Search-Based Local Black-Box Deobfuscation:
Understand, Improve and Mitigate

Grégoire Menguy
gregoire.menguy@cea.fr
Université Paris-Saclay, CEA, List
France

Richard Bonichon
richard.bonichon@nomadic-labs.com
Nomadic Labs
France

ABSTRACT

Code obfuscation aims at protecting Intellectual Property and other
secrets embedded into software from being retrieved. Recent works
leverage advances in artificial intelligence (AI) with the hope of
getting blackbox deobfuscators completely immune to standard
(whitebox) protection mechanisms. While promising, this new field
of Al-based, and more specifically search-based blackbox deobfus-
cation, is still in its infancy. In this article we deepen the state of
search-based blackbox deobfuscation in three key directions: un-
derstand the current state-of-the-art, improve over it and design
dedicated protection mechanisms. In particular, we define a novel
generic framework for search-based blackbox deobfuscation en-
compassing prior work and highlighting key components; we are
the first to point out that the search space underlying code deob-
fuscation is too unstable for simulation-based methods (e.g., Monte
Carlo Tree Search used in prior work) and advocate the use of robust
methods such as S-metaheuristics; we propose the new optimized
search-based blackbox deobfuscator Xyntia which significantly out-
performs prior work in terms of success rate (especially with small
time budget) while being completely immune to the most recent
anti-analysis code obfuscation methods; and finally we propose
two novel protections against search-based blackbox deobfuscation,
allowing to counter Xyntia powerful attacks.

KEYWORDS

Binary-level code analysis, deobfuscation, artificial intelligence

1 INTRODUCTION

Context. Software contain valuable assets, such as secret algo-
rithms, business logic or cryptographic keys, that attackers may
try to retrieve. The so-called Man-At-The-End-Attacks scenario
(MATE) considers the case where software users themselves are
adversarial and try to extract such information from the code. Code
obfuscation [12, 13] aims at protecting codes against such attacks, by
transforming a sensitive program P into a functionally equivalent
program P’ that is more “difficult” (more expensive, for example,
in money or time) to understand or modify. On the flip side, code
deobfuscation aims to extract information from obfuscated codes.
Whitebox deobfuscation techniques, based on advanced symbolic
program analysis, have proven extremely powerful against standard
obfuscation schemes [3, 5, 10, 22, 28, 30, 36] — especially in local

Sébastien Bardin
sebastien.bardin@cea.fr
Université Paris-Saclay, CEA, List
France

Cauim de Souza de Lima
cauimsouza@gmail.com
Université Paris-Saclay, CEA, List
France

attack scenarios where the attacker analyses pre-identified parts of
the code (e.g., trigger conditions). But they are inherently sensitive
to the syntactic complexity of the code under analysis, leading to
recent and effective countermeasures [12, 25, 26, 37].

Search-based blackbox deobfuscation. Despite being rarely com-
plete or sound, artificial intelligence (Al) techniques are flexible and
often provide good enough solutions to hard problems in reasonable
time. They have been therefore recently applied to binary-level code
deobfuscation. The pioneering work by Blazytko et al. [7] shows
how Monte Carlo Tree Search (MCTS) [9] can be leveraged to solve
local deobfuscation tasks by learning the semantics of pieces of
protected codes in a blackbox manner, in principle immune to the
syntactic complexity of these codes. Their method and prototype,
Syntia, have been successfully used to reverse state-of-the-art pro-
tectors like VMProtect [34], Themida [27] and Tigress [11], drawing
attention from the software security community [8].

Problem. While promising, search-based blackbox (code) deobfus-
cation techniques are still not well understood. Several key ques-
tions of practical relevance (e.g., deobfuscation correctness and
quality, sensitivity to time budget) are not addressed in Blazytko et
al’s original paper, making it hard to exactly assess the strengths
and weaknesses of the approach. Moreover, as Syntia comes with
many hard-coded design and implementation choices, it is legit-
imate to ask whether other choices lead to better performance,
and to get a broader view of search-based blackbox deobfuscation
methods. Finally, it is unclear how these methods compare with
recent proposals for greybox deobfuscation [16] or general program
synthesis [6, 29], and how to protect from such blackbox attacks.

Goal. We focus on advancing the current state of search-based
blackbox deobfuscation in the following three key directions: (1)
generalize the initial Syntia proposal and refine the initial experi-
ments by Blazytko et al. in order to better understand search-based
blackbox methods, (2) improve the current state-of-the-art (Syntia)
through a careful formalization and exploration of the design space
and evaluate the approach against greybox and program synthe-
sis methods, and finally (3) study how to mitigate such blackbox
attacks. Especially, we study the underlying search space, bringing
new insights for efficient blackbox deobfuscation, and promote the
application of S-metaheuristics [32] instead of MCTS.

Contributions. Our main contributions are the following:

o We refine Blazytko et al’s experiments in a systematic way,
highlighting new strengths and new weaknesses of the initial
Syntia proposal for search-based blackbox deobfuscation
(Section 4). Especially, Syntia (based on Monte Carlo Tree
Search, MCTS) is far less efficient than expected for small
time budgets (typical usage scenario) and lacks robustness;

o We propose a missing formalization of blackbox deobfuscation
(Section 4) and dig into Syntia internals to rationalize our
observations (Section 4.4). It appears that the search space
underlying blackbox code deobfuscation is too unstable to rely
on MCTS - especially assigning a score to a partial state
through simulation leads to poor estimations. As a result,
Syntia is here almost enumerative,

e We propose to see blackbox deobfuscation as an optimization
problem rather than a single player game (Section 5), allowing
to reuse S-metaheuristics [32], known to be more robust than
MCTS on unstable search spaces (especially, they do not
need to score partial states). We propose Xyntia (Section 5),
an search-based blackbox deobfuscator using Iterated Local
Search (ILS) [24], known among S-metaheuristics for its ro-
bustness. Thorough experiments show that Xyntia keeps the
benefits of Syntia while correcting most of its flaws. Espe-
cially, Xyntia significantly outperforms Syntia, synthesizing
twice more expressions with a budget of 1 s/expr than Syn-
tia with 600 s/expr. Other S-metaheuristics also clearly beat
MCTS, even if they are less effective here than ILS;

e We evaluate Xyntia against other state-of-the-art attackers
(Section 6), namely the QSynth greybox deobfuscator [16],
program synthesizers CVC4 [6] and STOKE [29], and pattern-
matching based simplifiers. Xyntia outperforms all of them —
it finds 2X more expressions and is 30X faster than QSynth
on heavy protections;

e We evaluate Xyntia against state-of-the-art defenses (Sec-
tion 7), especially recent anti-analysis proposals [14, 25, 31,
35, 37]. As expected, Xyntia is immune to such defenses. In
particular, it successfully bypasses side-channels [31], path
explosion [25] and MBA [37]. We also use it to synthesize
VM-handlers from state-of-the-art virtualizers [11, 34];

e Finally, we propose the two first protections against search-
based blackbox deobfuscation (Section 8). We observe that all
phases of blackbox techniques can be thwarted (hypothe-
sis, sampling and learning), we propose two practical meth-
ods exploiting these limitations and we discuss them in the
context of virtualization-based obfuscation: (1) semantically
complex handlers; (2) merged handlers with branch-less con-
ditions. Experiments show that both protections are highly
effective against blackbox attacks.

We hope that our results will help better understand search-based
deobfuscation, and lead to further progress in this promising field.

Availability. Benchmarks and code are available online.! Additional
experimental data will be made available in a separate technical
report.

1Will be made available

Menguy, et al.

2 BACKGROUND
2.1 Obfuscation

Program obfuscation [12, 13] is a family of methods designed to
make reverse engineering (understanding programs internals) hard.
It is employed by manufacturers to protect intellectual property
and by malware authors to hinder analysis. It transforms a program
P in a functionally equivalent, more complex program P’ with an
acceptable performance penalty. Obfuscation does not ensure that
a program cannot be understood - this is impossible in the MATE
context [4] — but aims to delay the analysis as much as possible
in order to make it unprofitable. Thus, it is especially important
to protect from automated deobfuscation analyses (anti-analysis
obfuscation). We present here two important obfuscation methods.

Mixed Boolean-Arithmetic (MBA) encoding [37] transforms
an arithmetic and/or Boolean expression into an equivalent one,
combining arithmetic and Boolean operations. It can be applied
iteratively to increase the syntactic complexity of the expression.
Eyrolles et al. [18] show that SMT solvers struggle to answer equiv-
alence requests on MBA expressions, preventing the automated
simplification of protected expressions by symbolic methods.

Virtualization [35] translates an initial code P into a bytecode
B together with a custom virtual machine. Execution of the ob-
fuscated code can be divided in 3 steps (Fig. 1): (1) fetch the next
bytecode instruction to execute, (2) decode the bytecode and find
the corresponding handler, (3) and finally execute the handler. Virtu-
alization hides the real control-flow-graph (CFG) of P, and reversing
the handlers is key for reversing the VM. Virtualization is notably
used in malware [19, 33].

|

hi(x,y)

Fetch Decode Execute ha(x,4)

h3(x,y)

1 hn(x,y)
Bytecodes T

Figure 1: Virtualization based obfuscation

2.2 Deobfuscation

Deobfuscation aims at reverting an obfuscated program back to
a form close enough to the original one, or at least to a more un-
derstandable version. Along the previous years, symbolic deobfus-
cation methods based on advanced program analysis techniques
have proven to be very efficient at breaking standard protections
[3, 5, 10, 22, 28, 30, 36]. However, very effective countermeasures
start to emerge, based on deep limitations of the underlying code-
level reasoning mechanisms and potentially strongly limiting their
usage [3, 25, 26, 31, 35]. Especially, all such methods are ultimately
sensitive to the syntactic complexity of the code under analysis.

