A PAC-Bayesian Approach to Generalization in Deep Learning

Behnam Neyshabur

Institute for Advanced Study

Joint work with Srinadh Bhojanapalli, David McAllester, Nati Srebro

Observations about Neural Nets

Deep networks are over-parametrized:

#parameters >> #samples

- Many global optima
 - Some of them do not generalize well!
- Choice of optimization ⇒ different global minimum
 - ⇒ different generalization

Requirements for a complexity measure that explains generalization

w: the parameter vector.

R(w): complexity measure, ex. $R(w) = ||w||_2$

- 1. $\{w|R(w) \text{ is small}\}\$ has small capacity, i.e. small R(w) is sufficient for generalization
- 2. Natural problems can be predicted by $\{w | R(w) \text{ is small}\}$
- 3. The optimization algorithm biases us towards solutions in $\{w | R(w) \text{ is small}\}$

Outline

- From PAC-Bayes to Margin
- From PAC-Bayes to Sharpness
- Empirical Investigation of three phenomena:
 - Fitting random labels (Zhang et al., 2016).
 - Different global minima (Keskar et al., 2016).
 - Large networks generalize better (Neyshabur et al., 2015).

Preliminaries

- Feedforward nets: $f_{\mathbf{w}}(\mathbf{x}) = W_d \phi(W_{d-1} \phi(....\phi(W_1\mathbf{x})))$
 - d layer
 - h hidden unit in each layer
 - ReLU activations $\phi(x) = \max\{0, x\}$
 - B bound on ℓ_2 -norm of x

Margin Loss:

$$L_{\gamma}(f_w) = P_{(x,y)}[\text{score of } y - \text{score of other labels} \leq \gamma]$$

• Misclassification error: $L_0(f_w)$

Capacity Control

- Network Size
 - The capacity is too high.
 - Can't explain any of the phenomena.

- Scale Sensitive Capacity Control:
 - Scale of the predictor, i.e. weights
 - Scale of the predictions (Margin or Sharpness)

Margin

 $\gamma = score$ of the correct label – maximum score of other labels

Margin-based measures:

•
$$\ell_2$$
-norm with capacity $\propto \frac{\prod_{i=1}^d ||W_i||_F^2}{\gamma^2}$

(Neyshabur et al. 2015)

•
$$\ell_1$$
-path norm with capacity $\propto \frac{\phi_{path,1}^2}{\gamma^2}$

(Bartlett and Mandelson 2002)

•
$$\ell_2$$
-path norm with capacity $\propto h^d \frac{\|W_i\|_{path,2}^2}{\gamma^2}$

(Bartlett and Mandelson 2002)

• spectral norm with capacity
$$\propto \frac{\prod_{i=1}^{d} ||W_i||_2^2}{\gamma^2} \left(\sum_{i=1}^{d} \frac{||W_i||_{1,2}^{\frac{2}{3}}}{||W_i||_2^{\frac{2}{3}}} \right)^3$$
 (Bartlett et al. 2017)

$$\|.\|_F$$
: Frobenius norm

$$\|.\|_2$$
: Spectral norm

$$\|.\|_F$$
: Frobenius norm $\|.\|_2$: Spectral norm $\|.\|_p$: ℓ_p norm of a vector $\|.\|_{path.p}$: ℓ_p -path norm

$$\|\,.\,\|_{path,p} \colon \ell_p$$
-path norm

PAC-Bayes

Theorem (McAllester 98): For any P and any $\delta \in (0,1)$ w.p $1 - \delta$ over the choice of the training set S, for any Q:

$$\mathbb{E}_{\mathbf{w}\sim Q}[L_0(f_{\mathbf{w}})] \leq \mathbb{E}_{\mathbf{w}\sim Q}[\widehat{L}_0(f_{\mathbf{w}})] + \sqrt{\frac{KL(Q||P) + \ln\frac{m}{\delta}}{2(m-1)}}$$

What if we want to get generalization for a given weight w?

• Consider the distribution over w + u where u is random perturbation.

