
Search-Based Local Black-Box Deobfuscation:
Understand, Improve and Mitigate

Grégoire Menguy

gregoire.menguy@cea.fr

Université Paris-Saclay, CEA, List

France

Sébastien Bardin

sebastien.bardin@cea.fr

Université Paris-Saclay, CEA, List

France

Richard Bonichon

richard.bonichon@nomadic-labs.com

Nomadic Labs

France

Cauim de Souza de Lima

cauimsouza@gmail.com

Université Paris-Saclay, CEA, List

France

ABSTRACT

Code obfuscation aims at protecting Intellectual Property and other

secrets embedded into software from being retrieved. Recent works

leverage advances in artificial intelligence (AI) with the hope of

getting blackbox deobfuscators completely immune to standard

(whitebox) protection mechanisms. While promising, this new field

of AI-based, and more specifically search-based blackbox deobfus-
cation, is still in its infancy. In this article we deepen the state of

search-based blackbox deobfuscation in three key directions: un-
derstand the current state-of-the-art, improve over it and design

dedicated protection mechanisms. In particular, we define a novel

generic framework for search-based blackbox deobfuscation en-

compassing prior work and highlighting key components; we are

the first to point out that the search space underlying code deob-

fuscation is too unstable for simulation-based methods (e.g., Monte

Carlo Tree Search used in prior work) and advocate the use of robust

methods such as S-metaheuristics; we propose the new optimized

search-based blackbox deobfuscator Xyntia which significantly out-

performs prior work in terms of success rate (especially with small

time budget) while being completely immune to the most recent

anti-analysis code obfuscation methods; and finally we propose

two novel protections against search-based blackbox deobfuscation,

allowing to counter Xyntia powerful attacks.

KEYWORDS

Binary-level code analysis, deobfuscation, artificial intelligence

1 INTRODUCTION

Context. Software contain valuable assets, such as secret algo-

rithms, business logic or cryptographic keys, that attackers may

try to retrieve. The so-called Man-At-The-End-Attacks scenario

(MATE) considers the case where software users themselves are

adversarial and try to extract such information from the code. Code
obfuscation [12, 13] aims at protecting codes against such attacks, by

transforming a sensitive program 𝑃 into a functionally equivalent

program 𝑃 ′ that is more “difficult” (more expensive, for example,

in money or time) to understand or modify. On the flip side, code
deobfuscation aims to extract information from obfuscated codes.

Whitebox deobfuscation techniques, based on advanced symbolic

program analysis, have proven extremely powerful against standard

obfuscation schemes [3, 5, 10, 22, 28, 30, 36] – especially in local

attack scenarios where the attacker analyses pre-identified parts of

the code (e.g., trigger conditions). But they are inherently sensitive

to the syntactic complexity of the code under analysis, leading to

recent and effective countermeasures [12, 25, 26, 37].

Search-based blackboxdeobfuscation.Despite being rarely com-

plete or sound, artificial intelligence (AI) techniques are flexible and
often provide good enough solutions to hard problems in reasonable

time. They have been therefore recently applied to binary-level code

deobfuscation. The pioneering work by Blazytko et al. [7] shows

how Monte Carlo Tree Search (MCTS) [9] can be leveraged to solve

local deobfuscation tasks by learning the semantics of pieces of

protected codes in a blackbox manner, in principle immune to the
syntactic complexity of these codes. Their method and prototype,

Syntia, have been successfully used to reverse state-of-the-art pro-

tectors like VMProtect [34], Themida [27] and Tigress [11], drawing

attention from the software security community [8].

Problem. While promising, search-based blackbox (code) deobfus-

cation techniques are still not well understood. Several key ques-

tions of practical relevance (e.g., deobfuscation correctness and

quality, sensitivity to time budget) are not addressed in Blazytko et

al.’s original paper, making it hard to exactly assess the strengths

and weaknesses of the approach. Moreover, as Syntia comes with

many hard-coded design and implementation choices, it is legit-

imate to ask whether other choices lead to better performance,

and to get a broader view of search-based blackbox deobfuscation

methods. Finally, it is unclear how these methods compare with

recent proposals for greybox deobfuscation [16] or general program

synthesis [6, 29], and how to protect from such blackbox attacks.

Goal. We focus on advancing the current state of search-based

blackbox deobfuscation in the following three key directions: (1)

generalize the initial Syntia proposal and refine the initial experi-

ments by Blazytko et al. in order to better understand search-based
blackbox methods, (2) improve the current state-of-the-art (Syntia)
through a careful formalization and exploration of the design space

and evaluate the approach against greybox and program synthe-

sis methods, and finally (3) study how to mitigate such blackbox

attacks. Especially, we study the underlying search space, bringing

new insights for efficient blackbox deobfuscation, and promote the

application of S-metaheuristics [32] instead of MCTS.

1

Menguy, et al.

Contributions. Our main contributions are the following:

• We refine Blazytko et al.’s experiments in a systematic way,
highlighting new strengths and new weaknesses of the initial
Syntia proposal for search-based blackbox deobfuscation

(Section 4). Especially, Syntia (based on Monte Carlo Tree

Search, MCTS) is far less efficient than expected for small

time budgets (typical usage scenario) and lacks robustness;

• We propose amissing formalization of blackbox deobfuscation
(Section 4) and dig into Syntia internals to rationalize our

observations (Section 4.4). It appears that the search space
underlying blackbox code deobfuscation is too unstable to rely

on MCTS – especially assigning a score to a partial state
through simulation leads to poor estimations. As a result,

Syntia is here almost enumerative;
• We propose to see blackbox deobfuscation as an optimization
problem rather than a single player game (Section 5), allowing
to reuse S-metaheuristics [32], known to be more robust than

MCTS on unstable search spaces (especially, they do not

need to score partial states). We propose Xyntia (Section 5),

an search-based blackbox deobfuscator using Iterated Local
Search (ILS) [24], known among S-metaheuristics for its ro-

bustness. Thorough experiments show that Xyntia keeps the

benefits of Syntia while correcting most of its flaws. Espe-

cially, Xyntia significantly outperforms Syntia, synthesizing
twice more expressions with a budget of 1 s/expr than Syn-

tia with 600 s/expr. Other S-metaheuristics also clearly beat

MCTS, even if they are less effective here than ILS;

• We evaluate Xyntia against other state-of-the-art attackers
(Section 6), namely the QSynth greybox deobfuscator [16],

program synthesizers CVC4 [6] and STOKE [29], and pattern-

matching based simplifiers. Xyntia outperforms all of them –

it finds 2× more expressions and is 30× faster than QSynth

on heavy protections;

• We evaluate Xyntia against state-of-the-art defenses (Sec-
tion 7), especially recent anti-analysis proposals [14, 25, 31,

35, 37]. As expected, Xyntia is immune to such defenses. In

particular, it successfully bypasses side-channels [31], path

explosion [25] and MBA [37]. We also use it to synthesize

VM-handlers from state-of-the-art virtualizers [11, 34];

• Finally, we propose the two first protections against search-
based blackbox deobfuscation (Section 8). We observe that all

phases of blackbox techniques can be thwarted (hypothe-

sis, sampling and learning), we propose two practical meth-

ods exploiting these limitations and we discuss them in the

context of virtualization-based obfuscation: (1) semantically
complex handlers; (2) merged handlers with branch-less con-
ditions. Experiments show that both protections are highly

effective against blackbox attacks.

We hope that our results will help better understand search-based

deobfuscation, and lead to further progress in this promising field.

Availability. Benchmarks and code are available online.1 Additional
experimental data will be made available in a separate technical
report.

1
Will be made available

2 BACKGROUND

2.1 Obfuscation

Program obfuscation [12, 13] is a family of methods designed to

make reverse engineering (understanding programs internals) hard.

It is employed by manufacturers to protect intellectual property

and by malware authors to hinder analysis. It transforms a program

𝑃 in a functionally equivalent, more complex program 𝑃 ′ with an

acceptable performance penalty. Obfuscation does not ensure that

a program cannot be understood – this is impossible in the MATE

context [4] – but aims to delay the analysis as much as possible

in order to make it unprofitable. Thus, it is especially important

to protect from automated deobfuscation analyses (anti-analysis
obfuscation). We present here two important obfuscation methods.

MixedBoolean-Arithmetic (MBA) encoding [37] transforms

an arithmetic and/or Boolean expression into an equivalent one,

combining arithmetic and Boolean operations. It can be applied

iteratively to increase the syntactic complexity of the expression.

Eyrolles et al. [18] show that SMT solvers struggle to answer equiv-

alence requests on MBA expressions, preventing the automated

simplification of protected expressions by symbolic methods.

Virtualization [35] translates an initial code 𝑃 into a bytecode

𝐵 together with a custom virtual machine. Execution of the ob-

fuscated code can be divided in 3 steps (Fig. 1): (1) fetch the next

bytecode instruction to execute, (2) decode the bytecode and find

the corresponding handler, (3) and finally execute the handler. Virtu-
alization hides the real control-flow-graph (CFG) of 𝑃 , and reversing

the handlers is key for reversing the VM. Virtualization is notably

used in malware [19, 33].

Fetch

Bytecodes

Decode Execute

ℎ1 (𝑥,𝑦)
ℎ2 (𝑥,𝑦)
ℎ3 (𝑥,𝑦)

...

ℎ𝑛 (𝑥,𝑦)

Handlers

Figure 1: Virtualization based obfuscation

2.2 Deobfuscation

Deobfuscation aims at reverting an obfuscated program back to

a form close enough to the original one, or at least to a more un-

derstandable version. Along the previous years, symbolic deobfus-
cation methods based on advanced program analysis techniques

have proven to be very efficient at breaking standard protections

[3, 5, 10, 22, 28, 30, 36]. However, very effective countermeasures

start to emerge, based on deep limitations of the underlying code-

level reasoning mechanisms and potentially strongly limiting their

usage [3, 25, 26, 31, 35]. Especially, all such methods are ultimately

sensitive to the syntactic complexity of the code under analysis.

2.3 Search-based blackbox deobfuscation

Search-based blackbox deobfuscation has been recently proposed

by Blazytko et al. [7], implemented in the Syntia tool, to learn the

semantics of well-delimited code fragments, e.g. MBA expressions

or VM handlers. The code under analysis is seen as a blackbox that
can only be queried (i.e., executed under chosen inputs to observe

results). Syntia samples input-output (I/O) relations, then uses a

2

Search-Based Local Black-Box Deobfuscation:
Understand, Improve and Mitigate

learning engine to find an expression mapping sampled inputs to

their observed outputs. Because it relies on a limited number of

samples, results are not guaranteed to be correct. However, being

fully blackbox, it is in principle insensitive to syntactic complexity.