2.3 Search-based blackbox deobfuscation

Search-based blackbox deobfuscation has been recently proposed
by Blazytko et al. [7], implemented in the Syntia tool, to learn the
semantics of well-delimited code fragments, e.g. MBA expressions
or VM handlers. The code under analysis is seen as a blackbox that
can only be queried (i.e., executed under chosen inputs to observe
results). Syntia samples input-output (I/O) relations, then uses a

Search-Based Local Black-Box Deobfuscation:
Understand, Improve and Mitigate

learning engine to find an expression mapping sampled inputs to
their observed outputs. Because it relies on a limited number of
samples, results are not guaranteed to be correct. However, being
fully blackbox, it is in principle insensitive to syntactic complexity.

Scope. Syntia tries to infer a simple semantics of heavily obfuscated
local code fragments — e.g., trigger based conditions or VM handlers.
Understanding these fragments is critical to fulfill analysis.

Workflow. Syntia workflow is representative of search-based black-
box deobfuscators. First, it needs (1) a reverse window1i.e., a subset of
code to work on; (2) the location of its inputs and outputs. Consider
the code in Listing 1 evaluating a condition at line 4. To under-
stand this condition, a reverser focuses on the code between lines
1 and 3. This code segment is our reverse window. The reverser
then needs to locate relevant inputs and outputs. The condition
at line 4 is performed on ¢3. This is our output. The set of inputs
contains any variables (registers or memory locations at assembly
level) influencing the outputs. Here, inputs are x and y. Armed with
these information, Syntia samples inputs randomly and observes
resulting outputs. In our example, it might consider the samples
(x> Ly 2), (x> 0,y — 1)and (x — 3,y > 4) which respec-
tively evaluate ¢3 to 3, 1 and 7. Syntia then synthesizes an expression
matching these observed behaviors, using Monte Carlo Tree Search
(MCTS) over the space of all possible (partial) expressions. Here,
it rightly infers that t3 < x + y and the reverser concludes that
the condition is x + y = 5, where a symbolic method will typically
simply retrieve that ((x V 2y) X 2 — (x ® 2y) —y) = 5.

int t1 = 2 « y;

int t2 = x | tl1;

int t3 = t2 « 2 - (x " t1) - y;

if (t3 == 5)

Listing 1: Obfuscated condition

3 MOTIVATION
3.1 Attacker model

In the MATE scenario, the attacker is the software user himself. He
has only access to the obfuscated version of the code under analysis
and can read or run it at will. We consider that the attacker is highly
skilled in reverse engineering but has limited resources in terms of
time or money. We see reverse engineering as a human-in-the-loop
process where the attacker combines manual analysis with auto-
mated state-of-the-art deobfuscation methods (slicing, symbolic
execution, etc.) on critical, heavily obfuscated code fragments like
VM handlers or trigger-based conditions. Thus, an effective defense
strategy is to thwart automated deobfuscation methods.

3.2 Syntactic and semantic complexity

We now intuitively motivate the use of blackbox deobfuscation.
Consider that we reverse a piece of software protected through vir-
tualization. We need to extract the semantics of all handlers, which
usually perform basic operations like A(x, y) = x+y. Understanding
h is trivial, but it can be protected to hinder analysis. Eq. (1) shows
how MBA encoding hides h semantics.

h(x,y) =x+y mbg (xv2yyx2-(x®2y) -y 1)

Such encoding syntactically transforms the expression to make
it incomprehensible while preserving its semantics. To highlight
the difference between syntax and semantics, we distinguish:

(1) The syntactic complexity of expression e is the size of e,
i.e. the number of operators used in it;

(2) The semantic complexity of expression e is the smallest
size of expressions e’ (in a given language) equivalent to e.

For example, in the MBA language, x + y is syntactically simpler
than (x V 2y) X 2 — (x ® 2y) — y, yet they have the same semantic
complexity as they are equivalent. Conversely, x + y is more seman-
tically complex than (x + y) A 0, which equals 0. We do not claim
to give a definitive definition of semantic and syntactic complexity
- as smaller is not always simpler - but introduce the idea that two
kinds of complexity exist and are independent.

The encoding in Eq. (1) is simple, but it can be repeatedly ap-
plied to create a more syntactically complex expression, leading the
reverser to either give up or try to simplify it automatically. White-
box methods based on symbolic execution (SE) [28, 36] and formula
simplifications (in the vein of compiler optimizations) can extract
the semantics of an expression, yet they are sensitive to syntactic
complexity and will not return simple versions of highly obfuscated
expressions. Conversely, blackbox deobfuscation treats the code as
a blackbox, considering only sampled I/O behaviors. Thus increas-
ing syntactic complexity, as usual state-of-the-art protections do, has
simply no impact on blackbox methods.

3.3 Blackbox deobfuscation in practice

We now present how blackbox methods integrate in a global deob-
fuscation process and highlight crucial properties they must hold.

Global workflow. Reverse engineering can be fully automated,
or handmade by a reverser, leveraging tools to automate specific
tasks. While the deobfuscation process operates on the whole ob-
fuscated binary, blackbox modules can be used to analyze parts of
the code like conditions or VM handlers. Upon meeting a complex
code fragment, the blackbox deobfuscator is called to retrieve a
simple semantic expression. After synthesis succeeds, the inferred
expression is used to help continue the analysis.

Requirements. In virtualization based obfuscation, the blackbox
module is typically queried on all VM handlers [7]. As the number
of handlers can be arbitrarily high, blackbox methods need to be
fast. In addition, inferred expressions should ideally be as simple as
the original non-obfuscated expression and semantically equivalent
to the obfuscated expression (i.e., correct). Finally, robustness (i.e.,
the capacity to synthesize complex expressions) is needed to be
usable in various situations. Thus, speed, simplicity, correctness
and robustness, are required for efficient blackbox deobfuscation.

Discussion. One may argue that local blackbox deobfuscation can
be easily parallelized, limiting the need for fast synthesis. However,
reverse engineering is often performed incrementally (e.g., packing,
self-modification), or/and with a human in the loop and the need
for quick feedback. In those scenarios, parallelization cannot help
that much while slow synthesis obstructs analysis. Also, in some
cases Syntia fails in 12h (Sections 5.3 and 8.2) — parallelism cannot
help there.

4 UNDERSTAND BLACKBOX
DEOBFUSCATION

We propose a general view of search-based code deobfuscation fit-
ting state-of-the-art solutions [7, 16]. We also extend the evaluation
of Syntia by Blazytko et al. [7], highlighting both some previously
unreported weaknesses and strengths. From that we derive general
lessons on the (in)adequacy of MCTS for code deobfuscation, that
will guide our new approach (Section 5).

4.1 Problem at hand

Search-based deobfuscation takes an obfuscated expression and
tries to infer an equivalent one with lower syntactic complexity.
Such problem can be stated as following:

Deobfuscation. Let e, ob f be 2 equivalent expressions such that
obf is an obfuscated version of e — note that obf is possibly much
larger than e. Deobfuscation aims to infer an expression e’ equiva-
lent to obf (and e), but with size similar to e. Such problem can be
approached in three ways depending on the amount of information
given to the analyzer:

Blackbox We can only run obf. The search is thus driven by
sampled I/O behaviors. Syntia [7] is a blackbox approach;

Greybox Here obf is executable and readable but the seman-
tics of its operators is mostly unknown. The search is driven by
previously sampled I/O behaviors which can be applied to subparts
of obf. QSynth [16] is a greybox solution;

Whitebox The analyzer has full access to obf (run, read) and
the semantics of its operators is precisely known. Thus, the search
can profit from advanced pattern matching and symbolic strategies.
Standard static analysis falls in this category.

Blackbox methods. Search-based blackbox deobfuscators follow
the framework given in Algorithm 1. In order to deobfuscate code,
one must detail a sampling strategy (i.e., how inputs are generated),
a learning strategy (i.e., how to learn an expression mapping sam-
pled inputs to observed outputs) and a simplification postprocess.
For example, Syntia samples inputs randomly, uses Monte Carlo
Tree Search (MCTS) [9] as learning strategy and leverages the Z3
SMT solver [17] for simplification. The choice of the sampling and
learning strategies is critical. For example, too few samples could
lead to incorrect results while too many could impact the search
efficiency, and an inappropriate learning algorithm could impact
robustness or speed.

Let us now turn to discussing Syntia learning strategy. We show
that using MCTS leads to disappointing performances and give
insights to understand why.

4.2 Evaluation of Syntia

We extend Syntia evaluation and tackle the following questions left

unaddressed by Blazytko et al. [7].

RQ1 Are results stable across different runs?
This is desirable due to the stochastic nature of MCTS;

RQ2 Is Syntia fast, robust and does it infer simple and correct results?
Syntia offers a priori no guarantee of correctness nor quality.
Also, we consider small time budget (1s), adapted to human-
in-the-loop scenarios but absent from the initial evaluation;

Menguy, et al.

Algorithm 1 Search-based blackbox deobfuscation framework

Inputs:
Code : code to analyze
Sample : sampling strategy
Learn : learning strategy
Simplify : expression simplifier
Output: learned expression or Failure
1: procedure DEOBFUSCATE(Code, Sample, Learn)
2 Oracle « Sample(Code)
3: suce, expr « Learn(Oracle)
4 if succ = True then return Simplify(expr)
5 else return Failure

RQ3 How is synthesis impacted by the set of operators size?
Syntia learns expressions over a search space fixed by prede-
fined grammars. Intuitively, the more operators in the gram-
mar, the harder it will be to converge to a solution. We use 3
sets of operators to assess this impact.

