
RUSTINA: Automatically Checking and Patching
Inline Assembly Interface Compliance

(Artifact Evaluation)

Accepted submission #992 – “Interface Compliance of Inline Assembly:
Automatically Check, Patch and Refine”

Frédéric Recoules
Univ. Paris-Saclay, CEA, List

Saclay, France
frederic.recoules@cea.fr

Matthieu Lemerre
Univ. Paris-Saclay, CEA, List

Saclay, France
matthieu.lemerre@cea.fr

Sébastien Bardin
Univ. Paris-Saclay, CEA, List

Saclay, France
sebastien.bardin@cea.fr

Laurent Mounier
Univ. Grenoble Alpes, VERIMAG

Grenoble, France
laurent.mounier@univ-grenoble-alpes.fr

Richard Bonichon
Tweag I/O

Paris, France
richard.bonichon@gmail.com

Marie-Laure Potet
Univ. Grenoble Alpes, VERIMAG

Grenoble, France
marie-laure.potet@univ-grenoble-alpes.fr

I. GOAL

The main goal of the artifact is to support the experimental
claims of the paper #992 “Interface Compliance of Inline As-
sembly: Automatically Check, Patch and Refine” [3] by making
both the prototype and data Available to the community. The
expected result is the same output as the figures given in Table
I and Table IV (appendix C) of the paper. In addition, we hope
the released snapshot of our prototype is simple, documented
and robust enough to have some uses for people dealing with
inline assembly.

II. CONTEXT

Inline assembly is still a common practice in low-level C
programming, typically for efficiency reasons or for accessing
specific hardware resources. Such embedded assembly codes
in the GNU syntax (supported by major compilers such as
GCC, Clang and ICC) have an interface specifying how
the assembly codes interact with the C environment. For
simplicity reasons, the compiler treats GNU inline assembly
codes as blackboxes and relies only on their interface to
correctly glue them into the compiled C code. Therefore, the
adequacy between the assembly chunk and its interface (named
compliance) is of primary importance, as such compliance
issues can lead to subtle and hard-to-find bugs. We propose
RUSTINA [3], [1], the first automated technique for formally
checking inline assembly compliance, with the extra ability
to propose (proven) patches and (optimization) refinements in
certain cases. RUSTINA is based on an original formalization
of the inline assembly compliance problem together with novel
dedicated algorithms. Our prototype has been evaluated on 202
Debian packages with inline assembly (2656 chunks), finding

2183 issues in 85 packages – 986 significant issues in 54
packages (including major projects such as ffmpeg or ALSA),
and proposing patches for 92% of them. Currently, 38 patches
have already been accepted (solving 156 significant issues),
with positive feedback from development teams.

RUSTINA is part of the TINA toolset for the automatic
analysis of low-level C code with inline assembly [2]. It is
built on top of the binary-level code analyzer BINSEC [4] and
the C code analyzer Frama-C [5].

III. MISC

Contact. Frédéric Recoules is the corresponding author:
frederic.recoules@cea.fr.

Requirements. Hardware requirements are low. Any personal
64bit processor laptop should be able to replay the benchmark.
Depending on the reviewer situation, it will be needed to have
an access to either: Ubuntu 18.04 with make, python2 and
python-pandas installed, docker or VirtualBox. Replaying
the benchmark requires no particular skill. Yet, basic knowl-
edge of shell, python scripts, CSV file format and GNU inline
assembly could help the reviewer experimenting on their own.

Availability. The artifact is made publicly available on Github
at: https://github.com/binsec/icse2021-artifact992/, and more
information on RUSTINA can be found at https://binsec.
github.io/new/publication/1970/01/01/nutshell-icse-21.html.

Archive. The artifact is archived in a persistent Zenodo
repository at https://doi.org/10.5281/zenodo.4601172.

1

mailto:frederic.recoules@cea.fr
mailto:matthieu.lemerre@cea.fr
mailto:sebastien.bardin@cea.fr
mailto:laurent.mounier@univ-grenoble-alpes.fr
mailto:richard.bonichon@gmail.com
mailto:marie-laure.potet@univ-grenoble-alpes.fr
mailto:frederic.recoules@cea.fr
https://github.com/binsec/icse2021-artifact992/
https://binsec.github.io/new/publication/1970/01/01/nutshell-icse-21.html
https://binsec.github.io/new/publication/1970/01/01/nutshell-icse-21.html
https://doi.org/10.5281/zenodo.4601172


IV. CONTENTS

RUSTINA. This is the software part of the artifact, pack-
aged inside a standalone AppImage (equivalent of .exe on
Windows). This prototype is able to digest C preprocessed
(i.e where macro are resolved) source files that contain inline
assembly chunks to either:

Print important information about the compliance of the
chunks in a human readable fashion;

Log individual issue information in a CSV format.
Instruction sets currently supported are x86-32bit and ARMv7.