Scope. Syntia tries to infer a simple semantics of heavily obfuscated
local code fragments – e.g., trigger based conditions or VM handlers.

Understanding these fragments is critical to fulfill analysis.

Workflow. Syntiaworkflow is representative of search-based black-

box deobfuscators. First, it needs (1) a reverse window i.e., a subset of

code to work on; (2) the location of its inputs and outputs. Consider
the code in Listing 1 evaluating a condition at line 4. To under-

stand this condition, a reverser focuses on the code between lines

1 and 3. This code segment is our reverse window. The reverser

then needs to locate relevant inputs and outputs. The condition

at line 4 is performed on 𝑡3. This is our output. The set of inputs

contains any variables (registers or memory locations at assembly

level) influencing the outputs. Here, inputs are 𝑥 and𝑦. Armed with

these information, Syntia samples inputs randomly and observes

resulting outputs. In our example, it might consider the samples

(𝑥 ↦→ 1, 𝑦 ↦→ 2), (𝑥 ↦→ 0, 𝑦 ↦→ 1) and (𝑥 ↦→ 3, 𝑦 ↦→ 4) which respec-

tively evaluate 𝑡3 to 3, 1 and 7. Syntia then synthesizes an expression

matching these observed behaviors, using Monte Carlo Tree Search

(MCTS) over the space of all possible (partial) expressions. Here,

it rightly infers that 𝑡3 ← 𝑥 + 𝑦 and the reverser concludes that

the condition is 𝑥 + 𝑦 = 5, where a symbolic method will typically

simply retrieve that ((𝑥 ∨ 2𝑦) × 2 − (𝑥 ⊕ 2𝑦) − 𝑦) = 5.

1 i n t t 1 = 2 ∗ y ;

2 i n t t 2 = x | t 1 ;

3 i n t t 3 = t 2 ∗ 2 − (x ^ t 1) − y ;

4 i f (t 3 == 5) . . .

Listing 1: Obfuscated condition

3 MOTIVATION

3.1 Attacker model

In the MATE scenario, the attacker is the software user himself. He

has only access to the obfuscated version of the code under analysis

and can read or run it at will. We consider that the attacker is highly

skilled in reverse engineering but has limited resources in terms of

time or money. We see reverse engineering as a human-in-the-loop
process where the attacker combines manual analysis with auto-

mated state-of-the-art deobfuscation methods (slicing, symbolic

execution, etc.) on critical, heavily obfuscated code fragments like

VM handlers or trigger-based conditions. Thus, an effective defense

strategy is to thwart automated deobfuscation methods.

3.2 Syntactic and semantic complexity

We now intuitively motivate the use of blackbox deobfuscation.

Consider that we reverse a piece of software protected through vir-

tualization. We need to extract the semantics of all handlers, which

usually perform basic operations likeℎ(𝑥,𝑦) = 𝑥+𝑦. Understanding
ℎ is trivial, but it can be protected to hinder analysis. Eq. (1) shows

how MBA encoding hides ℎ semantics.

ℎ(𝑥,𝑦) = 𝑥 + 𝑦 𝑚𝑏𝑎−→ (𝑥 ∨ 2𝑦) × 2 − (𝑥 ⊕ 2𝑦) − 𝑦 (1)

Such encoding syntactically transforms the expression to make

it incomprehensible while preserving its semantics. To highlight

the difference between syntax and semantics, we distinguish:

(1) The syntactic complexity of expression 𝑒 is the size of 𝑒 ,

i.e. the number of operators used in it;

(2) The semantic complexity of expression 𝑒 is the smallest

size of expressions 𝑒 ′ (in a given language) equivalent to 𝑒 .

For example, in the MBA language, 𝑥 + 𝑦 is syntactically simpler

than (𝑥 ∨ 2𝑦) × 2 − (𝑥 ⊕ 2𝑦) − 𝑦, yet they have the same semantic

complexity as they are equivalent. Conversely, 𝑥 +𝑦 is more seman-

tically complex than (𝑥 + 𝑦) ∧ 0, which equals 0. We do not claim

to give a definitive definition of semantic and syntactic complexity

– as smaller is not always simpler – but introduce the idea that two

kinds of complexity exist and are independent.

The encoding in Eq. (1) is simple, but it can be repeatedly ap-

plied to create a more syntactically complex expression, leading the

reverser to either give up or try to simplify it automatically. White-

box methods based on symbolic execution (SE) [28, 36] and formula
simplifications (in the vein of compiler optimizations) can extract

the semantics of an expression, yet they are sensitive to syntactic

complexity and will not return simple versions of highly obfuscated

expressions. Conversely, blackbox deobfuscation treats the code as

a blackbox, considering only sampled I/O behaviors. Thus increas-
ing syntactic complexity, as usual state-of-the-art protections do, has
simply no impact on blackbox methods.

3.3 Blackbox deobfuscation in practice

We now present how blackbox methods integrate in a global deob-

fuscation process and highlight crucial properties they must hold.

Global workflow. Reverse engineering can be fully automated,

or handmade by a reverser, leveraging tools to automate specific

tasks. While the deobfuscation process operates on the whole ob-

fuscated binary, blackbox modules can be used to analyze parts of

the code like conditions or VM handlers. Upon meeting a complex

code fragment, the blackbox deobfuscator is called to retrieve a

simple semantic expression. After synthesis succeeds, the inferred

expression is used to help continue the analysis.

Requirements. In virtualization based obfuscation, the blackbox

module is typically queried on all VM handlers [7]. As the number

of handlers can be arbitrarily high, blackbox methods need to be

fast. In addition, inferred expressions should ideally be as simple as
the original non-obfuscated expression and semantically equivalent
to the obfuscated expression (i.e., correct). Finally, robustness (i.e.,
the capacity to synthesize complex expressions) is needed to be

usable in various situations. Thus, speed, simplicity, correctness

and robustness, are required for efficient blackbox deobfuscation.

Discussion. One may argue that local blackbox deobfuscation can

be easily parallelized, limiting the need for fast synthesis. However,

reverse engineering is often performed incrementally (e.g., packing,

self-modification), or/and with a human in the loop and the need

for quick feedback. In those scenarios, parallelization cannot help

that much while slow synthesis obstructs analysis. Also, in some

cases Syntia fails in 12h (Sections 5.3 and 8.2) – parallelism cannot

help there.

3

Menguy, et al.

4 UNDERSTAND BLACKBOX

DEOBFUSCATION

We propose a general view of search-based code deobfuscation fit-

ting state-of-the-art solutions [7, 16]. We also extend the evaluation

of Syntia by Blazytko et al. [7], highlighting both some previously

unreported weaknesses and strengths. From that we derive general

lessons on the (in)adequacy of MCTS for code deobfuscation, that

will guide our new approach (Section 5).

4.1 Problem at hand

Search-based deobfuscation takes an obfuscated expression and

tries to infer an equivalent one with lower syntactic complexity.

Such problem can be stated as following:

Deobfuscation. Let 𝑒 , 𝑜𝑏𝑓 be 2 equivalent expressions such that

𝑜𝑏𝑓 is an obfuscated version of 𝑒 – note that 𝑜𝑏𝑓 is possibly much

larger than 𝑒 . Deobfuscation aims to infer an expression 𝑒 ′ equiva-
lent to 𝑜𝑏𝑓 (and 𝑒), but with size similar to 𝑒 . Such problem can be

approached in three ways depending on the amount of information

given to the analyzer:

Blackbox We can only run 𝑜𝑏𝑓 . The search is thus driven by

sampled I/O behaviors. Syntia [7] is a blackbox approach;

Greybox Here 𝑜𝑏𝑓 is executable and readable but the seman-

tics of its operators is mostly unknown. The search is driven by

previously sampled I/O behaviors which can be applied to subparts

of 𝑜𝑏𝑓 . QSynth [16] is a greybox solution;

Whitebox The analyzer has full access to 𝑜𝑏𝑓 (run, read) and

the semantics of its operators is precisely known. Thus, the search

can profit from advanced pattern matching and symbolic strategies.

Standard static analysis falls in this category.

Blackbox methods. Search-based blackbox deobfuscators follow

the framework given in Algorithm 1. In order to deobfuscate code,

one must detail a sampling strategy (i.e., how inputs are generated),

a learning strategy (i.e., how to learn an expression mapping sam-

pled inputs to observed outputs) and a simplification postprocess.
For example, Syntia samples inputs randomly, usesMonte Carlo
Tree Search (MCTS) [9] as learning strategy and leverages the Z3
SMT solver [17] for simplification. The choice of the sampling and

learning strategies is critical. For example, too few samples could

lead to incorrect results while too many could impact the search

efficiency, and an inappropriate learning algorithm could impact

robustness or speed.

Let us now turn to discussing Syntia learning strategy. We show

that using MCTS leads to disappointing performances and give

insights to understand why.

4.2 Evaluation of Syntia

We extend Syntia evaluation and tackle the following questions left

unaddressed by Blazytko et al. [7].

RQ1 Are results stable across different runs?
This is desirable due to the stochastic nature of MCTS;

RQ2 Is Syntia fast, robust and does it infer simple and correct results?
Syntia offers a priori no guarantee of correctness nor quality.