4.2.1 Experimental setup. We distinguish the success rate (num-
ber of expressions inferred) from the equivalence rate (number of
expressions inferred and equivalent to the original one). The equiv-
alence rate relies on the Z3 SMT solver [17] with a timeout of 10s.
Since Z3 timeouts are inconclusive answers, we define a notion of
equivalence range: its lower bound is the proven equivalence
rate (number of expressions proven to be equivalent) while its
upper bound is the optimistic equivalence rate (expressions not
proven different, i.e., optimistic = proven + #timeout). The equiva-
lence rate is within the equivalence range, while the success rate is
higher than the optimistic equivalence rate. Finally, we define the
quality of an expression as the ratio between the number of oper-
ators in recovered and target expressions. It estimates the syntactic
complexity of inferred expressions compared to the original ones.
A quality of 1 indicates a perfect result: the recovered expression
has the same size as the target expression.

Benchmarks. We consider two benchmark suites: B1 and B2. B1?
comes from Blazytko et al. [7] and was used to evaluate Syntia.
It comprises 500 randomly generated expressions with up to 3
arguments, and simple semantics. It aims at representing state-of-
the-art VM-based obfuscators. However, we found that B1 suffers
from several significant issues: (1) it is not well distributed over the
number of inputs and expression types, making it unsuitable for
fine-grained analysis; (2) only 216 expressions are unique modulo
renaming — the other 284 expressions are a-equivalent, like x+y
and a+b. These problems threaten the validity of the evaluation.
We thus propose a new benchmark B2 consisting of 1,110 ran-
domly generated expressions, better distributed according to the
number of inputs and the nature of operators — see Table 1. We
use three categories of expressions: Boolean, Arithmetic and Mixed
Boolean-Arithmetic, with 2 to 6 inputs. Especially, expressions are
spread equally between categories to prevent biased results. Each ex-
pression has an Abstract Syntax Tree (AST) of maximal height 3. As
a result, B2 is more challenging than B1 and enables a finer-grained
evaluation. Considering such diverse and complex expressions is

Zhttps://github.com/RUB-SysSec/syntia/tree/master/samples/mba/tigress

Search-Based Local Black-Box Deobfuscation:
Understand, Improve and Mitigate

crucial as blackbox deobfuscation evolves in an adversarial context
where limitations can be exploited to thwart analysis.

Note that we also consider QSynth datasets [16] in Section 6,
developed by the Quarkslab R&D company.

Type # Inputs
Bool. Arith. MBA 2 3 4 5 6

#Expr. 370 370 370 150 600 180 90 90
Table 1: Distribution of samples in benchmark B2

Operator sets. Table 2 introduces three operator sets: FuLL, EXpR
and MBA. We use these to evaluate sensitivity to the search space
and answer RQ3. ExPR is as expressive as FULL even if ExPr C FULL.
MBa can only express Mixed Boolean-Arithmetic expressions [37].

Table 2: Sets of operators
FULL : {—1, 0, +,—, X, >, >, < A, V, @, +5, Ty, %s, %oy, H }
EXPR: {—1,7,+ — X, A, V,®, =5, +y, H }
MBaA : {—1, =4 = XA, Y, GB}

Configuration. We run all our experiments on a machine with 6
Intel Xeon E-2176M CPUs and 32 GB of RAM. We evaluate Syntia in
its original configuration [7]: the SA-UCT parameter is 1.5, we use
50 I/O samples and a maximum playout depth of 0. We also limit
Syntia to 50,000 iterations per sample, corresponding to a timeout
of 60s per sample on our test machine.

4.2.2 Evaluation Results. Let us summarize here the outcome of
our experiments.

RQ1. Over 15 runs, Syntia finds between 362 and 376 expressions
of Bl i.e., 14 expressions of difference (2.8% of B1). Over B2, it finds
between 349 and 383 expressions i.e., 34 expressions of difference
(3.06% of B2). Hence, Syntia is very stable across executions.

RQ2. Syntia cannot efficiently infer B2 (~ 34% success rate). More-
over, Table 3 shows Syntia to be highly sensitive to time budget.
More precisely, with a time budget of 1 s/expr., Syntia only retrieves
16.3% of B2. Still, even with a timeout of 600 s/expr., it tops at 42%
of B2. In addition, Syntia is unable to synthesize expressions with
more than 3 inputs — success rates for 4, 5 and 6 inputs respectively
falls to 10%, 2.2% and 1.1%. It also struggles over expressions us-
ing a mix of Boolean and arithmetic operators, synthesizing only
21% (see Table 4). Still, Syntia performs well regarding quality and
correctness. On average, its quality is around 0.60 (for a timeout of
60 s/expr.) i.e., resulting expressions are simpler than the original
(non obfuscated) ones, and it rarely returns non-equivalent expres-
sions — between 0.5% and 0.8% of B2. We thus conclude that Syntia
is stable and returns correct and simple results. Yet, it is not efficient
enough (solves only few expressions on B2, heavily impacted by time
budget) and not robust (number of inputs and expression type).

Table 3: Syntia depending on the timeout per expression (B2)

1s 10s 60s 600s
Succ. Rate 16.5% 25.6% 34.5% 42.3%
Equiv. Range 16.3% 25.1-25.3% 33.7-34.0% 41.4-41.6%
Mean Qual. 0.35 0.49 0.59 0.67

RQ3. Default Syntia synthesizes expressions over the FULL set of
operators. To evaluate its sensitivity to the search space we run it

over FuLL, ExpR and MBA. Smaller sets do exhibit higher success
rates (42% on MBA) but results remain disappointing. Syntia is
sensitive to the size of the operator set but is inefficient even with MBA.

Conclusion. Syntia is stable, correct and returns simple results. Yet,
it is heavily impacted by the time budget and lacks robustness. It thus
fails to meet the requirements given in Section 3.3.

4.3 Optimal Syntia

To ensure the conclusions given in Section 4.4 apply to MCTS
and not only to Syntia, we study Syntia extensively to find better
set ups for the following parameters: simulation depth, SA-UCT
value (configuring the balance between exploitative and explorative
behaviors), number of I/O samples and distance. Optimizing Syntia
parameters slightly improves its results which stay disappointing
(at best, ~ 50% of success rate on MBA in 60 s/expr.).

Conclusion. By default, Syntia is well configured. Changing its
parameters lead in the best scenario to marginal improvement, hence
the pitfalls highlighted seem to be inherent to the MCTS approach.

4.4 MCTS for deobfuscation

Let us explore whether these issues are related to MCTS.

Monte Carlo Tree Search. MCTS creates here a search tree where
each node is an expression which can be terminal (e.g. a + 1, where
a is a variable) or partial (e.g. U + a, where U is a non-terminal
symbol). The goal of MCTS is to expand the search tree smartly,
focusing on most pertinent nodes first. Evaluating the pertinence of
a terminal node is done by sampling (computing here a distance
between the evaluation of sampled inputs over the node expression
against their expected output values). For partial nodes, MCTS
relies on simulation: random rules of the grammar are applied to
the expression (e.g., U + a ~ b + a) until it becomes terminal and
is evaluated. As an example, let {(a — 1,0+ 0), (a+— 0,b +— 1)}
be the sampled inputs. The expression b + a (simulated from U + a)
evaluates them to (1, 1). If the ground-truth outputs are 1 and -1,
the distance will equal 5(1, 1)+8(1, —1) where ¢ is a chosen distance
function. We call the result the pertinence measure. The closer it is
to 0, the more pertinent the node U + a is considered and the more
the search will focus on it.

Analysis. This simulation-based pertinence estimation is not reliable
in our code deobfuscation setting.

e We present in Fig. 2, for different non-terminal nodes, the
distance values computed through simulations. We observe
that from a starting node, a random simulation can return
drastically different results. It shows that the search space is
very unstable and that relying on simulation is misleading
(especially in our context where time budget is small);

e Moreover, our experiments show that in practice Syntia is
not guided by simulations and behaves almost as if it were an
enumerative (BFS) search — MCTS where simulations are non
informative. As an example, Fig. 3 compares how the distance
evolves over time for Syntia and a custom, fully enumerative,
MCTS synthesizer: both are very similar. Actually, Syntia
and enumerative MCTS perform similarly over B2: with a
60s (resp. 600s) timeout, enumerative MCTS reaches 41.4%

(resp. 51.6%) success rate vs. 42.6% (resp. 54.9%) for Syntia
(MBA operators set);

e Finally, on B2 (resp. B1) with a timeout of 60s, only 34/341
(resp. 20/376) successfully synthesized expressions are the
children of previously most promising nodes. It shows that
Syntia successfully synthesized expressions due to its ex-
ploratory (i.e., enumerative) behavior rather than to the se-
lection of nodes according to their pertinence.

1800

1600 Mean distance [
] I
1400
1200 { e 1
1000 H Ay E\%\I !\!

400 W"\.PH

600
400
200

o b
LR A A4

Logarith. dist. from (a A b) X (b +¢)

. L
R
@ e T e ¥
PR A 45{@@@(4*@"9\@”99@@

Non terminal expressions

Each point represents the distance between (a A b) X (b + ¢) and one simulation of
a non terminal expression (horizontal axis). A non terminal expression, can generate
multiple terminal ones through simulations, leading to completely different results.

Figure 2: Dispersion of the distance for different simulations

1600
1400
1200
1000
800
600
400
200

Logarithmic distance

Syntia
.

0 2000 4000 6000 8000 10000 12000

Iterations

1600
1400
1200
1000
800
600
400
200

Logarithmic distance

Enumerative MCTS
. .

