Bay(es) Window

Michael Betancourt

April 2024

Table of contents

5

The Room
The Observational Model
The Likelihood Function

Bayesian Inference

4.1 Setup e
4.2 Explore Data
4.3 Quantify Posterior Distribution o oo

Conclusion

Acknowledgements

References

License

Original Computing Environment

© 0o o ~N

19
20
21
21

21

Exercise 22.10 of MacKay (2003) introduces the problem of inferring the dimensions of a
window in the dark, using only the positions of stars seen through it. In this short case study
I present a comprehensive Bayesian analysis of this problem.

1 The Room

Consider a small room with square walls, only one of which features a window that allows us to
see to the outside. During the day this view allows us to fully distinguish the geometry of the

window, including not only its width and height but also its position on the wall (Figure 1a).
On a moonless night, however, the only light we see is from a scattering of stars. The edges of
the window are enveloped by the darkness and become indistinguishable from the unlit wall
(Figure 1b).

(a) (b)

Figure 1: External light passing through a window allow us to differentiate the window from
the surrounding wall. (a) During the day the bright sunlight allows us to fully
characterize the window geometry but (b) during a moonless night we are limited to
starlight which only partially informs the window geometry.

While the starlight does not allow us to completely determine the geometry of the window it
does provide some information. Our goal is to infer the window geometries that are consistent
with the stars visible on a given night.

To that end let’s set up a coordinate system that describes the geometry of the room, including
both the wall and the window (Figure 2). Let’s say that we do know that the height and width
of the wall are both 2 L = 6 meters. We can then denote the left, right, bottom, and top edges
of the window with the variables [, r, b, and t respectively.

2 The Observational Model

The data generating process here is relatively straightforward. Given a collection of stars we
observe the positions of the stars that fall within the breadth of the window. More formally
we have a selection process with a latent distribution of star positions and a deterministic
selection function that rejects all stars that are obscured by the wall.

https://betanalpha.github.io/assets/chapters_html/modeling_selection.html

(=L, +L) (+L,+L)

() (r,t)

(1,b) (r,b)

(-=L,-L) (+L,-L)

Figure 2: A natural coordinate system for this problem is centered on the center of the wall.
The left [, right r, bottom b, and top ¢ edges of the window can then be described
by distances from this center.

Firstly let’s assume that the horizontal and vertical positions of each star that we could possibly
see are uniformly distributed across the total breadth of the wall,

p(x,y) = uniform(z | —L, +L) uniform(y | —L, +L).

The wall then defines a deterministic selection function for a star being observed,
p(Z =1 ‘ T, Y, lr,b, t) = I(l,r)(x) I(b,t) (y)

Finally the observed star positions are modeled as

plx,y|z=1,1rb,t)

__ pypiz=1]zy)
[dedyp(z,y)p(z=1]=,y)
uniform(z | —L, +L) uniform(y | =L, +L) [.y (x) L 4)(y)

[dzdyuniform(x | —L, +L) uniform(y | —L, +L) Ty (@) Ly 4y (y)
uniform(z | =L, +L) I, . (z) uniform(y | —L,+L) I, 1y(y)
[dzuniform(x | —L,+L) Iy (%) [dyuniform(y | —L,+L) I (y)

To simplify this further we’ll need to take advantage of two facts. First the uniform probability
density function is defined by an indicator function of its own,

Lo (2)
b—al

uniform(z | a,b) =

Second the product of two interval indicator functions is given by the indicator function of the
intersection of the two intervals,

Lo (2) Lie.a)(2) = L pyne,a) (2)-

Putting these two properties together gives

Tiap(2)
(ap) (2
|b—a\ I(cd Z)
_ Tiap)(2) I1c.a)(2)
1b—al
_ Lawpnea®)
b—al

uniform(z | a,b) I, 4)(2) =

Because (I,r) C (—L,+L) we have
<_La +L> N (lv 7") = (l,’l")

and consequently

I p vnnan(®@)
2L
Iym(2)
2L

uniform(z | =L, +L) [,y(z) =

Similarly

Tip)(y)

uniform(z | =L, +L) [, 4 (y) = oL

Substituting these two results into the observational model for a single star finally gives

plx,y|z=1,1rb,t)
uniform(z | =L, +L) I .y (z

- uniform(y | —L,+L) I, 11(y)
B fd:n uniform(x | —L, +L) I

fdy uniform(y | —L,+L) Iy (y)