Also, we consider small time budget (1s), adapted to human-

in-the-loop scenarios but absent from the initial evaluation;

Algorithm 1 Search-based blackbox deobfuscation framework

Inputs:

𝐶𝑜𝑑𝑒 : code to analyze

𝑆𝑎𝑚𝑝𝑙𝑒 : sampling strategy

𝐿𝑒𝑎𝑟𝑛 : learning strategy

𝑆𝑖𝑚𝑝𝑙𝑖 𝑓 𝑦 : expression simplifier

Output: learned expression or Failure

1: procedure Deobfuscate(𝐶𝑜𝑑𝑒, 𝑆𝑎𝑚𝑝𝑙𝑒, 𝐿𝑒𝑎𝑟𝑛)

2: 𝑂𝑟𝑎𝑐𝑙𝑒 ← 𝑆𝑎𝑚𝑝𝑙𝑒 (𝐶𝑜𝑑𝑒)
3: 𝑠𝑢𝑐𝑐, 𝑒𝑥𝑝𝑟 ← 𝐿𝑒𝑎𝑟𝑛(𝑂𝑟𝑎𝑐𝑙𝑒)
4: if 𝑠𝑢𝑐𝑐 = 𝑇𝑟𝑢𝑒 then return 𝑆𝑖𝑚𝑝𝑙𝑖 𝑓 𝑦 (𝑒𝑥𝑝𝑟)
5: else return 𝐹𝑎𝑖𝑙𝑢𝑟𝑒

RQ3 How is synthesis impacted by the set of operators size?
Syntia learns expressions over a search space fixed by prede-

fined grammars. Intuitively, the more operators in the gram-

mar, the harder it will be to converge to a solution. We use 3

sets of operators to assess this impact.

4.2.1 Experimental setup. We distinguish the success rate (num-

ber of expressions inferred) from the equivalence rate (number of

expressions inferred and equivalent to the original one). The equiv-

alence rate relies on the Z3 SMT solver [17] with a timeout of 10s.

Since Z3 timeouts are inconclusive answers, we define a notion of

equivalence range: its lower bound is the proven equivalence

rate (number of expressions proven to be equivalent) while its

upper bound is the optimistic equivalence rate (expressions not

proven different, i.e., optimistic = proven + #timeout). The equiva-

lence rate is within the equivalence range, while the success rate is

higher than the optimistic equivalence rate. Finally, we define the

quality of an expression as the ratio between the number of oper-

ators in recovered and target expressions. It estimates the syntactic

complexity of inferred expressions compared to the original ones.

A quality of 1 indicates a perfect result: the recovered expression

has the same size as the target expression.

Benchmarks. We consider two benchmark suites: B1 and B2. B1
2

comes from Blazytko et al. [7] and was used to evaluate Syntia.

It comprises 500 randomly generated expressions with up to 3

arguments, and simple semantics. It aims at representing state-of-

the-art VM-based obfuscators. However, we found that B1 suffers
from several significant issues: (1) it is not well distributed over the

number of inputs and expression types, making it unsuitable for

fine-grained analysis; (2) only 216 expressions are unique modulo

renaming – the other 284 expressions are 𝛼-equivalent, like x+y

and a+b. These problems threaten the validity of the evaluation.

We thus propose a new benchmark B2 consisting of 1,110 ran-

domly generated expressions, better distributed according to the

number of inputs and the nature of operators – see Table 1. We

use three categories of expressions: Boolean, Arithmetic and Mixed

Boolean-Arithmetic, with 2 to 6 inputs. Especially, expressions are

spread equally between categories to prevent biased results. Each ex-

pression has an Abstract Syntax Tree (AST) of maximal height 3. As

a result, B2 is more challenging than B1 and enables a finer-grained

evaluation. Considering such diverse and complex expressions is

2
https://github.com/RUB-SysSec/syntia/tree/master/samples/mba/tigress

4

Search-Based Local Black-Box Deobfuscation:
Understand, Improve and Mitigate

crucial as blackbox deobfuscation evolves in an adversarial context

where limitations can be exploited to thwart analysis.

Note that we also consider QSynth datasets [16] in Section 6,

developed by the Quarkslab R&D company.

Type # Inputs

Bool. Arith. MBA 2 3 4 5 6

#Expr. 370 370 370 150 600 180 90 90

Table 1: Distribution of samples in benchmark B2

Operator sets. Table 2 introduces three operator sets: Full, Expr

and Mba. We use these to evaluate sensitivity to the search space

and answerRQ3. Expr is as expressive as Full even if Expr ⊂ Full.

Mba can only express Mixed Boolean-Arithmetic expressions [37].

Table 2: Sets of operators

Full : {−1,¬, +,−,×,≫𝑢 ,≫𝑠 ,≪,∧,∨, ⊕,÷𝑠 ,÷𝑢 ,%𝑠 ,%𝑢 , ++ }
Expr : {−1,¬, +,−,×,∧,∨, ⊕,÷𝑠 ,÷𝑢 , ++ }
Mba : {−1,¬, +,−,×,∧,∨, ⊕}

Configuration.We run all our experiments on a machine with 6

Intel Xeon E-2176M CPUs and 32 GB of RAM.We evaluate Syntia in

its original configuration [7]: the SA-UCT parameter is 1.5, we use

50 I/O samples and a maximum playout depth of 0. We also limit

Syntia to 50,000 iterations per sample, corresponding to a timeout

of 60s per sample on our test machine.

4.2.2 Evaluation Results. Let us summarize here the outcome of

our experiments.

RQ1. Over 15 runs, Syntia finds between 362 and 376 expressions

of B1 i.e., 14 expressions of difference (2.8% of B1). Over B2, it finds

between 349 and 383 expressions i.e., 34 expressions of difference

(3.06% of B2). Hence, Syntia is very stable across executions.

RQ2. Syntia cannot efficiently infer B2 (≈ 34% success rate). More-

over, Table 3 shows Syntia to be highly sensitive to time budget.

More precisely, with a time budget of 1 s/expr., Syntia only retrieves

16.3% of B2. Still, even with a timeout of 600 s/expr., it tops at 42%

of B2. In addition, Syntia is unable to synthesize expressions with

more than 3 inputs – success rates for 4, 5 and 6 inputs respectively

falls to 10%, 2.2% and 1.1%. It also struggles over expressions us-

ing a mix of Boolean and arithmetic operators, synthesizing only

21% (see Table 4). Still, Syntia performs well regarding quality and

correctness. On average, its quality is around 0.60 (for a timeout of

60 s/expr.) i.e., resulting expressions are simpler than the original

(non obfuscated) ones, and it rarely returns non-equivalent expres-

sions – between 0.5% and 0.8% of B2. We thus conclude that Syntia
is stable and returns correct and simple results. Yet, it is not efficient
enough (solves only few expressions on B2, heavily impacted by time
budget) and not robust (number of inputs and expression type).
Table 3: Syntia depending on the timeout per expression (B2)

1s 10s 60s 600s

Succ. Rate 16.5% 25.6% 34.5% 42.3%

Equiv. Range 16.3% 25.1 - 25.3% 33.7 - 34.0% 41.4 - 41.6%

Mean Qual. 0.35 0.49 0.59 0.67

RQ3. Default Syntia synthesizes expressions over the Full set of

operators. To evaluate its sensitivity to the search space we run it

over Full, Expr and Mba. Smaller sets do exhibit higher success

rates (42% on Mba) but results remain disappointing. Syntia is
sensitive to the size of the operator set but is inefficient even with Mba.

Conclusion. Syntia is stable, correct and returns simple results. Yet,
it is heavily impacted by the time budget and lacks robustness. It thus
fails to meet the requirements given in Section 3.3.

4.3 Optimal Syntia

To ensure the conclusions given in Section 4.4 apply to MCTS

and not only to Syntia, we study Syntia extensively to find better

set ups for the following parameters: simulation depth, SA-UCT

value (configuring the balance between exploitative and explorative

behaviors), number of I/O samples and distance. Optimizing Syntia

parameters slightly improves its results which stay disappointing

(at best, ≈ 50% of success rate on Mba in 60 s/expr.).

Conclusion. By default, Syntia is well configured. Changing its
parameters lead in the best scenario to marginal improvement, hence
the pitfalls highlighted seem to be inherent to the MCTS approach.

4.4 MCTS for deobfuscation

Let us explore whether these issues are related to MCTS.

Monte Carlo Tree Search.MCTS creates here a search tree where

each node is an expression which can be terminal (e.g. 𝑎 + 1, where
𝑎 is a variable) or partial (e.g. 𝑈 + 𝑎, where 𝑈 is a non-terminal

symbol). The goal of MCTS is to expand the search tree smartly,

focusing on most pertinent nodes first. Evaluating the pertinence of

a terminal node is done by sampling (computing here a distance

between the evaluation of sampled inputs over the node expression

against their expected output values). For partial nodes, MCTS

relies on simulation: random rules of the grammar are applied to

the expression (e.g.,𝑈 + 𝑎 ; 𝑏 + 𝑎) until it becomes terminal and

is evaluated. As an example, let {(𝑎 ↦→ 1, 𝑏 ↦→ 0), (𝑎 ↦→ 0, 𝑏 ↦→ 1)}
be the sampled inputs. The expression 𝑏 + 𝑎 (simulated from𝑈 + 𝑎)
evaluates them to (1, 1). If the ground-truth outputs are 1 and −1,
the distance will equal 𝛿 (1, 1)+𝛿 (1,−1) where 𝛿 is a chosen distance
function. We call the result the pertinence measure. The closer it is
to 0, the more pertinent the node 𝑈 + 𝑎 is considered and the more

the search will focus on it.

Analysis. This simulation-based pertinence estimation is not reliable
in our code deobfuscation setting.

• We present in Fig. 2, for different non-terminal nodes, the

distance values computed through simulations. We observe

that from a starting node, a random simulation can return

drastically different results. It shows that the search space is
very unstable and that relying on simulation is misleading

(especially in our context where time budget is small);

• Moreover, our experiments show that in practice Syntia is

not guided by simulations and behaves almost as if it were an
enumerative (BFS) search – MCTS where simulations are non

informative. As an example, Fig. 3 compares how the distance

evolves over time for Syntia and a custom, fully enumerative,

MCTS synthesizer: both are very similar. Actually, Syntia

and enumerative MCTS perform similarly over B2: with a

60s (resp. 600s) timeout, enumerative MCTS reaches 41.4%

5

Menguy, et al.

(resp. 51.6%) success rate vs. 42.6% (resp. 54.9%) for Syntia

(Mba operators set);

• Finally, on B2 (resp. B1) with a timeout of 60s, only 34/341

(resp. 20/376) successfully synthesized expressions are the

children of previously most promising nodes. It shows that

Syntia successfully synthesized expressions due to its ex-

ploratory (i.e., enumerative) behavior rather than to the se-

lection of nodes according to their pertinence.