0 2000 4000 6000 8000 10000 12000
Iterations
Figure 3: Syntia and enumerative MCTS distance evolution
(expression successfully synthesized)

Conclusion. The search space from blackbox code deobfuscation is
too unstable, making MCTS simulations unreliable. MCTS in that
setting is then almost enumerative and inefficient. That is why Syntia
is slow and not robust, but returns simple expressions.

4.5 Conclusion

While Syntia returns simple results, it only synthesizes semantically
simple expressions and is slow. These unsatisfactory results can be
explained by the fact that the search space is too unstable, making
the use of MCTS unsuitable. In the next section, we show that
methods avoiding the manipulation of partial expressions (and thus
free from simulation) are better suited to deobfuscation.

Menguy, et al.

5 IMPROVE BLACKBOX DEOBFUSCATION

We define a new search-based blackbox deobfuscator, dubbed Xyn-
tia, leveraging S-metaheuristics [32] and Iterated Local Search (ILS)
[24] and compare its design to rival deobfuscators. Unlike MCTS,
S-metaheuristics only manipulate terminal expressions and do not
create tree searches, thus we expect them to be better suited than
MCTS for code deobfuscation. Among S-metaheuristics, ILS is par-
ticularly designed for unstable search spaces, with the ability to re-
member the last best solution encountered and to restart the search
from that point. We show that these methods are well-guided by
the distance function and significantly outperform MCTS in the
context of blackbox code deobfuscation.

5.1 Deobfuscation as Optimization

As presented in Section 4, Syntia frames deobfuscation as a single
player game. We instead propose to frame it as an optimization
problem using ILS as learning strategy.

Blackbox deobfuscation: an optimization problem. Blackbox
deobfuscation synthesizes an expression from inputs-outputs sam-
ples and can be modeled as an optimization problem. The objective
function, noted f, measures the similarity between current and
ground truth behaviors by computing the sum of the distances
between found and objective outputs. The goal is to infer an ex-
pression minimizing the objective function over the I/O samples. If
the underlying grammar is expressive enough, a minimum exists
and matches all sampled inputs to objective outputs, zeroing f.
The reliability of the found solution depends on the number of /O
samples considered. Too few samples would not restrain search
enough and lead to flawed results.

Solving through search heuristics. S-metaheuristics [32] can be
advantageously used to solve such optimization problems. A wide
range of heuristics exists (Hill Climbing, Random Walk, Simulated
Annealing, etc.). They all iteratively improve a candidate solution by
testing its “neighbors” and moving along the search space. Because
solution improvement is evaluated by the objective function, it is
said to guide the search.

Iterated Local Search. Some S-metaheuristics are prone to be
stuck in local optimums so that the result depends on the initial
input chosen. Iterated Local Search (ILS) [24] tackles the problem
through iteration of search and the ability to restart from previously
seen best solutions. Note that ILS is parameterized by another
search heuristics (for us: Hill Climbing). Once a local optimum is
found by this side search, ILS perturbs it and uses the perturbed
solution as initial state for the side search. At each iteration, ILS also
saves the best solution found. Unlike most other S-metaheuristics
(Hill Climbing, Random Walk, Metropolis Hasting and Simulated
Annealing, etc.), if the search follows a misleading path, ILS can
restore the best seen solution so far to restart from an healthy state.

5.2 Xyntia internals

Xyntia is built upon 3 components: the optimization problem we
aim to solve, the oracle which extracts the sampling information
from the protected code under analysis and the search heuristics.

Search-Based Local Black-Box Deobfuscation:
Understand, Improve and Mitigate

Oracle. The oracleis defined by the sampling strategy which depicts
how the protected program must be sampled and how many sam-
ples are considered. As default, we consider that our oracle samples
100 inputs over the range [—50;49]. Five are not randomly gen-
erated but equal interesting constant vectors (6, T, = 1, min 5, MaxXs).
These choices arise from a systematic study of the different settings
to find the best design (see Section 5.4).

Optimization problem. The optimization problem is defined as
follow. The search space is the set of expressions expressible using
the Expr set of operators (see Table 2), and considers a unique
constant value 1. This grammar enables Xyntia to reach optimal
results while being as expressive as Syntia [7]. Besides, we consider
the objective function:

f5:(3) = Z logz(1+ |o; — 0}])

It computes the Log-arithmetic distance between synthesized ex-
pressions outputs () and sampled ones (6 *). The choice of the
grammar and of the objective function are respectively discussed
in Sections 5.3 and 5.4.

Search. Xyntia leverages Iterated Local Search (ILS) to minimize
our objective function and so to synthesize target expressions. We
present now how ILS is adapted to our context. ILS applies two
steps starting from a random terminal (constant value or variable):

o ILS reuses the best expression found so far to perturb it by
randomly selecting a node of the AST and replacing it by a
random terminal node. The resulting AST is kept even if the
distance increases and passed to the next step.

Iterative Random Mutations: the side search (in our case Hill
Climbing) iteratively mutates the input expression until it
cannot improve anymore. We estimate that no more im-
provement can be done after 100 inconclusive mutations. A
mutation consists in replacing a randomly chosen node of
the abstract syntax tree (AST) by a leaf or an AST of depth
one (only one operator) - e.g.| 1|+ (—a) ~ (=b) + (—a). At
each mutation, it keeps the version of the AST minimizing
the distance function. During mutations, the best solution so
far is updated to be restored in the perturbation step. If a so-
lution nullifies the objective function, it is directly returned.

These two operations are iteratively performed until time is
out (by default 60s) or an expression mapping all I/O samples is
found. Furthermore, as Syntia applies Z3 simplifier to "clean up"
recovered expressions, we add a custom post-process expression
simplifier, applying simple rewrite rules until a fixpoint is reached.
It significantly improves the quality of the expressions while adding
no significant overhead (+2.6ms on average). Xyntia is implemented
in OCaml [23], within the BINSEC framework for binary-level
program analysis [15]. It comprises ~9k lines of code.

5.3 Xyntia evaluation

We now evaluate Xyntia in depth and compare it to Syntia. As with
Syntia we answer the following questions:

RQ4 Are results stable across different runs?

RQ5 Is Xyntia robust, fast and does it infer simple and correct results?
RQ6 How is synthesis impacted by the set of operators size?

Configuration. For all our experiments, we default to locally opti-
mal Xyntia (Xyntiappr) presented in Section 5.2. It learns expres-
sions over ExPRr, samples 100 inputs (95 randomly and 5 constant
vectors) and uses the Log-arithmetic distance as objective function.

Interestingly, all results reported here also hold (to a lesser extend
regarding efficiency) for other Xyntia configurations (Section 5.4),
especially these versions consistently beat Syntia.

RQ4. Over 15 runs Xyntia always finds all 500 expressions in B1
and between 1051 and 1061 in B2. Thus, Xyntia is very stable across
executions.

RQ5. Unlike Syntia, Xyntia performs very well on both B1 and B2
with a timeout of 60 s/expr. Fig. 4 reveals that it is still successful
for a timeout of 1 s/expr. (78% proven equivalence rate), where it
finds 2x more expressions than Syntia with a timeout of 600 s/expr.

We also observe such tendency over B1 and BP1 (see Section 8.2)
and for 12h timeout. On B1, Syntia reaches 41%, 74%, 88.2% and
97.6% success rate for respectively 1s, 60s, 600s and 12h timeout,
against 100% success rate for Xyntia in 1s. For BP1, Syntia finds
only 1/15 expressions with a 12h timeout against 12/15 for Xyntia
in 60s. From evaluation on B1 and B2, it appears that Syntia success
rate increases logarithmically over time. Thus, time budget needed
for Syntia to catch Xyntia is expected to be unrealistic.

In addition, Xyntia handles well expressions using up to 5 argu-
ments and all expression types (Table 4). Its mean quality is around
0.93, which is very good (objective is 1), and it rarely returns not
equivalent expressions — only between 1.3% and 4.9%. Thus, Xyntia
reaches high success and equivalence rate. It is fast, synthesizing most
expressions in < 1s, and it returns simple and correct results.

mmm— Xyntia Proven
=== Xyntia Optimistic

[SXSXY Syntia Proven
[z Syntia Optimistic

40 N

-
20

10 §i

0

1 10 60 600

Equivalence Rate (%)
g

Timeout (s / expression)
Figure 4: Equivalence range of Syntia and Xyntia (Xyntiagpr)
depending on timeout (B2)

Bool. Arith. MBA
Succ. Rate 53.8% 28.6% 21.1%
Syntia Equiv. Range 53.0% 27.8-28.1% 20.3-20.8%
Mean Qual. 0.53 0.61 0.71
Succ. Rate 98.4% 96.5% 91.6%
Xyntia Equiv. Range 97.8% 88.9-94.9% 85.1-90.0%
Mean Qual. 0.73 1.0 1.05

Table 4: Syntia & Xyntia (Xyntiagpr): results according to ex-
pression type (B2, timeout = 60 s)

RQ6. Xyntia by default synthesizes expressions over Expr while
Syntia infers expressions over FULL. To compare their sensitivity to
search space and show that previous results are not due to search

space inconsistency, we run both tools over FurL, ExpR and MBA.
Experiments show that Xyntia reaches high equivalence rates for all
operators sets while Syntia results stay low. Still, Xyntia seems more
sensitive to the size of the set of operators than Syntia. Its proven
equivalence rate decreases from 90% (Expr) to 71% (FuLL) while
Syntia decreases only from 38.7% (ExPR) to 33.7% (FuLy). Conversely,
as for Syntia, restricting to MBA benefits to Xyntia (proven equiv.
rate: 91%). Thus, like Syntia, Xyntia is sensitive to the size of the
operators set. Yet, Xyntia reaches high equivalence rates even on FULL
while Syntia remains inefficient even on MBA.

