.96 0.97 0.96 0.97

FunctionSet 0.55 0.53 0.53 0.55 0.55 0.56 0.46 0.68 0.55 0.29 0.02 0.00 0.23 0.61 0.61 0.61 0.61

Random clone search results in a precision score inferior to 0.005 on all test �elds.

†: The BinKit dataset does not consider any obfuscation of literal identi�ers

Table 9: (RQ3) Average rank-biserial correlation for �

Framework Basic dataset

�B8I4 0.02

�B8I4 0.01

Shape 0.04

ASCG 0.08

MutantX-S 0.33

Framework Basic dataset

PSS 0.06

PSS $ 0.06

LibDX -0.07

StringSet 0.45

FunctionSet 0.20

Table 10: (RQ4) Components precision scores

Dataset Basic BinKit IoT Windows

simCG 0.29 0.596 0.856 0.459

simCFG 0.29 0.424 0.856 0.163

PSS 0.38 0.619 0.863 0.475

Table 11: (RQ4) Components runtimes per clone search (sec).

Include preprocess. time. Signi�cant preprocess. times reported in "( )".

Dataset Basic BinKit IoT Windows

simCG 1.41 (1.41) 0.36 (0.21) 0.22 (0.05) 18.07 (16.95)

simCFG < 0.01 0.14 0.16 1.06

PSS 1.41 (1.41) 0.49 (0.21) 0.39 (0.05) 19.17 (16.95)

Table 12: Informal summarized comparison

Method speed precision robust. beware

ASCG [27] + - +

MutantX-S [33] + + --

PSS/%(($ +/++ + +

LibDX [69] - ++ ++ str. extraction

str. obf.

StringSet -- +++ ++ str. obf.

FunctionSet +++ - - fun. name obf.

static linking

5.9 Summary of Our Main Results

Our novel spectral methods PSS and %(($ reach a sweet spot re-

garding the trade-o� between speed, precision and robustness. They

do not need any training phase, scale very well to large repositories

and are very robust, even in cross-architecture or cross-compiler

scenarios and in case of lightweight obfuscation. Therefore, they

are the best candidates for intensive program clone search. Also, it

is worth mentioning that direct adaptations of graph based spectral

methods lack precision compared to PSS, and that the optimization

%(($ is necessary over large programs. A summarized informal

comparison with other methods is given in Table 12.

This large study also allowed us to highlight that most prior

approaches in the �eld [19, 52, 55, 74], mostly focused on function-

level similarity, are far too slow for program clone search.

6 RELATED WORKS

Binary code similarities are extensively studied. As a testimony,

the review of Haq and Caballero [31] reports numerous input and

output granularities on which to study similarities.

Pioneering approaches. Dullien in 2004 [22] introduced a graph

based program di�ng approach that constructs a call graph isomor-

phism. A follow-up [23] extended it to match basic blocks inside

matched functions. These two results are the basis for the popular

BinDi� program di�ng plugin for the IDA disassembler. BinDi�

aims to recognize similar binary functions among two related exe-

cutables. In 2006, Kruegel et al. [46] presented an approach based on

coloring small graphs with �xed size from the control �ow graph

to identify structural similarities between di�erent worm muta-

tions. In 2008, Gao et al. proposed BinHunt [28] to �nd di�erences

between two versions of the same program. BinHunt employs sym-

bolic execution with a constraint solver to prove that two basic

blocks implement the same functionality.

Program similarity. The few recent works about program-level

similarity [57, 75] have already been thoroughly discussed. Still,

we can mention a few more approaches. N-gram methods com-

pare instruction sequences [33, 41, 58, 67]. While we could have

employed more �ne-grained methods than MutantX-S [33] – for
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example Exposé [58] considers trigrams inside a function match-

ing, it quickly leads to serious scalability issues. Some other works

explore similarities based on dynamic executions and input-output

observations [2, 38, 51, 56]. Nevertheless, it is hard to thoroughly

explore the execution space with dynamic traces – leading to poor

precision, and handling large code repositories requires automating

the task of detecting the sources of input and output of all pro-

grams in the repository, which can be very complicated. Bruschi

et al. [11] tackle the problem of detecting some malware inside a

program by matching control �ow graphs. But, again, this approach

su�ers from scalability issues (in the size of the programs) and is

thus not amenable to the search over large code repositories. The

symbolic method by Luo et al. [53] is robust to simple obfuscations

as well as simple changes. However, the running time of symbolic

execution is a critical issue on large programs, and anti-analysis

obfuscation hinders symbolic approaches [6, 61]. We have already

studied the matching method CGC [73]. The complex matching by

Xu et al. [73] outperforms a baseline based on external function

names and mnemonics. However, we propose StringSet, a faster,

highly precise method comparing sets of constant string values. A

few other matching approaches [4, 10, 48] share the same strengths

and weaknesses.