0

200

400

600

800

1000

1200

1400

1600

1800

𝑢 −𝑢 ¬𝑢 𝑢 ×
𝑢

𝑢 −
𝑢

𝑢 +
𝑢
𝑢 ∨

𝑢

𝑢 ∧
𝑢

𝑢 ⊕
𝑢

𝑢 × (𝑢 +
𝑢)

𝑢 × (𝑢 ×
𝑢)

𝑢 × (𝑢 −
𝑢)

𝑢 × (𝑢 ∧
𝑢)

𝑢 × (𝑢 ∨
𝑢)

𝑢 × (𝑢 ⊕
𝑢)

(𝑢 ×
𝑢) × (𝑢 +

𝑢)

(𝑢 +
𝑢) × (𝑢 +

𝑢)

(𝑢 −
𝑢) × (𝑢 +

𝑢)

(𝑢 ∧
𝑢) × (𝑢 +

𝑢)

(𝑢 ∨
𝑢) × (𝑢 +

𝑢)

(𝑢 ⊕
𝑢) × (𝑢 +

𝑢)

0

200

400

600

800

1000

1200

1400

1600

1800

𝑢 −𝑢 ¬𝑢 𝑢 ×
𝑢

𝑢 −
𝑢

𝑢 +
𝑢
𝑢 ∨

𝑢

𝑢 ∧
𝑢

𝑢 ⊕
𝑢

𝑢 × (𝑢 +
𝑢)

𝑢 × (𝑢 ×
𝑢)

𝑢 × (𝑢 −
𝑢)

𝑢 × (𝑢 ∧
𝑢)

𝑢 × (𝑢 ∨
𝑢)

𝑢 × (𝑢 ⊕
𝑢)

(𝑢 ×
𝑢) × (𝑢 +

𝑢)

(𝑢 +
𝑢) × (𝑢 +

𝑢)

(𝑢 −
𝑢) × (𝑢 +

𝑢)

(𝑢 ∧
𝑢) × (𝑢 +

𝑢)

(𝑢 ∨
𝑢) × (𝑢 +

𝑢)

(𝑢 ⊕
𝑢) × (𝑢 +

𝑢)

L
o
g
a
r
i
t
h
.
d
i
s
t
.
f
r
o
m
(𝑎
∧
𝑏
)×
(𝑏
+
𝑐
)

Non terminal expressions

Mean distance

Each point represents the distance between (𝑎 ∧ 𝑏) × (𝑏 + 𝑐) and one simulation of

a non terminal expression (horizontal axis). A non terminal expression, can generate

multiple terminal ones through simulations, leading to completely different results.

Figure 2: Dispersion of the distance for different simulations

0

200

400

600

800

1000

1200

1400

1600

0 2000 4000 6000 8000 10000 12000

0

200

400

600

800

1000

1200

1400

1600

0 2000 4000 6000 8000 10000 12000

L
o
g
a
r
i
t
h
m
i
c
d
i
s
t
a
n
c
e

Iterations

Syntia

L
o
g
a
r
i
t
h
m
i
c
d
i
s
t
a
n
c
e

Iterations

Enumerative MCTS

Figure 3: Syntia and enumerative MCTS distance evolution

(expression successfully synthesized)

Conclusion. The search space from blackbox code deobfuscation is
too unstable, making MCTS simulations unreliable. MCTS in that
setting is then almost enumerative and inefficient. That is why Syntia
is slow and not robust, but returns simple expressions.

4.5 Conclusion

While Syntia returns simple results, it only synthesizes semantically

simple expressions and is slow. These unsatisfactory results can be

explained by the fact that the search space is too unstable, making

the use of MCTS unsuitable. In the next section, we show that

methods avoiding the manipulation of partial expressions (and thus

free from simulation) are better suited to deobfuscation.

5 IMPROVE BLACKBOX DEOBFUSCATION

We define a new search-based blackbox deobfuscator, dubbed Xyn-

tia, leveraging S-metaheuristics [32] and Iterated Local Search (ILS)

[24] and compare its design to rival deobfuscators. Unlike MCTS,

S-metaheuristics only manipulate terminal expressions and do not

create tree searches, thus we expect them to be better suited than

MCTS for code deobfuscation. Among S-metaheuristics, ILS is par-

ticularly designed for unstable search spaces, with the ability to re-

member the last best solution encountered and to restart the search

from that point. We show that these methods are well-guided by

the distance function and significantly outperform MCTS in the

context of blackbox code deobfuscation.

5.1 Deobfuscation as Optimization

As presented in Section 4, Syntia frames deobfuscation as a single

player game. We instead propose to frame it as an optimization

problem using ILS as learning strategy.

Blackbox deobfuscation: an optimization problem. Blackbox

deobfuscation synthesizes an expression from inputs-outputs sam-

ples and can be modeled as an optimization problem. The objective

function, noted 𝑓 , measures the similarity between current and

ground truth behaviors by computing the sum of the distances

between found and objective outputs. The goal is to infer an ex-

pression minimizing the objective function over the I/O samples. If

the underlying grammar is expressive enough, a minimum exists

and matches all sampled inputs to objective outputs, zeroing 𝑓 .

The reliability of the found solution depends on the number of I/O

samples considered. Too few samples would not restrain search

enough and lead to flawed results.

Solving through search heuristics. S-metaheuristics [32] can be

advantageously used to solve such optimization problems. A wide

range of heuristics exists (Hill Climbing, Random Walk, Simulated

Annealing, etc.). They all iteratively improve a candidate solution by

testing its “neighbors” and moving along the search space. Because

solution improvement is evaluated by the objective function, it is

said to guide the search.

Iterated Local Search. Some S-metaheuristics are prone to be

stuck in local optimums so that the result depends on the initial

input chosen. Iterated Local Search (ILS) [24] tackles the problem

through iteration of search and the ability to restart from previously

seen best solutions. Note that ILS is parameterized by another

search heuristics (for us: Hill Climbing). Once a local optimum is

found by this side search, ILS perturbs it and uses the perturbed

solution as initial state for the side search. At each iteration, ILS also

saves the best solution found. Unlike most other S-metaheuristics

(Hill Climbing, Random Walk, Metropolis Hasting and Simulated

Annealing, etc.), if the search follows a misleading path, ILS can

restore the best seen solution so far to restart from an healthy state.

5.2 Xyntia internals

Xyntia is built upon 3 components: the optimization problem we

aim to solve, the oracle which extracts the sampling information

from the protected code under analysis and the search heuristics.
6

Search-Based Local Black-Box Deobfuscation:
Understand, Improve and Mitigate

Oracle.The oracle is defined by the sampling strategywhich depicts

how the protected program must be sampled and how many sam-

ples are considered. As default, we consider that our oracle samples

100 inputs over the range [−50; 49]. Five are not randomly gen-

erated but equal interesting constant vectors (®0, ®1, ®−1, ®𝑚𝑖𝑛𝑠 , ®𝑚𝑎𝑥𝑠).

These choices arise from a systematic study of the different settings

to find the best design (see Section 5.4).

Optimization problem. The optimization problem is defined as

follow. The search space is the set of expressions expressible using

the Expr set of operators (see Table 2), and considers a unique

constant value 1. This grammar enables Xyntia to reach optimal

results while being as expressive as Syntia [7]. Besides, we consider

the objective function:

𝑓®𝑜 ∗ (®𝑜) =
∑
𝑖

𝑙𝑜𝑔2 (1 + |𝑜𝑖 − 𝑜∗𝑖 |)

It computes the Log-arithmetic distance between synthesized ex-

pressions outputs (®𝑜) and sampled ones (®𝑜 ∗). The choice of the

grammar and of the objective function are respectively discussed

in Sections 5.3 and 5.4.

Search. Xyntia leverages Iterated Local Search (ILS) to minimize

our objective function and so to synthesize target expressions. We

present now how ILS is adapted to our context. ILS applies two

steps starting from a random terminal (constant value or variable):

• ILS reuses the best expression found so far to perturb it by
randomly selecting a node of the AST and replacing it by a

random terminal node. The resulting AST is kept even if the

distance increases and passed to the next step.

• Iterative Random Mutations: the side search (in our case Hill

Climbing) iteratively mutates the input expression until it

cannot improve anymore. We estimate that no more im-

provement can be done after 100 inconclusive mutations. A

mutation consists in replacing a randomly chosen node of

the abstract syntax tree (AST) by a leaf or an AST of depth

one (only one operator) – e.g. 1 + (−𝑎) ; (−𝑏) + (−𝑎). At
each mutation, it keeps the version of the AST minimizing

the distance function. During mutations, the best solution so
far is updated to be restored in the perturbation step. If a so-

lution nullifies the objective function, it is directly returned.

These two operations are iteratively performed until time is

out (by default 60s) or an expression mapping all I/O samples is

found. Furthermore, as Syntia applies Z3 simplifier to "clean up"

recovered expressions, we add a custom post-process expression
simplifier, applying simple rewrite rules until a fixpoint is reached.

It significantly improves the quality of the expressions while adding

no significant overhead (+2.6ms on average). Xyntia is implemented

in OCaml [23], within the BINSEC framework for binary-level

program analysis [15]. It comprises ≈9k lines of code.

5.3 Xyntia evaluation

We now evaluate Xyntia in depth and compare it to Syntia. As with

Syntia we answer the following questions:

RQ4 Are results stable across different runs?
RQ5 Is Xyntia robust, fast and does it infer simple and correct results?
RQ6 How is synthesis impacted by the set of operators size?

Configuration. For all our experiments, we default to locally opti-

mal Xyntia (XyntiaOpt) presented in Section 5.2. It learns expres-

sions over Expr, samples 100 inputs (95 randomly and 5 constant

vectors) and uses the Log-arithmetic distance as objective function.

Interestingly, all results reported here also hold (to a lesser extend
regarding efficiency) for other Xyntia configurations (Section 5.4),
especially these versions consistently beat Syntia.

RQ4. Over 15 runs Xyntia always finds all 500 expressions in B1

and between 1051 and 1061 in B2. Thus, Xyntia is very stable across
executions.

RQ5. Unlike Syntia, Xyntia performs very well on both B1 and B2

with a timeout of 60 s/expr. Fig. 4 reveals that it is still successful

for a timeout of 1 s/expr. (78% proven equivalence rate), where it

finds 2× more expressions than Syntia with a timeout of 600 s/expr.

We also observe such tendency over B1 and BP1 (see Section 8.2)

and for 12h timeout. On B1, Syntia reaches 41%, 74%, 88.2% and

97.6% success rate for respectively 1s, 60s, 600s and 12h timeout,

against 100% success rate for Xyntia in 1s. For BP1, Syntia finds

only 1/15 expressions with a 12h timeout against 12/15 for Xyntia

in 60s. From evaluation on B1 and B2, it appears that Syntia success

rate increases logarithmically over time. Thus, time budget needed

for Syntia to catch Xyntia is expected to be unrealistic.