Conclusion. Xyntia is a lot faster and more robust than Syntia. It
is also stable and returns simple expressions. Thus, Xyntia, unlike
Syntia, meets the requirements given in Section 3.3.

5.4 Optimal Xyntia and other S-Metaheuristics

Previous experiments consider the Xyntiagpy configuration of Xyn-
tia. It comes from a systematic evaluation of the design space. To
do so, we considered (1) different S-metaheuristics: Hill Climbing
(HC), Random Walk (RW), Simulated Annealing (SA), Metropolis
Hasting (MH) and Iterated Local Search (ILS); (2) different sampling
strategies; (3) different objective functions. This evaluation con-
firms that Xyntiappr is locally optimal and that ILS, being able to
restore best expression seen after a number of unsuccessful muta-
tions, outperforms other S-metaheuristics (Table 5). Moreover, all
S-metaheuristics — except Hill Climbing — outperforms Syntia.

Table 5: Synthesis Equivalence Rate for different S-
metaheuristics (B2, Xyntiagpy, timeout = 60 s)
RW HC ILS SA MH

Bquiv. o5 634% 319-33.1% 90.6-94.2% 648-658% 57.7 - 58.5%
Range

Conclusion. Principled and systematic evaluation of Xyntia design
space leads to the locally optimal Xyntiappr configuration. It notably
shows that ILS outperforms other tested S-metaheuristics. Moreover,
all these S-metaheuristics — except Hill Climbing — outperform MCTS,
confirming that manipulating only terminal expressions is beneficial.

5.5 On the effectiveness of ILS over MCTS

We present in Fig. 5 the typical distance evolution along the search
process when using Xyntia. We can see that the distance follows
a step-wise progression, which is drastically different from the
case of Syntia and enumerative MCTS (Fig. 3). Hence, unlike them,
Xyntia is indeed guided by the distance function. Moreover, note
that Xyntia globally follows a positive trend i.e., it does not unlearn
previous work. Indeed, before each perturbation, the best expression
found from now is restored. Thus, if iterative mutations follows
a misleading path, the resulting solution is not kept and the best
solution is reused to be perturbed. Keeping the current best solution
is of first relevance as the search space is highly unstable and enables
Xyntia to be more reliable and less dependant of randomness.

Conclusion. Unlike MCTS, which is almost enumerative in code
deobfuscation, ILS is well guided by the objective function and distance
evolution follows a positive trend. This is true as well for other S-
metaheuristics.

Menguy, et al.

1600 -
o 1400
Q
5 1200 - ,
2 1000 |
Q
g 800 -
= 600 |-
3
§ 400
= 200 Xyntia
0 L L L Il I
0 500 1000 1500 2000 2500 3000

Perturbations

Figure 5: Xyntia (Xyntiagpy) distance evolution (expression
successfully synthesized)

5.6 Limitations

Blackbox approaches must consider limited languages to be efficient.
This restricts their use to local contexts — e.g., analyzing sets of
code blocks rather than full modules.

Moreover, synthesis relies on two main steps, sampling and
learning, which both show weaknesses. Indeed, Xyntia and Syntia
randomly sample inputs to approximate the semantics of an ex-
pression. It then assumes that samples depict all behaviors of the
code under analysis. If this assumption is invalid then the learning
phase will miss some behaviors, returning partial results. As such,
blackbox deobfuscation is unsuitable to handle point functions.

Learning can itself be impacted by other factors. For instance,
semantically complex expressions are hard to infer. While they are
rare in local code, we show in Section 8 how to take advantage of
them to protect against blackbox attacks. A related problem are
expressions with unexpected constant values. They are hard to
handle as the grammar of Xyntia and Syntia only considers the
constant value 1. Thus, finding expressions with constant values
absent from the grammar requires to create them (e.g., encoding 3
as 1+ 1+ 1), which may be unlikely. A naive solution is to add to
the grammar additional constant values but it significantly impacts
efficiency. Indeed, for 100 values ([0; 99]), the equivalence rate
is divided by 2 (resp., by 4 for 200 values). Still, Section 7 shows
that Xyntia can synthesize usual interesting constant values (unlike
Syntia).

5.7 Conclusion

Because of the high instability of the search space, Iterated Local
Search is much more appropriate than MCTS (and, to a lesser ex-
tent, than other S-metaheuristics) for blackbox code deobfuscation,
as it manipulates terminal expressions only and is able to restore
the best solution seen so far in case the search gets lost. These
features enable Xyntia to keep the advantages of Syntia (stability,
output quality) while clearly improving over its weaknesses: espe-
cially Xyntia manages with 1s timeout to synthesize twice more
expressions than Syntia with 10min timeout.

Other S-metaheuristics also perform significantly better than
MCTS here, demonstrating that the problem itself is not well-suited
for partial solution exploration and simulation-guided search.

6 COMPARISON WITH OTHER APPROACHES

We now extend the comparison to other state-of-the-art tools: (1) a
greybox deobfuscator (QSynth [16]); (2) whitebox simplifiers (GCC,
Z3 simplifier and our custom simplifier); (3) program synthesizers

Search-Based Local Black-Box Deobfuscation:
Understand, Improve and Mitigate

500

mE— Xyntia-MBA
450 [XSSSY - Syntia-MBA
QSynth

== CVC4-MBA
s STOKE-synth
OO STOKE-opti

Enhanced

(a) Enhancement rate

m— Xyntia-MBA
[SXSSY - Syntia-MBA
QSynth

E===1 CVC4-MBA
30 | E TOKE-synth

Time (s)

(b) Mean synthesis time per expression - STOKE-opti not
shown as it always uses 60 s

Figure 6: Syntia, QSynth, Xyntia, CVC4 and STOKE on EA, VR-EA and EA-ED datasets (timeout = 60 s)

(CVC4 [6], winner of the SyGus’19 syntax-guided synthesis com-
petition [2] and STOKE [29], an efficient superoptimizer). Unlike
blackbox approaches, greybox and whitebox methods should be
evaluated on the enhancement rate, as otherwise they can always
succeed by returning the obfuscated expression. The enhancement
rate measures how often synthesized expressions are smaller than
the original ones (quality < 1).

Benchmarks. We compare blackbox program synthesizers on B2,
and grey/white box approaches on the three QSynth datasets,> each
of them comprising 500 expressions obfuscated with Tigress [11]:
EA (base dataset, obfuscated with the EncodeArithmetic transforma-
tion), VR-EA (EA obfuscated with Virtualize and EncodeArithmetic
protections), and EA-ED (EA obfuscated with EncodeArithmetic
and EncodeData transformations).

Whitebox. We first compare Xyntia over the EA, VR-EA and EA-
ED datasets with 3 whitebox approaches: GCC, Z3 simplifier (v4.8.7)
and our custom simplifier. As expected, they are not efficient com-
pared to Xyntia. Regardless of the dataset, they simplify < 68 ex-
pressions where Xyntia simplifies 360 of them.

Greybox. We now compare Xyntia to QSynth published results [16]
on EA, VR-EA and EA-ED. Fig. 6a shows that while both tools reach
comparable results (enhancement rate ~ 350/500) for simple obfus-
cations (EA and VR-EA), Xyntia keeps the same results for heavy
obfuscations (EA-ED) while QSynth drops to 133/500. Actually,
unlike QSynth, Xyntia is insensitive to syntactic complexity.

Program synthesizers. We finally compare Xyntia to state-of-
the-art program synthesizers, namely CVC4 [6] and STOKE [29].
CV(C4 takes as input a grammar and a specification and returns,
through enumerative search, a consistent expression. STOKE is a
super-optimizer leveraging program synthesis (based on Metropolis
Hasting) to infer optimized code snippets. It does not return an
expression but optimized assembly code. STOKE addresses the
optimization problem in two ways: (1) STOKE-synth starts from
a pre-defined number of nops and mutates them. (2) STOKE-opti
starts from the non-optimized code and mutates it to simplify it.
While STOKE integrates its own sampling strategy and grammar,
CVC4 does not — thus, we consider for CVC4 the same sampling
strategy as Xyntia (100 I/O samples with 5 constant vectors) as

3https://github.com/werew/qsynth-artifacts

well as the Expr and MBA grammars. More precisely, CVC4-ExpR
is used over B2 to compare to Xyntia (Xyntiappr) and CVC4-MBa
is evaluated on EA, VR-EA and EA-ED to compare against QSynth.

Our experiments show that CVC4-Expr and STOKE-synth syn-
thesize less than 40% of B2 (respectively 36.8% and 38.0%) while
Xyntia reaches 90.6% proven equivalence rate. Indeed enumerative
search (CVC4) is less appropriate when time is limited. Results of
STOKE-synth are also expected as its search space considers all
assembly mnemonics. Moreover, Fig. 6a shows that blackbox and
whitebox (STOKE-opti) synthesizers do not efficiently simplify ob-
fuscated expressions. STOKE-opti finds only 1 / 500 expressions
over EA-ED and does not handle jump instructions, inserted by the
VM, failing to analyze VR-EA.

Conclusion. Xyntia rivals QSynth on light / mild protections and
outperforms it on heavy protections, while pure whitebox ap-
proaches are far behind, showing the benefits of being independent
from syntactic complexity. Also, Xyntia outperforms state-of-the-
art program synthesizers showing that it is better suited to perform
deobfuscation. These good results show that seeing deobfuscation
as an optimization problem is fruitful.