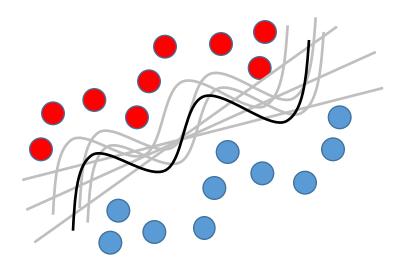
PAC-Bayes(2)

Theorem: For any P and any $\delta \in (0,1)$ w.p $1 - \delta$ over the choice of the training set S, for any w and Q over u:

$$\mathbb{E}_{\mathbf{u} \sim Q}[L_0(f_{\mathbf{w}+\mathbf{u}})] \leq \mathbb{E}_{\mathbf{u} \sim Q}[\widehat{L}_0(f_{\mathbf{w}+\mathbf{u}})] + \sqrt{\frac{KL(\mathbf{w}+\mathbf{u}||P) + \ln \frac{m}{\delta}}{2(m-1)}}$$

From margin to PAC-Bayes

Large margin: small perturbation in parameters will not change the loss.



From PAC-Bayes to margin

Lemma 1: For any P and any $\gamma > 0, \delta \in (0,1)$ w.p $1 - \delta$ over the choice of the training set S, for any Q over u such that

$$\mathbb{P}_{\mathbf{u} \sim Q} \left[\max_{\mathbf{x} \in \mathcal{X}} |f_{\mathbf{w} + \mathbf{u}}(\mathbf{x}) - f_{\mathbf{w}}(\mathbf{x})|_{\infty} < \frac{\gamma}{4} \right] \ge \frac{1}{2}$$

we have:

$$L_0(f_{\mathbf{w}}) \le \widehat{L}_{\gamma}(f_{\mathbf{w}}) + \sqrt{\frac{KL(\mathbf{w} + \mathbf{u}||P) + \ln \frac{3m}{\delta}}{m-1}}$$

Proof idea: similar analysis for linear predictors (Langford & Shawe-Taylor (2003) and McAllester (2003)).

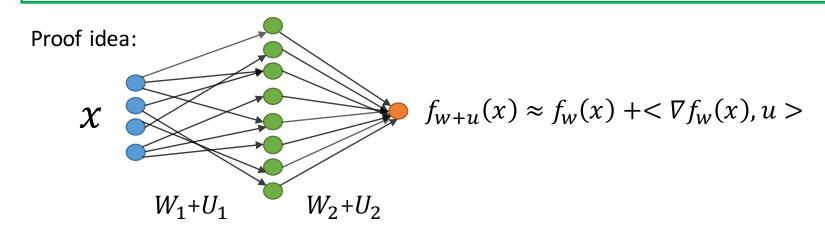
11

Perturbation Bound

How much the network output changes if we perturb the parameters?

Lemma 2: For any perturbation u such that $||U_i||_2 \le \frac{1}{d} ||W_i||_2$

$$|f_{\mathbf{w}+\mathbf{u}}(\mathbf{x}) - f_{\mathbf{w}}(\mathbf{x})|_2 \le eB\left(\prod_{i=1}^d \|W_i\|_2\right) \sum_{i=1}^d \frac{\|U_i\|_2}{\|W_i\|_2}.$$



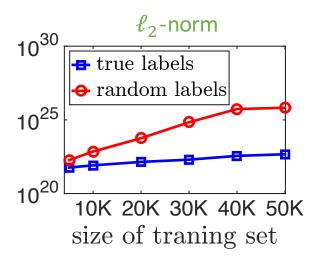
Generalization Bound for Neural Nets

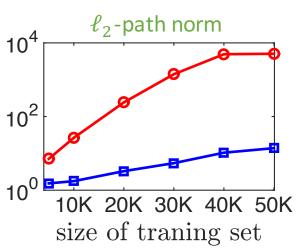
Theorem: For any $\gamma > 0, \delta \in (0,1)$ w.p $1 - \delta$ over the choice of the training set