In addition, Xyntia handles well expressions using up to 5 argu-

ments and all expression types (Table 4). Its mean quality is around

0.93, which is very good (objective is 1), and it rarely returns not

equivalent expressions – only between 1.3% and 4.9%. Thus, Xyntia
reaches high success and equivalence rate. It is fast, synthesizing most
expressions in ≤ 1𝑠 , and it returns simple and correct results.

0

10

20

30

40

50

60

70

80

90

100

1 10 60 600

E
q
u
i
v
a
l
e
n
c
e
R
a
t
e
(
%
)

Timeout (s / expression)

Xyntia Proven

Xyntia Optimistic

Syntia Proven

Syntia Optimistic

Figure 4: Equivalence range of Syntia andXyntia (XyntiaOpt)

depending on timeout (B2)

Bool. Arith. MBA

Syntia

Succ. Rate 53.8% 28.6% 21.1%

Equiv. Range 53.0% 27.8 - 28.1% 20.3 - 20.8%

Mean Qual. 0.53 0.61 0.71

Xyntia

Succ. Rate 98.4% 96.5% 91.6%

Equiv. Range 97.8% 88.9 - 94.9% 85.1 - 90.0%

Mean Qual. 0.73 1.0 1.05

Table 4: Syntia & Xyntia (XyntiaOpt): results according to ex-

pression type (B2, timeout = 60 s)

RQ6. Xyntia by default synthesizes expressions over Expr while

Syntia infers expressions over Full. To compare their sensitivity to

search space and show that previous results are not due to search

7

Menguy, et al.

space inconsistency, we run both tools over Full, Expr and Mba.

Experiments show that Xyntia reaches high equivalence rates for all

operators sets while Syntia results stay low. Still, Xyntia seemsmore

sensitive to the size of the set of operators than Syntia. Its proven

equivalence rate decreases from 90% (Expr) to 71% (Full) while

Syntia decreases only from 38.7% (Expr) to 33.7% (Full). Conversely,

as for Syntia, restricting to Mba benefits to Xyntia (proven equiv.

rate: 91%). Thus, like Syntia, Xyntia is sensitive to the size of the
operators set. Yet, Xyntia reaches high equivalence rates even on Full
while Syntia remains inefficient even on Mba.

Conclusion. Xyntia is a lot faster and more robust than Syntia. It
is also stable and returns simple expressions. Thus, Xyntia, unlike
Syntia, meets the requirements given in Section 3.3.

5.4 Optimal Xyntia and other S-Metaheuristics

Previous experiments consider the XyntiaOpt configuration of Xyn-

tia. It comes from a systematic evaluation of the design space. To

do so, we considered (1) different S-metaheuristics: Hill Climbing

(HC), Random Walk (RW), Simulated Annealing (SA), Metropolis

Hasting (MH) and Iterated Local Search (ILS); (2) different sampling

strategies; (3) different objective functions. This evaluation con-

firms that XyntiaOpt is locally optimal and that ILS, being able to

restore best expression seen after a number of unsuccessful muta-

tions, outperforms other S-metaheuristics (Table 5). Moreover, all

S-metaheuristics – except Hill Climbing – outperforms Syntia.

Table 5: Synthesis Equivalence Rate for different S-

metaheuristics (B2, XyntiaOpt, timeout = 60 s)

RW HC ILS SA MH

Equiv.

Range

62.3 - 63.4% 31.9 - 33.1% 90.6 - 94.2% 64.8 - 65.8% 57.7 - 58.5%

Conclusion. Principled and systematic evaluation of Xyntia design
space leads to the locally optimal XyntiaOpt configuration. It notably
shows that ILS outperforms other tested S-metaheuristics. Moreover,
all these S-metaheuristics – except Hill Climbing – outperform MCTS,
confirming that manipulating only terminal expressions is beneficial.

5.5 On the effectiveness of ILS over MCTS

We present in Fig. 5 the typical distance evolution along the search

process when using Xyntia. We can see that the distance follows

a step-wise progression, which is drastically different from the

case of Syntia and enumerative MCTS (Fig. 3). Hence, unlike them,

Xyntia is indeed guided by the distance function. Moreover, note

that Xyntia globally follows a positive trend i.e., it does not unlearn

previouswork. Indeed, before each perturbation, the best expression

found from now is restored. Thus, if iterative mutations follows

a misleading path, the resulting solution is not kept and the best

solution is reused to be perturbed. Keeping the current best solution

is of first relevance as the search space is highly unstable and enables

Xyntia to be more reliable and less dependant of randomness.

Conclusion. Unlike MCTS, which is almost enumerative in code
deobfuscation, ILS is well guided by the objective function and distance
evolution follows a positive trend. This is true as well for other S-
metaheuristics.

0

200

400

600

800

1000

1200

1400

1600

0 500 1000 1500 2000 2500 3000

L
o
g
a
r
i
t
h
m
i
c
d
i
s
t
a
n
c
e

Perturbations

Xyntia

Figure 5: Xyntia (XyntiaOpt) distance evolution (expression

successfully synthesized)

5.6 Limitations

Blackbox approachesmust consider limited languages to be efficient.

This restricts their use to local contexts – e.g., analyzing sets of

code blocks rather than full modules.

Moreover, synthesis relies on two main steps, sampling and

learning, which both show weaknesses. Indeed, Xyntia and Syntia

randomly sample inputs to approximate the semantics of an ex-

pression. It then assumes that samples depict all behaviors of the

code under analysis. If this assumption is invalid then the learning

phase will miss some behaviors, returning partial results. As such,

blackbox deobfuscation is unsuitable to handle point functions.

Learning can itself be impacted by other factors. For instance,

semantically complex expressions are hard to infer. While they are

rare in local code, we show in Section 8 how to take advantage of

them to protect against blackbox attacks. A related problem are

expressions with unexpected constant values. They are hard to

handle as the grammar of Xyntia and Syntia only considers the

constant value 1. Thus, finding expressions with constant values

absent from the grammar requires to create them (e.g., encoding 3

as 1 + 1 + 1), which may be unlikely. A naive solution is to add to

the grammar additional constant values but it significantly impacts

efficiency. Indeed, for 100 values ([0; 99]), the equivalence rate

is divided by 2 (resp., by 4 for 200 values). Still, Section 7 shows

that Xyntia can synthesize usual interesting constant values (unlike

Syntia).

5.7 Conclusion

Because of the high instability of the search space, Iterated Local
Search is much more appropriate than MCTS (and, to a lesser ex-

tent, than other S-metaheuristics) for blackbox code deobfuscation,

as it manipulates terminal expressions only and is able to restore

the best solution seen so far in case the search gets lost. These

features enable Xyntia to keep the advantages of Syntia (stability,

output quality) while clearly improving over its weaknesses: espe-

cially Xyntia manages with 1s timeout to synthesize twice more

expressions than Syntia with 10min timeout.

Other S-metaheuristics also perform significantly better than

MCTS here, demonstrating that the problem itself is not well-suited

for partial solution exploration and simulation-guided search.

6 COMPARISONWITH OTHER APPROACHES

We now extend the comparison to other state-of-the-art tools: (1) a

greybox deobfuscator (QSynth [16]); (2) whitebox simplifiers (GCC,

Z3 simplifier and our custom simplifier); (3) program synthesizers

8

Search-Based Local Black-Box Deobfuscation:
Understand, Improve and Mitigate

0

50

100

150

200

250

300

350

400

450

500

EA VR-EA EA-ED

#
E
n
h
a
n
c
e
d

Xyntia-MBA

Syntia-MBA

QSynth

CVC4-MBA

STOKE-synth

STOKE-opti

(a) Enhancement rate

0

5

10

15

20

25

30

35

40

EA VR-EA EA-ED

T
i
m
e
(
s
)

Xyntia-MBA

Syntia-MBA

QSynth

CVC4-MBA

STOKE-synth

(b) Mean synthesis time per expression – STOKE-opti not

shown as it always uses 60 s

Figure 6: Syntia, QSynth, Xyntia, CVC4 and STOKE on EA, VR-EA and EA-ED datasets (timeout = 60 s)

(CVC4 [6], winner of the SyGus’19 syntax-guided synthesis com-

petition [2] and STOKE [29], an efficient superoptimizer). Unlike

blackbox approaches, greybox and whitebox methods should be

evaluated on the enhancement rate, as otherwise they can always

succeed by returning the obfuscated expression. The enhancement

rate measures how often synthesized expressions are smaller than

the original ones (𝑞𝑢𝑎𝑙𝑖𝑡𝑦 ≤ 1).

Benchmarks. We compare blackbox program synthesizers on B2,

and grey/white box approaches on the three QSynth datasets,
3
each

of them comprising 500 expressions obfuscated with Tigress [11]:

EA (base dataset, obfuscated with the EncodeArithmetic transforma-

tion), VR-EA (EA obfuscated with Virtualize and EncodeArithmetic
protections), and EA-ED (EA obfuscated with EncodeArithmetic
and EncodeData transformations).

Whitebox.We first compare Xyntia over the EA, VR-EA and EA-

ED datasets with 3 whitebox approaches: GCC, Z3 simplifier (v4.8.7)

and our custom simplifier. As expected, they are not efficient com-

pared to Xyntia. Regardless of the dataset, they simplify ≤ 68 ex-

pressions where Xyntia simplifies 360 of them.

Greybox.Wenow compare Xyntia to QSynth published results [16]

on EA, VR-EA and EA-ED. Fig. 6a shows that while both tools reach

comparable results (enhancement rate ≈ 350/500) for simple obfus-

cations (EA and VR-EA), Xyntia keeps the same results for heavy

obfuscations (EA-ED) while QSynth drops to 133/500. Actually,

unlike QSynth, Xyntia is insensitive to syntactic complexity.

Program synthesizers. We finally compare Xyntia to state-of-

the-art program synthesizers, namely CVC4 [6] and STOKE [29].