7 DEOBFUSCATION WITH XYNTIA

We now prove that Xyntia is insensitive to common protections
(opaque predicates) as well as to recent anti-analysis protections
(MBA, covert channels, path explosion) and we confirm that black-
box methods can help reverse state-of-the-art virtualization [11, 34].

7.1 Effectiveness against usual protections

Xyntia is able to bypass many protections.

Mixed Boolean-Arithmetic [37] hides the original semantics
of an expression both to humans and SMT solvers. However, the
encoded expression remains equivalent to the original one. As such,
the semantic complexity stays unchanged, and Xyntia should not
be impacted. Launching Xyntia on B2 obfuscated with Tigress [11]
Encode Arithmetic transformation (size of expression: x800) con-
firms that it has no impact: equivalence range with and without
protection respectively equals 90.0 - 93.8% and 90.6 - 94.2%.

Opaque predicates [14] obfuscate control flow by creating ar-
tificial conditions in programs. The conditions are traditionally
tautologies and dynamic runs of the code will follow a unique path.

Thus, sampling is not affected and synthesis not impacted. We show
it by launching Xyntia over B2 obfuscated with Tigress AddOpaque
transformation (result: equiv. range equals 89.9 - 93.0%).

Path-based obfuscation [25, 35] takes advantage of path ex-
plosion to thwart symbolic execution, massively adding additional
feasible paths. We show that it has no effect, by protecting B2 with
a custom encoding inspired by [25] (result: equiv. range equals 89.5
- 93.7%).

Covert channels [31] hide information flow to static analyzers
by rerouting data to invisible part of the states (usually OS related)
before retrieving it — for example taking advantage of timing differ-
ence between a slow thread and a fast thread. Again, as blackbox
deobfuscation focuses only on input-output relationships, covert
channels should not disturb it. Note that the probabilistic nature of
such obfuscations (obfuscated behaviours can differ from unobfus-
cated ones from time to time) could be a problem in case of high
fault probabilities, but in order for the technique to be useful, fault
probability must precisely remains low. We show it has no impact
by obfuscating B2 with the InitEntropy and InitImplicitFlow (thread
kind) transformations of Tigress [11] (result: equiv. range equals
89.0 - 94.0%).

Conclusion. State-of-the-art protections are not effective against
blackbox deobfuscation. They prevent efficient reading of the code and
tracing of data but blackbox methods directly execute it.

7.2 Virtualization-based obfuscation

We now use Xyntia to reverse code obfuscated with state-of-the-art
virtualization. We obfuscate a program computing MBA operations
with Tigress [11] and VMProtect [34] and our goal is to reverse the
VM handlers.* Using such a synthetic program enables to expose a
wide variety of handlers.

Table 6: Xyntia and Syntia results over program obfuscated
with Tigress [11] and VMProtect [34]

Tigress (simple) Tigress (hard) VMProtect

Binary size 40KB 251KB 615KB

handlers 13 17 114

instructions per handlers 16 54 43
Xyntia Completely retrieved 12/13 16/17 0/114
4 Partially retrieved 13/13 17/17 76/114
Svntia Completely retrieved 0/13 0/17 0/114
4 Partially retrieved 13/13 17/17 76/114

Tigress [11] is a source-to-source obfuscator. Our obfuscated pro-
gram contains 13 handlers. Since at assembly level each handler
ends with an indirect jump to the next handler to execute, we were
able to extract the positions of handlers using execution traces. We
then used the scripts from [7] to sample each handler. Xyntia syn-
thesizes 12/13 handlers in less that 7 s each. We can classify them
in different categories: (1) arithmetic and Boolean (+, —, X, A, V, ®);
(2) stack (store and load); (3) control flow (goto and return); (4) call-
ing convention (retrieve obfuscated function arguments). These
results show that Xyntia can synthesize a wide variety of handlers.
Interestingly, while these handlers contain many constant values
(typically, offsets for context update), Xyntia can handle them as
well. In particular, it infers the calling convention related handler,
synthesizing constant values up to 28 (to access the 6th argument).

4Note that, as Syntia, Xyntia does not consider memory operations.

10

Menguy, et al.

Thus, even if Xyntia is inherently limited on constant values (see
Section 5.6) it still handles them to a limited extent. Repeating
the experiment by adding Encode Data and Encode Arithmetic to
Virtualize yields similar results. Xyntia synthesizes all 17 exposed
handlers but one, confirming that Xyntia handles combinations of
protections. Finally, note that Syntia fails to synthesize handlers
completely (not handling constant values). Still it infers arithmetic
and Boolean handlers (without context updates).

VMProtect [34] is an assembly-to-assembly obfuscator. We use the
latest premium version (v3.5.0). As each VM handler ends with a ret
or an indirect jump, we easily extracted each distinct handler from
execution traces. Our traces expose 114 distinct handlers containing
on average 43 instructions (Table 6). VMProtect VM is stack-based.
To infer the semantics of each handler, we again used Blazytko’s
scripts [7] in “memory mode” (i.e., forbidding registers to be seen
as inputs or outputs). Our experiments show that each arithmetic
and Boolean handlers (add, mul, nor, nand) are replicated 11 times to
fake a large number of distinct handlers. Moreover, we are also able
to extract the semantics of some stack related handlers. In the end,
we successfully infer the semantics of 44 arithmetic or Boolean
handlers and 32 stack related handlers. Synthesis took at most 0.3 s
per handler. Syntia gets equal results as Xyntia.

Conclusion. Xyntia synthesizes most Tigress VM handlers, (includ-
ing interesting constant values) and extracts the semantics of VM-
Protect arithmetic and Boolean handlers. This shows that blackbox
deobfuscation can be highly effective, making the need for efficient
protections clear.

8 COUNTER BLACKBOX DEOBFUSCATION

We now study defense mechanisms against blackbox deobfuscation.

8.1 General methodology

We remind that blackbox methods require the reverser to locate
a suitable reverse window delimiting the code of interest with its
inputs and outputs. This can be done manually or automatically [7],
still this is mandatory and not trivial. The defender could target
this step, reusing standard obfuscation techniques.

Still there is a risk that the attacker finds the good windows. Hence
we are looking for a more radical protection against blackbox attacks.
We suppose that the reverse windows, inputs and outputs are correctly
identified, and we seek to protected a given piece of code.

Note that adding extra fake inputs (not influencing the result)
is easily circumvented in a blackbox setting by dynamically test-
ing different values for each input and filtering inputs where no
difference is observed.

Protection rationale. Even with correctly delimited windows,
synthesis can still be thwarted. Recall that blackbox methods rely
on 2 main steps (1) I/O sampling; (2) learning from samples, and
both can be sabotaged.

o First, if the sampling phase is not performed properly, the
learner could miss important behaviors of the code, returning
incomplete or even misleading information;

e Second, if the expression under analysis is too complex, the
learner will fail to map inputs to their outputs.

Search-Based Local Black-Box Deobfuscation:
Understand, Improve and Mitigate

In both cases, no information is retrieved. Hence, the key to
impede blackbox deobfuscation is to migrate from syntactic com-
plexity to semantic complexity. We propose in Sections 8.2 and 8.3
two novel protections impeding the sampling and learning phases.

8.2 Semantically complex handlers

Blackbox approaches are sensitive to semantic complexity. As such,
relying on a set of complex handlers is an effective strategy to
thwart synthesis. These complex handlers can then be combined
to recover standard operations. We propose a method to generate
arbitrary complex handlers in terms of size and number of inputs.

Complex semantic handlers. Let S be a set of expressions and
h,e1, ..., en—1 be n expressions in S. Suppose that (S, x) is a group.

-1
Then h can be encoded as h = rAl*Ohi, where for all i, with 0 < i < n,
i=

h—e ifi=0
hi=14 ei—eiy1 if1<i<n-1
en—1 ifi=n-1

Note that —e; is the inverse element of e; in (S, x). Each h; is then a
new handler that can be combined with others to express common
operations — e.g. x +y = ho + h1 + hy where hp = (x +y) + —((a —
x%) = (xy)), b = (a = x*) = xy + (=(y — (@ A %)) X (y ® x)) and
hy = (y — (a A x)) X (y ® x). Note that the choice of (e, ..., en) is
arbitrary. One can choose very complex expressions with as many
arguments as wanted.

Experimental design. To evaluate our new encoding, we created
3 datasets — BP1, BP2 and BP3, listed by increasing order of com-
plexity. Each dataset contains 15 handlers which can be combined
to encode the +, —, X, A and V operators. Within a dataset, all han-
dlers have the same number of inputs. Table 7 reports details on
each dataset. The mean overhead column is an estimation of the
complexity added to the code by averaging the number of operators
needed to encode a single basic operator (+, —, X, V, A). Overheads
in BP1 (21x), BP2 (39x) and even BP3 (258x) are reasonable com-
pared to some syntactical obfuscations: encoding x + y with MBA
three times in Tigress yields a 800x overhead.

Table 7: Protected datasets

#exprs minsize max size meansize #inputs mean overhead
BP1 15 4 11 6.87 3 x21
BP2 15 8 21 12.87 6 x39
BP3 15 58 142 86.07 6 X258

Evaluation. Results (Fig. 7) show that Xyntia (with 1 h/expr.) man-
ages well low complexity handlers (BP1: 13/15), but performance
degrades quickly as complexity increases (BP2: 3/15, BP3: 1/15).
Performances are similar with 1 s/expr. Syntia, CVC4 and STOKE-
synth find none with 1 h/expr., even on BP1. Actually, Syntia with
12 h/expr. gets only 1/15 success of BP1.