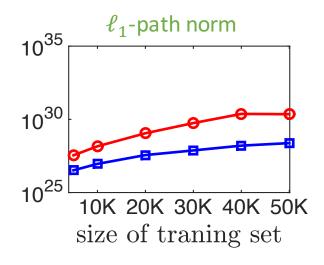
$$L_0(f_{\mathbf{w}}) \le \widehat{L}_{\gamma}(f_{\mathbf{w}}) + \mathcal{O}\left(\sqrt{\frac{d^2 h \ln(dh) B^2 \prod_{i=1}^d \|W_i\|_2^2 \sum_{i=1}^d \frac{\|W_i\|_F^2}{\|W_i\|_2^2} + \ln \frac{dm}{\delta}}{\gamma^2 m}}\right)$$

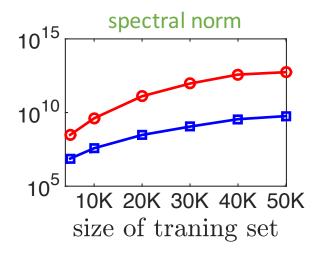
Proof idea: Choose prior and posterior both to be independent Gaussian distributions.

Experiments on True and Random Labels



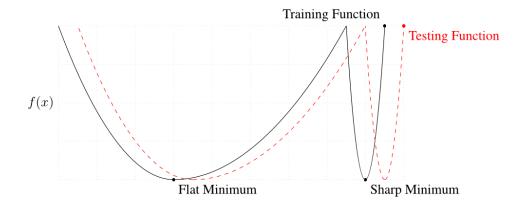




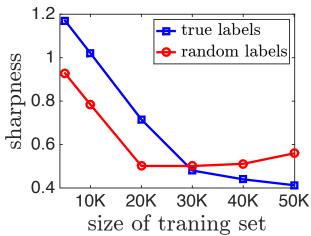


Sharpness

$$sharpness(\alpha) = \max_{\|\nu\| \le \alpha} L(w + \nu) - L(w)$$
 [Keskar et al.17]



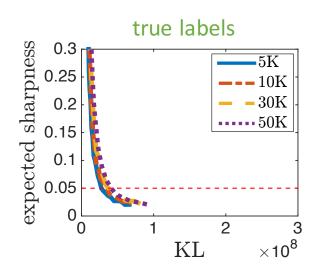
Similar to margin, controlling sharpness alone is meaningless.

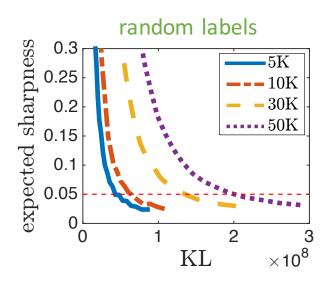


From PAC-Bayesian to Sharpness

 Sharpness can be understood as one of the two terms in the PAC-Bayes bound (Dziugaite and Roy 2017).

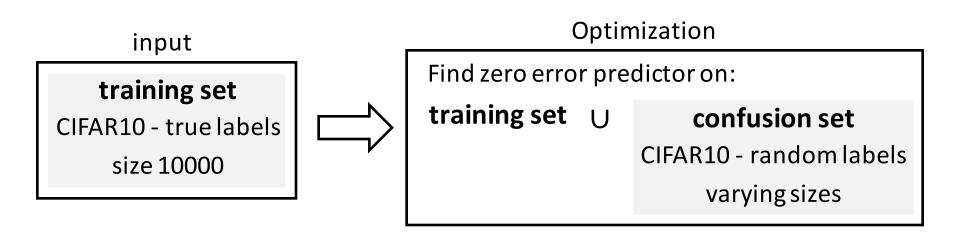
$$\mathbb{E}_{\nu}[L(w+\nu)] \leq \hat{\underline{L}}(w) + \mathbb{E}_{\nu}[\hat{L}(w+\nu)] - \hat{\underline{L}}(w) + \sqrt{\frac{1}{m}(KL(w+\nu||P) + \ln\frac{2m}{\delta})}$$
expected sharpness
$$\frac{\|w\|_2^2}{2\sigma^2} \text{ if } \begin{cases} P = N(0,\sigma^2) \\ \nu \sim N(0,\sigma^2) \end{cases}$$