Function similarity. The last �ve years have seen a tremendous in-

crease in the popularity of binary function similarity with machine

learning [19, 52, 55, 74, 77]. Yet, as already discussed, these methods

lead to poor scalability when applied to a program similarity setting.

More expensive methods than function embeddings do exist. No-

tably, dynamic analysis seeks to build upon the semantics of binary

codes instead of their mere structural properties. BinGo [12] ana-

lyzes various execution traces with concepts such as pruning. The

work of Hu et al. [35] emulates binary functions to create semantic

signatures. Pewny et al. [63] propose to translate binary code to an

intermediate representation. This representation allows observing

inputs and outputs of basic blocs. These frameworks su�er from the

already mentioned pitfalls of dynamic execution: the exploration is

either imprecise or very slow. Furthermore, it is unclear how to lift

these methods to the case of program similarity, as comparing all

functions between multiple codes is costly. Built on the idea of in-

termediate representation, several approaches [17, 47, 64] perform

simpli�cation before comparing. In FirmUp [16], the matching be-

tween intermediate representations incorporates multiple functions.

The formula has to be transformed into an embedding. The larger

the code segment it represents, the less precise the embedding is.

Finally, other feature selection methods have been investigated:

Rendez-vous [42] extracts statistical features at various granulari-

ties, while discovRE [24] and Genius [25] extract features such as

the number of arithmetic instructions. Gemini [74] leverages static

features from Genius into a machine learning framework.

Source code similarity. Computing source similarities can be per-

formed with di�erent structures such as Abstract Syntax Trees [7,

8, 76] or Program Dependency Graphs [8]. It is also possible to

normalize instructions and compare code fragments [8, 37]. Match-

ing tokens, fragments and structures is e�ective because there is

no compiler optimization step which would introduce variations.

Moreover, critical information such as types are lost by compilation,

while data dependencies are harder to retrieve on binary programs.

Graph similarity. A key question in program similarity is how to

compare graphs e�ciently. New suggestions for graph similarities

include novel graph kernels [26, 45, 59] and the use of machine

learning to approximate intractable properties such as graph edit

distance [5, 50, 65]. Recently, the work of Bay-Ahmed et al. [1] in-

troduced a new graph similarity metric incorporating both spectral

information from the Adjacency Matrix and from the Laplacian.

Moreover, the work of Crawford et al. [15] proposed spectral anal-

ysis as a similarity metric of real-world networks. Furthermore,

the study of Fyrbiak et al. [27] reveals that spectral analysis can

compete with more energy-intensive approaches such as GED.

Library identi�cation. The pioneering BAT [32] has proposed

three methods for library identi�cation, based on strings, compres-

sion algorithms and edit distances between bit sequences. They re-

port that edit distance computations are too costly, while strings can

be easily obfuscated. OSSPolice [20] has developed similarity mea-

sures based on strings. The special structure of Java programs allows

the use of properties such as class and package inclusions [3, 36] in

order to identify Android libraries.

7 DISCUSSION AND LIMITATIONS

While PSS and %(($ perform well in our experiments, there are

still a number of potential corner cases that must be considered.

Generally speaking, these methods will su�er on program clones

with very di�erent call graphs. Such di�erences could come for

example: (1) from signi�cant source code revisions – it is why we

support only incremental changes of an application or library, (2) or

from aggressive inter-procedural compiler optimizations, such as

function inlining or function sharing – link-time optimizations may

be a growing problem here, (3) or from aggressive inter-procedural

obfuscation schemes, such as function merging or virtualization.

Also, as the programs we consider mainly come from C/C++

source codes, it would be interesting to evaluate all the considered

methods over programs written in emerging programming lan-

guages (e.g., Rust, Go) that may contain language-speci�c function

call patterns.

8 CONCLUSION

We consider the problem of searching program clones in large code

repositories. While most prior works have been devoted to function

clones, the few existing techniques for program similarity su�er

either from scalability issues, low precision, or low robustness to

code variations.We propose a novel method called Program Spectral

Similarity (PSS, and especially its optimized version %(($ ) that

reaches a sweet spot in terms of speed, precision, and robustness –

even in cross-compiler or cross-architecture setups.
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