Conclusion. Semantically complex handlers are efficient against
blackbox deobfuscation. While high complexity handlers come with a
cost similar to strong MBA encodings, medium complexity handlers
offer a strong protection at a reasonable cost.

Discussion. Our protection can be bypassed if the attacker focuses
on the good combinations of handlers, rather than on the handlers

11

themselves. To prevent it, complex handlers can be duplicated (as
in VMProtect, see Section 7.2) to make patterns recognition more

challenging.

Equivalent

Figure 7: Xyntia (Xyntiagpy) on BP1,2, 3 — varying timeouts

8.3 Merged handlers

We now study another protection, based on conditional expres-
sions and the merging of existing handlers. While block merging is
known for a long time against human reversers, we show that it
is extremely efficient against blackbox attacks. Note that while we
write our merged handlers with explicit if-then-else operators (ITE)
for simplicity, these conditions are not necessarily implemented
with conditional branching (cf. Fig. 8) Hence, we consider that the
attacker sees merged handlers as a unique code fragment.

// if (c == cst) then hl(a,b,c) else h2(a,b,c);
int32_t res = ¢ - cst;

(-((res * (res >> 31)) - (res >> 31)) >> 31) & 1;
return hi(a, b, c)*x(1 - res) + resxh2(a, b, c);

res =
Figure 8: Example of a branch-less condition

Datasets. We introduce 5 datasets® composed of 20 expressions.
Expressions in dataset 1 are built with 1 if-then-else (ITE) exposing 2
basic handlers (among +, —, X, A, V, ®); expressions in dataset 2 are
built with 2 nested ITEs exposing 3 basic handlers, etc. Conditions
are equality checks against consecutive constant values (0, 1, 2, etc.).
For example, dataset 2 contains the expression:

ITE(z=0,x+y,ITE(z=1,x — y,x X 1)) (2)
Scenarios. Adding conditionals brings extra challenges (1) the
grammar must be expressive enough to handle conditions; (2) the
sampling phase must be efficient enough to cover all possible be-
haviors. Thus, we consider different scenarios:

Utopian The synthesizer learns expressions over the MBa set of
operators, extended with an ITE (% = 0, %, x) operator (MBA+ITE
operator set). Moreover, the sampling is done so that all branches
are traversed the same number of time. This situation, favoring
the attacker, will show that merged handlers are always efficient.

MBaA + ITE This situation is more realistic: the attacker does not
know at first glance how to sample. However, its grammar fits
perfectly the expressions to reverse.

5 Available at : Will be made available

MBa + Shifts Here Xyntia does not sample inputs uniformly over
the different behaviors, does not consider ITE operators, but
allows shifts to represent branch-less conditions.

Default. This is the default version of the synthesizer.

In all these scenarios, appropriate constant values are added to
the grammar. For example, to synthesize Eq. (2), @ and 1 are added.

20

19 Xyntia Utopian IS
18 Xyntia MBA+ITE [
17 Xyntia MBA+Shifts [SX=x
16 Xyntia Xyntiagpy EZEE

15
14
13
12
11
10

9

Equivalent

O]

S Sh—-

1 2 3 4 5
ITE depth

Figure 9: Merged handlers: Xyntia (timeout=60s)

Evaluation. Fig. 9 presents Xyntia results on the 5 datasets. As
expected, the Utopian scenario is where Xyntia does best. Still, it
cannot cope with more than 3 nested ITEs. For realistic scenarios,
Xyntia suffers even more. Results for Syntia, CVC4 and STOKE-
synth confirm this result (no solution found for > 2 nested ITEs).
Note that overhead here is minimal, and depends only on the num-
ber of merged handlers.

Conclusion. Merged handlers are extremely powerful against black-
box synthesis. Even in the ideal sampling scenario, blackbox methods
cannot retrieve the semantics of expressions with more than 3 nested
conditionals — while runtime overhead is minimal.

Discussion. Symbolic methods, like symbolic execution, are unhin-
dered by these protections, for they track the succession of handlers
and know which sub parts of merged handlers are executed. To
handle this, our anti-blackbox protections can be combined with
(lightweight) anti-symbolic protections (e.g. [25, 35]).

9 RELATED WORK

Blackbox deobfuscation. Blazytko et al’s work [7] has already
been thoroughly discussed. We complete their experimental evalu-
ation, generalize and improve their approach: Xyntia with 1 s/expr.
finds twice more expressions than Syntia with 600 s/expr, some of
which Syntia cannot find within 12h.

White- and greybox deobfuscation. Several recent works lever-
age whitebox symbolic methods for deobfuscation (“symbolic deob-
fuscation”) [5, 10, 22, 28, 30, 36]. Unfortunately, they are sensitive to
code complexity as discussed in Section 7, and efficient countermea-
sures are now available [12, 25, 26, 37] — while Xyntia is immune
to them (Section 7.1). David et al. [16] recently proposed QSynth, a
greybox deobfuscation method combining I/O relationship caching
(blackbox) and incremental reasoning along the target expression
(whitebox). Yet, QSynth is sensitive to massive syntactic obfusca-
tion where Xyntia is not (cf. Section 6). Furthermore, QSynth works
on a simple grammar. It is unclear whether its caching technique
would scale to larger grammars like those of Xyntia and Syntia.

12

Menguy, et al.

Program synthesis. Program synthesis aims at finding a function
from a specification which can be given either formally, in natural
language or as I/O relations — the case we are interested in here.
There exist three main families of program synthesis methods [20]:
enumerative, constraint solving and stochastic. Enumerative search
does enumerate all programs starting from the simpler one, pruning
snippets incoherent with the specification and returning the first
code meeting the specification. We compare, in this paper, to one
of such method - CVC4 [6], winner of the SyGus "19 syntax-guided
synthesis competition [2] - and showed that our approach is more
appropriate to deobfuscation. Constraint solving methods [21] on
the other hand encode the skeleton of the target program as a first
order satisfiability problem and use an off-the-shelf SMT solver
to infer an implementation meeting specification. However, it is
less efficient than enumerative and stochastic methods [1]. Finally,
stochastic methods [29] traverse the search space randomly in the
hope of finding a program consistent with a specification. Con-
trary to them, we aim at solving the deobfuscation problem in a
fully blackbox way (not relying on the obfuscated code, nor on an
estimation of the result size).

10 CONCLUSION

Blackbox deobfuscation is a promising recent research area. The
field has been barely explored yet and the pros and cons of such
methods are still unclear. This article deepens the state of search-
based blackbox deobfuscation in three different directions. First,
we define a novel generic framework for search-based blackbox
deobfuscation (encompassing prior works such as Syntia), we iden-
tify that the search space underlying code deobfuscation is too
unstable for simulation-based methods, and advocate the use of
S-metaheuristics. Second, we take advantage of our framework to
carefully design Xyntia, a new search-based blackbox deobfuscator.
Xyntia significantly outperforms Syntia in terms of success rate,
while keeping its good properties - especially, Xyntia is completely
immune to the most recent anti-analysis code obfuscation methods.
Finally, we propose the two first protections tailored against search-
based blackbox deobfuscation, completely preventing Xyntia and
Syntia attacks for reasonable cost. We hope that these results will
help better understand search-based deobfuscation, and lead to
further progress in the field.

Search-Based Local Black-Box Deobfuscation:
Understand, Improve and Mitigate

REFERENCES Springer, 129-168.

[1] Rajeev Alur, Rastislav Bodik, Garvit Juniwal, Milo M. K. Martin, Mukund [25] Mathilde Ollivi'er, Sébast'ien Bardin, 3ichard Bonichon, andJean—Yves Maﬁon.
Raghothaman, Sanjit A. Seshia, Rishabh Singh, Armando Solar-Lezama, Emina 2019. pr to kill sym!nohc deobfuscatl'on for free (or: unleashing the potential 'of
Torlak, and Abhishek Udupa. 2013. Syntax-guided synthesis. In Formal Methods path-‘onénted protections). In Proceedings of the 35th Annual Computer Security
in Computer-Aided Design, FMCAD 2013, Portland, OR, USA, October 20-23, 2013. Applz.catmns '(,’qnfere’nce. 1777189‘))))
IEEE, 1-8. http:/ieeexplore ieee.org/document/6679385/ [26] Mathilde Olhv1§r, Sébastien Bal’dll:l, Rld}ard BOnlChOY'l, and Jean-Yves Marion.

[2] Rajeev Alur, Dana Fisman, Saswat Padhi, Rishabh Singh, and Abhishek Udupa. 2019. Qbfuscatlon: where are we in anti-DSE prote'ctlons?(a ﬁrst attempt). In
2019. SyGuS-Comp 2018: Results and Analysis. CoRR abs/1904.07146 (2019). Progeedtrfgs of the 9th Workshop on Software Security, Protection, and Reverse
arXiv:1904.07146 http://arxiv.org/abs/1904.07146 Engineering. 1-8.)))

[3] Sebastian Banescu, Christian S. Collberg, Vijay Ganesh, Zack Newsham, and [27] Oreans Technologies. 2020. Themida — Advanced Windows Software Protection

System. http://oreans.com/themida.php.

Alexander Pretschner. 2016. Code obfuscation against symbolic execution attacks. N X 5 . .
[28] Jonathan Salwan, Sébastien Bardin, and Marie-Laure Potet. 2018. Symbolic

In Annual Conference on Computer Security Applications, ACSAC 2016.

[4] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, deobfgscation: frolm virtualized code back to t}%e' original. In 5th Conference on
Salil Vadhan, and Ke Yang. 2012. On the (im) possibility of obfuscating programs. D efectton of Intrusions and malware & Yulnerabtlzty Assessment (DIMVA) .
Journal of the ACM (JACM) 59, 2 (2012), 1-48. [29] Eric Schkufza, Rahul Sharma, and Alex Aiken. 2012. Stochastic Superoptimization.