Trimmed data. This sample contains all assembly chunks
studied in the experimental evaluation (section VII.) of the
prototype. That is 2656 relevant chunks over 202 projects for
the x86 architecture and 392 relevant chunks of 3 projects for
the ARM architecture. The chunks have been extracted from
their original source and gathered in one place by project to
save space and ease repeatability. Data contain only assembly
related slices of the original codes, but location information
allows to link them back to the place they were extracted.

Scripts. The artifact comes with predefined rules in order to
automatically replay the benchmark and output the formatted
key figures presented in the paper (Table I). The given python
scripts can be used to format the log of any subpart of the
benchmark or custom experiments.

In addition, the repository comes with detailed instructions,
documentation, examples and a preprint of the accepted paper.

V. REPLICATION PROCESS

Replaying the benchmark is fully automatic. The material
can be found on the GitHub repository hosted at https://github.
com/binsec/icse2021-artifact992/.

It is available on 3 formats:
1) the repository itself can be cloned using git when running

an Ubuntu 18.04;
2) a docker container can be downloaded in the release panel

for docker users;
3) an Appliance (.ova) can be downloaded in the release

panel for VirtualBox users.
The 3 formats are equivalent since the containers are just

a wrapper around the content of the repository (including the
AppImage) with resolved dependencies. Only space disk usage
changes.

At the root of the directory (containers already start here),
a single command launches the entire benchmark:
$ make all

The command will call RUSTINA on each sample file of
the samples/ directory and output a log (.csv) in the
corresponding data/ directory. Each file will be processed
twice, once without precision enhancer and once with bit
level liveness and symbolic expression folding enabled. The
special log files data/debian.csv gather all the re-
sults. Then the python scripts script/table1.py and

script/table2.py digest the log to output the formatted
figures of, respectively, Table I and Table IV.

Subsequent call to make all will directly output the
result. In order to restart from scratch, use the command:
$ make clean

VI. ORIGIN OF THE DATA-SET

The data-set is exactly the one used in the paper. The
snippets of assembly code come from the sources of Debian
Jessie (8.11) packages. We ran a long session of package
installations during which each call to a C compiler was
intercepted. All C preprocessed sources were scanned for
assembly chunks and relevant ones were saved. Files were
merged by project and then sliced to keep only functions
containing assembly chunks and their syntactic dependencies.
All credits belongs to their original authors.

VII. OTHER USES

RUSTINA (bin/rustina-x86_64.AppImage) can
be used as other command line tools.

It takes 3 optional parameters and a list of preprocessed C
files (ending with .i extension).

The optional parameters are:
-b --batch <path> Logs issues in the file <path>.
-v --verbose Outputs issues and patches on <stdout>.
-x --basic No precision enhancer.

Note. Due to AppImage internal behavior, every path given in
the command line has to be fully qualified. This can be easily
achieved by prefixing relative file path with “$(pwd)/".

In order to process the file, RUSTINA requires the C source
to have no macro. If your test file does not contain any, simply
rename the .c or .h extension by .i. In other case, the
compiler option -E should work for gcc or Clang to output
file after macro substitution.

Additional instructions and examples are included in the
repository to experiment with RUSTINA.

REFERENCES

[1] F. Recoules, S. Bardin, R. Bonichon, M. Lemerre, L. Mounier, M. Potet.
RUSTINA in a nutshell. https://binsec.github.io/new/publication/1970/
01/01/nutshell-icse-21.html

[2] F. Recoules, S. Bardin, R. Bonichon, L. Mounier, M. Potet. Get Rid of
Inline Assembly through Verification-Oriented Lifting. 34th IEEE/ACM
International Conference on Automated Software Engineering (ASE’19)
IEEE

[3] F. Recoules, S. Bardin, R. Bonichon, M. Lemerre, L. Mounier, M.-
L. Potet. Interface Compliance of Inline Assembly: Automatically Check,
Patch and Refine. 43rd International Conference on Software Engineering
(ICSE 2021). ACM

[4] A. Djoudi and S. Bardin. BINSEC: Binary Code Analysis with Low-
Level Regions. 21st International Conference on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS’15). Springer

[5] F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles and B. Yakobowski.
Frama-C: A software analysis perspective. Formal Asp. Comput, 27(3),
2015

2

https://github.com/binsec/icse2021-artifact992/
https://github.com/binsec/icse2021-artifact992/
https://binsec.github.io/new/publication/1970/01/01/nutshell-icse-21.html
https://binsec.github.io/new/publication/1970/01/01/nutshell-icse-21.html