CVC4 takes as input a grammar and a specification and returns,

through enumerative search, a consistent expression. STOKE is a

super-optimizer leveraging program synthesis (based onMetropolis

Hasting) to infer optimized code snippets. It does not return an

expression but optimized assembly code. STOKE addresses the

optimization problem in two ways: (1) STOKE-synth starts from

a pre-defined number of nops and mutates them. (2) STOKE-opti

starts from the non-optimized code and mutates it to simplify it.

While STOKE integrates its own sampling strategy and grammar,

CVC4 does not – thus, we consider for CVC4 the same sampling

strategy as Xyntia (100 I/O samples with 5 constant vectors) as

3
https://github.com/werew/qsynth-artifacts

well as the Expr and Mba grammars. More precisely, CVC4-Expr

is used over B2 to compare to Xyntia (XyntiaOpt) and CVC4-Mba

is evaluated on EA, VR-EA and EA-ED to compare against QSynth.

Our experiments show that CVC4-Expr and STOKE-synth syn-

thesize less than 40% of B2 (respectively 36.8% and 38.0%) while

Xyntia reaches 90.6% proven equivalence rate. Indeed enumerative

search (CVC4) is less appropriate when time is limited. Results of

STOKE-synth are also expected as its search space considers all

assembly mnemonics. Moreover, Fig. 6a shows that blackbox and

whitebox (STOKE-opti) synthesizers do not efficiently simplify ob-

fuscated expressions. STOKE-opti finds only 1 / 500 expressions

over EA-ED and does not handle jump instructions, inserted by the

VM, failing to analyze VR-EA.

Conclusion. Xyntia rivals QSynth on light / mild protections and

outperforms it on heavy protections, while pure whitebox ap-

proaches are far behind, showing the benefits of being independent

from syntactic complexity. Also, Xyntia outperforms state-of-the-

art program synthesizers showing that it is better suited to perform

deobfuscation. These good results show that seeing deobfuscation

as an optimization problem is fruitful.

7 DEOBFUSCATIONWITH XYNTIA

We now prove that Xyntia is insensitive to common protections

(opaque predicates) as well as to recent anti-analysis protections

(MBA, covert channels, path explosion) and we confirm that black-

box methods can help reverse state-of-the-art virtualization [11, 34].

7.1 Effectiveness against usual protections

Xyntia is able to bypass many protections.

Mixed Boolean-Arithmetic [37] hides the original semantics

of an expression both to humans and SMT solvers. However, the

encoded expression remains equivalent to the original one. As such,

the semantic complexity stays unchanged, and Xyntia should not

be impacted. Launching Xyntia on B2 obfuscated with Tigress [11]

Encode Arithmetic transformation (size of expression: x800) con-

firms that it has no impact: equivalence range with and without

protection respectively equals 90.0 - 93.8% and 90.6 - 94.2%.

Opaque predicates [14] obfuscate control flow by creating ar-

tificial conditions in programs. The conditions are traditionally

tautologies and dynamic runs of the code will follow a unique path.

9

Menguy, et al.

Thus, sampling is not affected and synthesis not impacted. We show

it by launching Xyntia over B2 obfuscated with Tigress AddOpaque
transformation (result: equiv. range equals 89.9 - 93.0%).

Path-based obfuscation [25, 35] takes advantage of path ex-

plosion to thwart symbolic execution, massively adding additional

feasible paths. We show that it has no effect, by protecting B2 with

a custom encoding inspired by [25] (result: equiv. range equals 89.5

- 93.7%).

Covert channels [31] hide information flow to static analyzers

by rerouting data to invisible part of the states (usually OS related)

before retrieving it – for example taking advantage of timing differ-

ence between a slow thread and a fast thread. Again, as blackbox

deobfuscation focuses only on input-output relationships, covert

channels should not disturb it. Note that the probabilistic nature of

such obfuscations (obfuscated behaviours can differ from unobfus-

cated ones from time to time) could be a problem in case of high

fault probabilities, but in order for the technique to be useful, fault

probability must precisely remains low. We show it has no impact

by obfuscating B2 with the InitEntropy and InitImplicitFlow (thread

kind) transformations of Tigress [11] (result: equiv. range equals

89.0 - 94.0%).

Conclusion. State-of-the-art protections are not effective against
blackbox deobfuscation. They prevent efficient reading of the code and
tracing of data but blackbox methods directly execute it.

7.2 Virtualization-based obfuscation

We now use Xyntia to reverse code obfuscated with state-of-the-art

virtualization. We obfuscate a program computing MBA operations

with Tigress [11] and VMProtect [34] and our goal is to reverse the

VM handlers.
4
Using such a synthetic program enables to expose a

wide variety of handlers.

Table 6: Xyntia and Syntia results over program obfuscated

with Tigress [11] and VMProtect [34]

Tigress (simple) Tigress (hard) VMProtect

Binary size 40KB 251KB 615KB

handlers 13 17 114

instructions per handlers 16 54 43

Xyntia

Completely retrieved 12/13 16/17 0/114

Partially retrieved 13/13 17/17 76/114

Syntia

Completely retrieved 0/13 0/17 0/114

Partially retrieved 13/13 17/17 76/114

Tigress [11] is a source-to-source obfuscator. Our obfuscated pro-

gram contains 13 handlers. Since at assembly level each handler

ends with an indirect jump to the next handler to execute, we were

able to extract the positions of handlers using execution traces. We

then used the scripts from [7] to sample each handler. Xyntia syn-

thesizes 12/13 handlers in less that 7 s each. We can classify them

in different categories: (1) arithmetic and Boolean (+, −, ×, ∧, ∨, ⊕);
(2) stack (store and load); (3) control flow (goto and return); (4) call-

ing convention (retrieve obfuscated function arguments). These

results show that Xyntia can synthesize a wide variety of handlers.

Interestingly, while these handlers contain many constant values

(typically, offsets for context update), Xyntia can handle them as

well. In particular, it infers the calling convention related handler,

synthesizing constant values up to 28 (to access the 6th argument).

4
Note that, as Syntia, Xyntia does not consider memory operations.

Thus, even if Xyntia is inherently limited on constant values (see

Section 5.6) it still handles them to a limited extent. Repeating

the experiment by adding Encode Data and Encode Arithmetic to
Virtualize yields similar results. Xyntia synthesizes all 17 exposed

handlers but one, confirming that Xyntia handles combinations of

protections. Finally, note that Syntia fails to synthesize handlers

completely (not handling constant values). Still it infers arithmetic

and Boolean handlers (without context updates).

VMProtect [34] is an assembly-to-assembly obfuscator. We use the

latest premium version (v3.5.0). As each VM handler ends with a ret

or an indirect jump, we easily extracted each distinct handler from

execution traces. Our traces expose 114 distinct handlers containing

on average 43 instructions (Table 6). VMProtect VM is stack-based.

To infer the semantics of each handler, we again used Blazytko’s

scripts [7] in “memory mode” (i.e., forbidding registers to be seen

as inputs or outputs). Our experiments show that each arithmetic

and Boolean handlers (add, mul, nor, nand) are replicated 11 times to

fake a large number of distinct handlers. Moreover, we are also able

to extract the semantics of some stack related handlers. In the end,

we successfully infer the semantics of 44 arithmetic or Boolean

handlers and 32 stack related handlers. Synthesis took at most 0.3 s

per handler. Syntia gets equal results as Xyntia.

Conclusion. Xyntia synthesizes most Tigress VM handlers, (includ-
ing interesting constant values) and extracts the semantics of VM-
Protect arithmetic and Boolean handlers. This shows that blackbox
deobfuscation can be highly effective, making the need for efficient
protections clear.

8 COUNTER BLACKBOX DEOBFUSCATION

We now study defense mechanisms against blackbox deobfuscation.

8.1 General methodology

We remind that blackbox methods require the reverser to locate

a suitable reverse window delimiting the code of interest with its

inputs and outputs. This can be done manually or automatically [7],

still this is mandatory and not trivial. The defender could target

this step, reusing standard obfuscation techniques.

Still there is a risk that the attacker finds the good windows. Hence
we are looking for a more radical protection against blackbox attacks.
We suppose that the reverse windows, inputs and outputs are correctly
identified, and we seek to protected a given piece of code.

Note that adding extra fake inputs (not influencing the result)

is easily circumvented in a blackbox setting by dynamically test-

ing different values for each input and filtering inputs where no

difference is observed.

Protection rationale. Even with correctly delimited windows,

synthesis can still be thwarted. Recall that blackbox methods rely

on 2 main steps (1) I/O sampling; (2) learning from samples, and

both can be sabotaged.

• First, if the sampling phase is not performed properly, the

learner couldmiss important behaviors of the code, returning

incomplete or even misleading information;

• Second, if the expression under analysis is too complex, the

learner will fail to map inputs to their outputs.

10

Search-Based Local Black-Box Deobfuscation:
Understand, Improve and Mitigate

In both cases, no information is retrieved. Hence, the key to

impede blackbox deobfuscation is to migrate from syntactic com-
plexity to semantic complexity. We propose in Sections 8.2 and 8.3

two novel protections impeding the sampling and learning phases.

8.2 Semantically complex handlers

Blackbox approaches are sensitive to semantic complexity. As such,

relying on a set of complex handlers is an effective strategy to

thwart synthesis. These complex handlers can then be combined

to recover standard operations. We propose a method to generate

arbitrary complex handlers in terms of size and number of inputs.

Complex semantic handlers. Let 𝑆 be a set of expressions and

ℎ, 𝑒1, ..., 𝑒𝑛−1 be 𝑛 expressions in 𝑆 . Suppose that (𝑆,★) is a group.
Then ℎ can be encoded as ℎ =

𝑛−1
★
𝑖=0

ℎ𝑖 , where for all i, with 0 ≤ 𝑖 < 𝑛,

ℎ𝑖 =


ℎ − 𝑒1 if 𝑖 = 0

𝑒𝑖 − 𝑒𝑖+1 if 1 ≤ 𝑖 < 𝑛 − 1
𝑒𝑛−1 if 𝑖 = 𝑛 − 1

Note that −𝑒𝑖 is the inverse element of 𝑒𝑖 in (𝑆,★). Each ℎ𝑖 is then a

new handler that can be combined with others to express common

operations – e.g. 𝑥 + 𝑦 = ℎ0 + ℎ1 + ℎ2 where ℎ0 = (𝑥 + 𝑦) + −((𝑎 −
𝑥2) − (𝑥𝑦)), ℎ1 = (𝑎 − 𝑥2) − 𝑥𝑦 + (−(𝑦 − (𝑎 ∧ 𝑥)) × (𝑦 ⊗ 𝑥)) and
ℎ2 = (𝑦 − (𝑎 ∧ 𝑥)) × (𝑦 ⊗ 𝑥). Note that the choice of (𝑒1, ..., 𝑒𝑛) is
arbitrary. One can choose very complex expressions with as many

arguments as wanted.