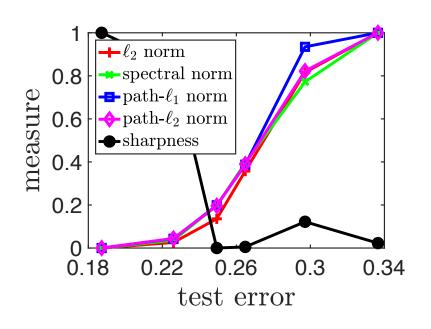


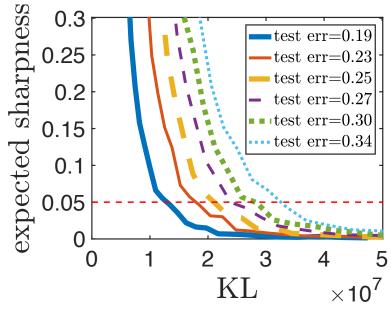
Generating Different Global Minima

• We construct different global minima of the training loss for the same data, intentionally with different generalization properties. How?

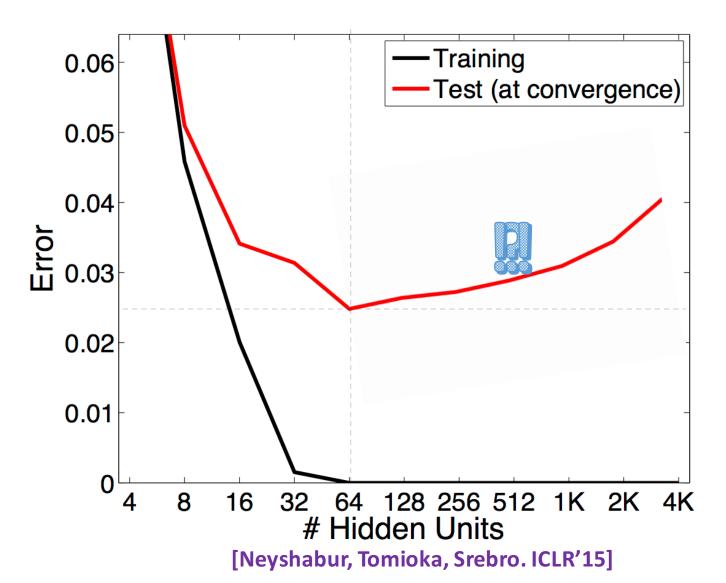


Different global minima

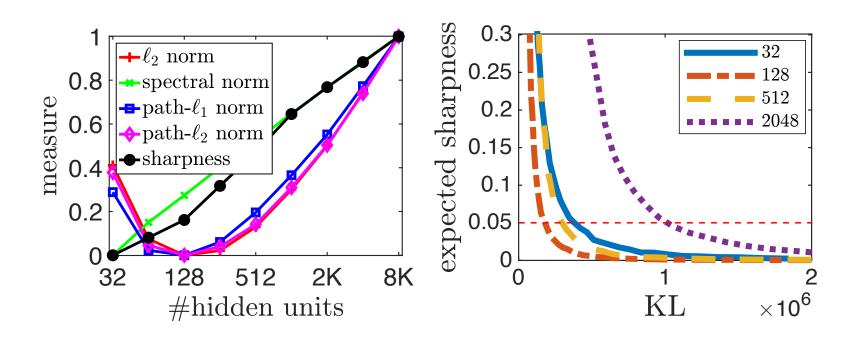




Increasing the Network Size (Number of Hidden Units)



Experiments with varying number of hidden units



What we learned

 A PAC-Bayesian approach to spectrally-normalized margin bounds for neural networks

 PAC-Bayesian theory can partly capture the generalization behavior in deep learning.

How to use these understanding in practice?

Optimization is Tied to Choice of Geometry

Steepest descent w.r.t. a geometry:

$$w^{(t+1)} = \arg\min_{w} \eta \langle \nabla L(w^{(t)}), w \rangle + \delta(w^{(t+1)}, w)$$

- ✓ improve the objective as much as possible
- ✓ only a small change in the model.

Examples:

- Gradient Descent: Steepest descent w.r.t ℓ_2 norm
- Coordinate Descent: Steepest descent w.r.t. ℓ_1 norm
- Path-SGD: Steepest descent w.r.t path- ℓ_2 norm

What's the geometry appropriate for deep networks?