[5] Sébastien Bardin, Robin David, and Jean-Yves Marion. 2017. Backward-Bounded CoRR ébS“ZI 1'9557, (2012). aerV:1211'055.7 http://arxlv.org/abs/l211.0557
DSE: Targeting Infeasibility Questions on Obfuscated Codes. In 2017 IEEE Sym- [30] Seba§tlan Schrlttwwsgr, Stefan Katzenl}elsser, Johannes Kinder, Geor'g Merz-
posium on Security and Privacy, SP 2017, San Jose, CA, USA, May 22-26, 2017. IEEE dovnik, and Edgar Weippl. 2016. Protecting Software Through Obfuscation: Can
Computer Society, 633-651. https:/doi.org/10.1109/SP.2017.36 It Keep Pace with Progress in Code Analysis? ACM Comput. Surv. 49, 1, Article 4

[6] Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan (2016), 37 pages. . .
Jovanovi’c, Tim King, Andrew Reynolds, and Cesare Tinelli. 2011. CVC4. In [31] Jon Stephens, Babak Yadegari, Christian S. Collberg, Saumya Debray, and Carlos

Proceedings of the 23rd International Conference on Computer Aided Verification Scheidegger. 2018. Probabilistic Obfuscation Through Covert Channels. In 2018

(CAV ’11) (Lecture Notes in Computer Science, Vol. 6806), Ganesh Gopalakrishnan IEEE E""’Pea" S.ymposium on Secufity and Privac;{, EuroS&P 2018. . .
and Shaz Qadeer (Eds.). Springer, 171-177. http://www.cs.stanford.edu/~barrett/ [32] El—G_haz_ah Talbi. 2009. Metaheuristics: From Design to Implementation. Wiley
pubs/BCD+11.pdf Snowbird, Utah. Publishing.

[7] Tim Blazytko, Moritz Contag, Cornelius Aschermann, and Thorsten Holz. 2017. [33] Tora. [nd]. Devirtualizing FinSpy. hitp:/linuxch.org/poc2012/Tora,

Syntia: Synthesizing the Semantics of Obfuscated Code. In UseNix Security (Van- DevirtualizingFinSpy.pdf)
couver, BC, Canada). 643-659. [34] VM Protect Software. 2020. VMProtect Software Protection. http://vmpsoft.com.

[8] Tim Blazytko, Moritz Contag, Cornelius Aschermann, and Thorsten Holz. 2018. [35] Babak Yadegari and Saumya Debray. 2015. Symbolic Execution of Obfuscated

Syntia: Breaking State-of-the-Art Binary Code Obfuscation via Program Synthesis. Code_. In _P " °Ce5di”§5 of the 22nd ACM SIGSAC Conf erence on Comp L{ter and Com-
Black Hat Asia (2018). munications Security (Denver, Colorado, USA) (CCS ’15). Association for Com-

puting Machinery.

[36] Babak Yadegari, Brian Johannesmeyer, Ben Whitely, and Saumya Debray. 2015. A
Generic Approach to Automatic Deobfuscation of Executable Code. In Symposium
on Security and Privacy, SP.

[9] Cameron B Browne, Edward Powley, Daniel Whitehouse, Simon M Lucas, Peter I
Cowling, Philipp Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samoth-
rakis, and Simon Colton. 2012. A survey of monte carlo tree search methods.
IEEE Transactions on Computational Intelligence and Al in games 4, 1 (2012), 1-43.

[10] David Brumley, Cody Hartwig, Zhenkai Liang, James Newsome, Dawn Xiaodong (37] Yongxin Zhou, Alec Main, Yuan X. Gu, an.d Harc?ld Johnson. 2007. Inforrrllation
Song, and Heng Yin. 2008. Automatically Identifying Trigger-based Behavior in Hiding in Softwgre with Mixed Booleanfarlthmetlc Tfansforn}s. IF Procgedmgs of
Malware. In Botnet Detection: Countering the Largest Security Threat. Springer, the 8th International Conference on Information Security Applications (Jeju Island,
65-88. Korea) (WISA’07). Springer-Verlag, Berlin, Heidelberg, 61-75.

[11] C. Collberg, S. Martin, J. Myers, and B. Zimmerman. [n.d.]. The Tigress C

Diversifier/Obfuscator. http://tigress.cs.arizona.edu/
[12] Christian Collberg and Jasvir Nagra. 2009. Surreptitious Software: Obfuscation,
Watermarking, and Tamperproofing for Software Protection (1st ed.). Addison-
Wesley Professional.
Christian Collberg, Clark Thomborson, and Douglas Low. 1997. A taxonomy of
obfuscating transformations.
[14] Christian Collberg, Clark Thomborson, and Douglas Low. 1998. Manufacturing
cheap, resilient, and stealthy opaque constructs. In Proceedings of the 25th ACM
SIGPLAN-SIGACT symposium on Principles of programming languages. 184-196.
Robin David, Sébastien Bardin, Thanh Dinh Ta, Laurent Mounier, Josselin Feist,
Marie-Laure Potet, and Jean-Yves Marion. 2016. BINSEC/SE: A dynamic sym-
bolic execution toolkit for binary-level analysis. In 2016 IEEE 23rd International
Conference on Software Analysis, Evolution, and Reengineering (SANER), Vol. 1.
IEEE, 653-656.
Robin David, Luigi Coniglio, and Mariano Ceccato. 2020. QSynth-A Program
Synthesis based Approach for Binary Code Deobfuscation. In BAR 2020 Workshop.
[17] Leonardo De Moura and Nikolaj Bjerner. 2008. Z3: An efficient SMT solver. In
International conference on Tools and Algorithms for the Construction and Analysis
of Systems. Springer, 337-340.
Ninon Eyrolles, Louis Goubin, and Marion Videau. 2016. Defeating MBA-based
Obfuscation. In Proceedings of the 2016 ACM Workshop on Software PROtection,
SPRO@CCS 2016, Vienna, Austria, October 24-28, 2016, Brecht Wyseur and Bjorn De
Sutter (Eds.). ACM, 27-38. https://doi.org/10.1145/2995306.2995308
Nicolas Falliere, Patrick Fitzgerald, and Eric Chien. 2009. Inside the jaws of trojan.
clampi. Rapport technique, Symantec Corporation (2009).
[20] Sumit Gulwani, Oleksandr Polozov, Rishabh Singh, et al. 2017. Program synthesis.
Foundations and Trends® in Programming Languages 4, 1-2 (2017), 1-119.
Susmit Jha, Sumit Gulwani, Sanjit A Seshia, and Ashish Tiwari. 2010. Oracle-
guided component-based program synthesis. In 2010 ACM/IEEE 32nd International
Conference on Software Engineering, Vol. 1. IEEE, 215-224.
[22] Johannes Kinder. 2012. Towards Static Analysis of Virtualization-Obfuscated
Binaries. In 19th Working Conference on Reverse Engineering, WCRE.
Xavier Leroy, Damien Doligez, Alain Frisch, Jacques Garrigue, Didier Rémy, and
Jérome Vouillon. 2020. The OCaml system release 4.10. https://caml.inria.fr/pub/
docs/manual-ocaml/
[24] Helena Ramalhinho Lourengo, Olivier C Martin, and Thomas Stiitzle. 2019. Iter-

ated local search: Framework and applications. In Handbook of metaheuristics.

[13

[15

[16

(18

[19

[21

~
&

13

http://ieeexplore.ieee.org/document/6679385/
https://arxiv.org/abs/1904.07146
http://arxiv.org/abs/1904.07146
https://doi.org/10.1109/SP.2017.36
http://www.cs.stanford.edu/~barrett/pubs/BCD+11.pdf
http://www.cs.stanford.edu/~barrett/pubs/BCD+11.pdf
http://tigress.cs.arizona.edu/
https://doi.org/10.1145/2995306.2995308
https://caml.inria.fr/pub/docs/manual-ocaml/
https://caml.inria.fr/pub/docs/manual-ocaml/
http://oreans.com/themida.php
https://arxiv.org/abs/1211.0557
http://arxiv.org/abs/1211.0557
http://linuxch.org/poc2012/Tora, Devirtualizing FinSpy.pdf
http://linuxch.org/poc2012/Tora, Devirtualizing FinSpy.pdf
http://vmpsoft.com

	Abstract
	1 Introduction
	2 Background
	2.1 Obfuscation
	2.2 Deobfuscation
	2.3 Search-based blackbox deobfuscation

	3 Motivation
	3.1 Attacker model
	3.2 Syntactic and semantic complexity
	3.3 Blackbox deobfuscation in practice

	4 Understand blackbox deobfuscation
	4.1 Problem at hand
	4.2 Evaluation of Syntia
	4.3 Optimal Syntia
	4.4 MCTS for deobfuscation
	4.5 Conclusion

	5 Improve blackbox deobfuscation
	5.1 Deobfuscation as Optimization
	5.2 Xyntia internals
	5.3 Xyntia evaluation
	5.4 Optimal Xyntia and other S-Metaheuristics
	5.5 On the effectiveness of ILS over MCTS
	5.6 Limitations
	5.7 Conclusion

	6 Comparison with other approaches
	7 Deobfuscation with Xyntia
	7.1 Effectiveness against usual protections
	7.2 Virtualization-based obfuscation

	8 Counter blackbox Deobfuscation
	8.1 General methodology
	8.2 Semantically complex handlers
	8.3 Merged handlers

	9 Related Work
	10 Conclusion
	References