Experimental design. To evaluate our new encoding, we created

3 datasets – BP1, BP2 and BP3, listed by increasing order of com-

plexity. Each dataset contains 15 handlers which can be combined

to encode the +,−,×,∧ and ∨ operators. Within a dataset, all han-

dlers have the same number of inputs. Table 7 reports details on

each dataset. The mean overhead column is an estimation of the

complexity added to the code by averaging the number of operators

needed to encode a single basic operator (+,−,×,∨,∧). Overheads
in BP1 (21x), BP2 (39x) and even BP3 (258x) are reasonable com-

pared to some syntactical obfuscations: encoding 𝑥 + 𝑦 with MBA

three times in Tigress yields a 800x overhead.

Table 7: Protected datasets

#exprs min size max size mean size #inputs mean overhead

BP1 15 4 11 6.87 3 x21

BP2 15 8 21 12.87 6 x39

BP3 15 58 142 86.07 6 x258

Evaluation. Results (Fig. 7) show that Xyntia (with 1 h/expr.) man-

ages well low complexity handlers (BP1: 13/15), but performance

degrades quickly as complexity increases (BP2: 3/15, BP3: 1/15).

Performances are similar with 1 s/expr. Syntia, CVC4 and STOKE-

synth find none with 1 h/expr., even on BP1. Actually, Syntia with

12 h/expr. gets only 1/15 success of BP1.

Conclusion. Semantically complex handlers are efficient against
blackbox deobfuscation. While high complexity handlers come with a
cost similar to strong MBA encodings, medium complexity handlers
offer a strong protection at a reasonable cost.

Discussion. Our protection can be bypassed if the attacker focuses

on the good combinations of handlers, rather than on the handlers

themselves. To prevent it, complex handlers can be duplicated (as

in VMProtect, see Section 7.2) to make patterns recognition more

challenging.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

BP1 BP2 BP3

#
E
q
u
i
v
a
l
e
n
t

1 h

10 min

1 min

Figure 7: Xyntia (XyntiaOpt) on BP1,2, 3 – varying timeouts

8.3 Merged handlers

We now study another protection, based on conditional expres-

sions and the merging of existing handlers. While block merging is

known for a long time against human reversers, we show that it

is extremely efficient against blackbox attacks. Note that while we

write our merged handlers with explicit if-then-else operators (ITE)

for simplicity, these conditions are not necessarily implemented

with conditional branching (cf. Fig. 8) Hence, we consider that the

attacker sees merged handlers as a unique code fragment.

// if (c == cst) then h1(a,b,c) else h2(a,b,c);

int32_t res = c - cst;

res = (-((res ^ (res >> 31)) - (res >> 31)) >> 31) & 1;

return h1(a, b, c)*(1 - res) + res*h2(a, b, c);

Figure 8: Example of a branch-less condition

Datasets. We introduce 5 datasets
5
composed of 20 expressions.

Expressions in dataset 1 are built with 1 if-then-else (ITE) exposing 2
basic handlers (among +,−,×,∧,∨, ⊕); expressions in dataset 2 are

built with 2 nested ITEs exposing 3 basic handlers, etc. Conditions

are equality checks against consecutive constant values (0, 1, 2, etc.).

For example, dataset 2 contains the expression:

𝐼𝑇𝐸 (𝑧 = 0, 𝑥 + 𝑦, 𝐼𝑇𝐸 (𝑧 = 1, 𝑥 − 𝑦, 𝑥 × 𝑦)) (2)

Scenarios. Adding conditionals brings extra challenges (1) the

grammar must be expressive enough to handle conditions; (2) the

sampling phase must be efficient enough to cover all possible be-

haviors. Thus, we consider different scenarios:

Utopian The synthesizer learns expressions over the Mba set of

operators, extended with an 𝐼𝑇𝐸 (★ = 0,★,★) operator (Mba+ITE

operator set). Moreover, the sampling is done so that all branches

are traversed the same number of time. This situation, favoring

the attacker, will show that merged handlers are always efficient.

Mba + ITE This situation is more realistic: the attacker does not

know at first glance how to sample. However, its grammar fits

perfectly the expressions to reverse.

5
Available at : Will be made available

11

Menguy, et al.

Mba + Shifts Here Xyntia does not sample inputs uniformly over

the different behaviors, does not consider ITE operators, but

allows shifts to represent branch-less conditions.

Default. This is the default version of the synthesizer.

In all these scenarios, appropriate constant values are added to

the grammar. For example, to synthesize Eq. (2), 0 and 1 are added.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

1 2 3 4 5

#
E
q
u
i
v
a
l
e
n
t

ITE depth

Xyntia Utopian

Xyntia MBA+ITE

Xyntia MBA+Shifts

Xyntia XyntiaOpt

Figure 9: Merged handlers: Xyntia (timeout=60s)

Evaluation. Fig. 9 presents Xyntia results on the 5 datasets. As

expected, the Utopian scenario is where Xyntia does best. Still, it

cannot cope with more than 3 nested ITEs. For realistic scenarios,

Xyntia suffers even more. Results for Syntia, CVC4 and STOKE-

synth confirm this result (no solution found for ≥ 2 nested ITEs).

Note that overhead here is minimal, and depends only on the num-

ber of merged handlers.

Conclusion.Merged handlers are extremely powerful against black-
box synthesis. Even in the ideal sampling scenario, blackbox methods
cannot retrieve the semantics of expressions with more than 3 nested
conditionals – while runtime overhead is minimal.

Discussion. Symbolic methods, like symbolic execution, are unhin-

dered by these protections, for they track the succession of handlers

and know which sub parts of merged handlers are executed. To

handle this, our anti-blackbox protections can be combined with

(lightweight) anti-symbolic protections (e.g. [25, 35]).

9 RELATEDWORK

Blackbox deobfuscation. Blazytko et al.’s work [7] has already

been thoroughly discussed. We complete their experimental evalu-

ation, generalize and improve their approach: Xyntia with 1 s/expr.

finds twice more expressions than Syntia with 600 s/expr, some of

which Syntia cannot find within 12h.

White- and greybox deobfuscation. Several recent works lever-

age whitebox symbolic methods for deobfuscation (“symbolic deob-

fuscation”) [5, 10, 22, 28, 30, 36]. Unfortunately, they are sensitive to

code complexity as discussed in Section 7, and efficient countermea-

sures are now available [12, 25, 26, 37] – while Xyntia is immune

to them (Section 7.1). David et al. [16] recently proposed QSynth, a

greybox deobfuscation method combining I/O relationship caching

(blackbox) and incremental reasoning along the target expression

(whitebox). Yet, QSynth is sensitive to massive syntactic obfusca-

tion where Xyntia is not (cf. Section 6). Furthermore, QSynth works

on a simple grammar. It is unclear whether its caching technique

would scale to larger grammars like those of Xyntia and Syntia.

Program synthesis. Program synthesis aims at finding a function

from a specification which can be given either formally, in natural

language or as I/O relations – the case we are interested in here.

There exist three main families of program synthesis methods [20]:

enumerative, constraint solving and stochastic. Enumerative search

does enumerate all programs starting from the simpler one, pruning

snippets incoherent with the specification and returning the first

code meeting the specification. We compare, in this paper, to one

of such method – CVC4 [6], winner of the SyGus ’19 syntax-guided

synthesis competition [2] – and showed that our approach is more

appropriate to deobfuscation. Constraint solving methods [21] on

the other hand encode the skeleton of the target program as a first

order satisfiability problem and use an off-the-shelf SMT solver

to infer an implementation meeting specification. However, it is

less efficient than enumerative and stochastic methods [1]. Finally,

stochastic methods [29] traverse the search space randomly in the

hope of finding a program consistent with a specification. Con-

trary to them, we aim at solving the deobfuscation problem in a

fully blackbox way (not relying on the obfuscated code, nor on an

estimation of the result size).

10 CONCLUSION

Blackbox deobfuscation is a promising recent research area. The

field has been barely explored yet and the pros and cons of such

methods are still unclear. This article deepens the state of search-

based blackbox deobfuscation in three different directions. First,

we define a novel generic framework for search-based blackbox

deobfuscation (encompassing prior works such as Syntia), we iden-

tify that the search space underlying code deobfuscation is too

unstable for simulation-based methods, and advocate the use of

S-metaheuristics. Second, we take advantage of our framework to

carefully design Xyntia, a new search-based blackbox deobfuscator.

Xyntia significantly outperforms Syntia in terms of success rate,

while keeping its good properties – especially, Xyntia is completely

immune to the most recent anti-analysis code obfuscation methods.

Finally, we propose the two first protections tailored against search-

based blackbox deobfuscation, completely preventing Xyntia and

Syntia attacks for reasonable cost. We hope that these results will

help better understand search-based deobfuscation, and lead to

further progress in the field.

12

Search-Based Local Black-Box Deobfuscation:
Understand, Improve and Mitigate

REFERENCES

[1] Rajeev Alur, Rastislav Bodík, Garvit Juniwal, Milo M. K. Martin, Mukund

Raghothaman, Sanjit A. Seshia, Rishabh Singh, Armando Solar-Lezama, Emina

Torlak, and Abhishek Udupa. 2013. Syntax-guided synthesis. In Formal Methods
in Computer-Aided Design, FMCAD 2013, Portland, OR, USA, October 20-23, 2013.
IEEE, 1–8. http://ieeexplore.ieee.org/document/6679385/

[2] Rajeev Alur, Dana Fisman, Saswat Padhi, Rishabh Singh, and Abhishek Udupa.

2019. SyGuS-Comp 2018: Results and Analysis. CoRR abs/1904.07146 (2019).

arXiv:1904.07146 http://arxiv.org/abs/1904.07146

[3] Sebastian Banescu, Christian S. Collberg, Vijay Ganesh, Zack Newsham, and

Alexander Pretschner. 2016. Code obfuscation against symbolic execution attacks.

In Annual Conference on Computer Security Applications, ACSAC 2016.
[4] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai,

Salil Vadhan, and Ke Yang. 2012. On the (im) possibility of obfuscating programs.

Journal of the ACM (JACM) 59, 2 (2012), 1–48.
[5] Sébastien Bardin, Robin David, and Jean-Yves Marion. 2017. Backward-Bounded

DSE: Targeting Infeasibility Questions on Obfuscated Codes. In 2017 IEEE Sym-
posium on Security and Privacy, SP 2017, San Jose, CA, USA, May 22-26, 2017. IEEE
Computer Society, 633–651. https://doi.org/10.1109/SP.2017.36

[6] Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan

Jovanovi’c, Tim King, Andrew Reynolds, and Cesare Tinelli. 2011. CVC4. In

Proceedings of the 23rd International Conference on Computer Aided Verification
(CAV ’11) (Lecture Notes in Computer Science, Vol. 6806), Ganesh Gopalakrishnan

and Shaz Qadeer (Eds.). Springer, 171–177. http://www.cs.stanford.edu/~barrett/

pubs/BCD+11.pdf Snowbird, Utah.

[7] Tim Blazytko, Moritz Contag, Cornelius Aschermann, and Thorsten Holz. 2017.

Syntia: Synthesizing the Semantics of Obfuscated Code. In Usenix Security (Van-

couver, BC, Canada). 643–659.

[8] Tim Blazytko, Moritz Contag, Cornelius Aschermann, and Thorsten Holz. 2018.

Syntia: Breaking State-of-the-Art Binary CodeObfuscation via Program Synthesis.

Black Hat Asia (2018).
[9] Cameron B Browne, Edward Powley, Daniel Whitehouse, Simon M Lucas, Peter I

Cowling, Philipp Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samoth-

rakis, and Simon Colton. 2012. A survey of monte carlo tree search methods.

IEEE Transactions on Computational Intelligence and AI in games 4, 1 (2012), 1–43.
[10] David Brumley, Cody Hartwig, Zhenkai Liang, James Newsome, Dawn Xiaodong

Song, and Heng Yin. 2008. Automatically Identifying Trigger-based Behavior in

Malware. In Botnet Detection: Countering the Largest Security Threat. Springer,
65–88.

[11] C. Collberg, S. Martin, J. Myers, and B. Zimmerman. [n.d.]. The Tigress C

Diversifier/Obfuscator. http://tigress.cs.arizona.edu/

[12] Christian Collberg and Jasvir Nagra. 2009. Surreptitious Software: Obfuscation,
Watermarking, and Tamperproofing for Software Protection (1st ed.). Addison-

Wesley Professional.

[13] Christian Collberg, Clark Thomborson, and Douglas Low. 1997. A taxonomy of

obfuscating transformations.

[14] Christian Collberg, Clark Thomborson, and Douglas Low. 1998. Manufacturing

cheap, resilient, and stealthy opaque constructs. In Proceedings of the 25th ACM
SIGPLAN-SIGACT symposium on Principles of programming languages. 184–196.

[15] Robin David, Sébastien Bardin, Thanh Dinh Ta, Laurent Mounier, Josselin Feist,

Marie-Laure Potet, and Jean-Yves Marion. 2016. BINSEC/SE: A dynamic sym-

bolic execution toolkit for binary-level analysis. In 2016 IEEE 23rd International
Conference on Software Analysis, Evolution, and Reengineering (SANER), Vol. 1.
IEEE, 653–656.

[16] Robin David, Luigi Coniglio, and Mariano Ceccato. 2020. QSynth-A Program

Synthesis based Approach for Binary Code Deobfuscation. In BAR 2020Workshop.
[17] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT solver. In

International conference on Tools and Algorithms for the Construction and Analysis
of Systems. Springer, 337–340.

[18] Ninon Eyrolles, Louis Goubin, and Marion Videau. 2016. Defeating MBA-based

Obfuscation. In Proceedings of the 2016 ACM Workshop on Software PROtection,
SPRO@CCS 2016, Vienna, Austria, October 24-28, 2016, BrechtWyseur and BjornDe

Sutter (Eds.). ACM, 27–38. https://doi.org/10.1145/2995306.2995308

[19] Nicolas Falliere, Patrick Fitzgerald, and Eric Chien. 2009. Inside the jaws of trojan.

clampi. Rapport technique, Symantec Corporation (2009).

[20] Sumit Gulwani, Oleksandr Polozov, Rishabh Singh, et al. 2017. Program synthesis.

Foundations and Trends® in Programming Languages 4, 1-2 (2017), 1–119.
[21] Susmit Jha, Sumit Gulwani, Sanjit A Seshia, and Ashish Tiwari. 2010. Oracle-

guided component-based program synthesis. In 2010 ACM/IEEE 32nd International
Conference on Software Engineering, Vol. 1. IEEE, 215–224.

[22] Johannes Kinder. 2012. Towards Static Analysis of Virtualization-Obfuscated

Binaries. In 19th Working Conference on Reverse Engineering, WCRE.
[23] Xavier Leroy, Damien Doligez, Alain Frisch, Jacques Garrigue, Didier Rémy, and

Jérôme Vouillon. 2020. The OCaml system release 4.10. https://caml.inria.fr/pub/

docs/manual-ocaml/

[24] Helena Ramalhinho Lourenço, Olivier C Martin, and Thomas Stützle. 2019. Iter-

ated local search: Framework and applications. In Handbook of metaheuristics.

Springer, 129–168.

[25] Mathilde Ollivier, Sébastien Bardin, Richard Bonichon, and Jean-Yves Marion.

2019. How to kill symbolic deobfuscation for free (or: unleashing the potential of

path-oriented protections). In Proceedings of the 35th Annual Computer Security
Applications Conference. 177–189.

[26] Mathilde Ollivier, Sébastien Bardin, Richard Bonichon, and Jean-Yves Marion.

2019. Obfuscation: where are we in anti-DSE protections?(a first attempt). In

Proceedings of the 9th Workshop on Software Security, Protection, and Reverse
Engineering. 1–8.

[27] Oreans Technologies. 2020. Themida – Advanced Windows Software Protection

System. http://oreans.com/themida.php.

[28] Jonathan Salwan, Sébastien Bardin, and Marie-Laure Potet. 2018. Symbolic

deobfuscation: from virtualized code back to the original. In 5th Conference on
Detection of Intrusions and malware & Vulnerability Assessment (DIMVA).

[29] Eric Schkufza, Rahul Sharma, and Alex Aiken. 2012. Stochastic Superoptimization.

CoRR abs/1211.0557 (2012). arXiv:1211.0557 http://arxiv.org/abs/1211.0557

[30] Sebastian Schrittwieser, Stefan Katzenbeisser, Johannes Kinder, Georg Merz-

dovnik, and Edgar Weippl. 2016. Protecting Software Through Obfuscation: Can

It Keep Pace with Progress in Code Analysis? ACM Comput. Surv. 49, 1, Article 4
(2016), 37 pages.

[31] Jon Stephens, Babak Yadegari, Christian S. Collberg, Saumya Debray, and Carlos

Scheidegger. 2018. Probabilistic Obfuscation Through Covert Channels. In 2018
IEEE European Symposium on Security and Privacy, EuroS&P 2018.

[32] El-Ghazali Talbi. 2009. Metaheuristics: From Design to Implementation. Wiley

Publishing.

[33] Tora. [n.d.]. Devirtualizing FinSpy. http://linuxch.org/poc2012/Tora,

DevirtualizingFinSpy.pdf

[34] VM Protect Software. 2020. VMProtect Software Protection. http://vmpsoft.com.

[35] Babak Yadegari and Saumya Debray. 2015. Symbolic Execution of Obfuscated

Code. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Com-
munications Security (Denver, Colorado, USA) (CCS ’15). Association for Com-

puting Machinery.

[36] Babak Yadegari, Brian Johannesmeyer, Ben Whitely, and Saumya Debray. 2015. A

Generic Approach to Automatic Deobfuscation of Executable Code. In Symposium
on Security and Privacy, SP.

[37] Yongxin Zhou, Alec Main, Yuan X. Gu, and Harold Johnson. 2007. Information

Hiding in Software with Mixed Boolean-arithmetic Transforms. In Proceedings of
the 8th International Conference on Information Security Applications (Jeju Island,

Korea) (WISA’07). Springer-Verlag, Berlin, Heidelberg, 61–75.

13

http://ieeexplore.ieee.org/document/6679385/
https://arxiv.org/abs/1904.07146
http://arxiv.org/abs/1904.07146
https://doi.org/10.1109/SP.2017.36
http://www.cs.stanford.edu/~barrett/pubs/BCD+11.pdf
http://www.cs.stanford.edu/~barrett/pubs/BCD+11.pdf
http://tigress.cs.arizona.edu/
https://doi.org/10.1145/2995306.2995308
https://caml.inria.fr/pub/docs/manual-ocaml/
https://caml.inria.fr/pub/docs/manual-ocaml/
http://oreans.com/themida.php
https://arxiv.org/abs/1211.0557
http://arxiv.org/abs/1211.0557
http://linuxch.org/poc2012/Tora, Devirtualizing FinSpy.pdf
http://linuxch.org/poc2012/Tora, Devirtualizing FinSpy.pdf
http://vmpsoft.com

	Abstract
	1 Introduction
	2 Background
	2.1 Obfuscation
	2.2 Deobfuscation
	2.3 Search-based blackbox deobfuscation

	3 Motivation
	3.1 Attacker model
	3.2 Syntactic and semantic complexity
	3.3 Blackbox deobfuscation in practice

	4 Understand blackbox deobfuscation
	4.1 Problem at hand
	4.2 Evaluation of Syntia
	4.3 Optimal Syntia
	4.4 MCTS for deobfuscation
	4.5 Conclusion

	5 Improve blackbox deobfuscation
	5.1 Deobfuscation as Optimization
	5.2 Xyntia internals
	5.3 Xyntia evaluation
	5.4 Optimal Xyntia and other S-Metaheuristics
	5.5 On the effectiveness of ILS over MCTS
	5.6 Limitations
	5.7 Conclusion

	6 Comparison with other approaches
	7 Deobfuscation with Xyntia
	7.1 Effectiveness against usual protections
	7.2 Virtualization-based obfuscation

	8 Counter blackbox Deobfuscation
	8.1 General methodology
	8.2 Semantically complex handlers
	8.3 Merged handlers

	9 Related Work
	10 Conclusion
	References