)
7‘)(
(2)/(2L) Tpy(y)/(2L)

)\E

fdx I(z n(®)/(2L) [dy Iy, (y)/(2L)
r)
(

Iym(2) T (y)
fda:[l,”(fdyfbt()
(@) L))
|r—l|]t—b\

When we observe N total stars with independent positions (z,,,y,,) the total observational
model becomes

N

p(m 7y7""x 7y |Z:17Z7T7bt
1YL TN YN [l v—u u—m

N
_ Il Lo (@n) L) (yn)
T N[

3 The Likelihood Function

In theory the likelihood function for the window geometry is given by evaluating the observa-
tional probability density function on a set observed positions,

L(lr byt) o< p(Zy, Y1y TN, Un | 2= 1,17, b,1)

N ~
I Lam)(@0) Loy (§))

N [t — BN

This likelihood function, however, appears to be a bit ungainly to use in practice because of
the many discontinuities introduced by all of those indicator functions.

Fortunately this issue is largely an illusion of how we have written the likelihood function here;
most of these indicator functions are in fact redundant and can be removed entirely. With a
little bit of work we can eliminate these redundancies and simplify the likelihood function into
a form that is much easier to wield in practice.

The key to this simplification is to manipulate the indicator functions over the varying star
positions into indicator functions over the common window position parameters. In general
the indicator function I, ;) (z) gives non-zero outputs only when

a<z<b.
This sequence of inequalities, however, can also be written as three separate inequalities,

a<z
z<b
a <b.

In turn these separate inequalities define three indicator functions for the interval parameters
a and b,

I(foo,z) (CL)

I(z,+oo)(b>
I oo p(a).

Consequently we can we can always write the indicator function I, ;(2) as a product of these
three indicator functions,

L) (2) = L oo)(a) L5 100y (D) L (oo py(@).

Again the first indicator function ensures that a is less than z, the second indicator function
ensures that b is larger than z, and the third indicator function ensures that a is less than b
which is required for (a,b) to be a well-defined interval.

This decomposition then allow us to write any product of indicator functions evaluations as

==
=

I(—oo,zn)(a> I(Z +oo)(b) I(—oo,b) (a’)

n?

1 1 N
I—oo,zn)<a> (zn,+oo [H I(—oo,b)(a)]

(a,b)(zn> =

3
Il
—

n=

I
=

3
Il
fat

[[

(@) [[oo)| (Tem(@)”
[N
jne

[
=

3
Il
-

T

[
=

(zn,+oo I(—oo,b) (a)

—00,2,,) (CL)

3
Il
_

T

Now the overlap of the intervals (—oo, z,,) is completely determined by the smallest z,,,

N
O —00, min(z,,)).

Consequently the first product reduces to

N
H (—o0 Zn) NN_, (- oo,zn)(a’>

n=1

- I(—oo,min(zn))<a)’

Similarly

)=

(z,,, +00) = (max(z,), +00).

3
Il
—

and

=

I 4o0)(0) = InN (o 4oo)(D)

n=1

i
L

- I(max(zn),+oo)<b)'

This allows us to replace all of those indicator functions with just three indicator functions,

N N N
Tiap)(2,) = [1_[1 I(oo7zn)<a)] [1_[1 I(zn,Jroo)(b)] I oo p(a)
n=1 n= n=

= I(foo7min(zn))(a> I(max(zn)7+<>o) (b) I(foo,b) (a)

For real-valued z,, ties will occur with probability zero and we will have
min(z,) < max(z,)

with probability one so that the last indicator function is also redundant. Consequently we
can write

N
[[1 I(a,b)(’zn) = J(_oo,min(=))(a) I f—),+oo)(b>'
n—

n v

Applying this result twice our likelihood function takes on the much simpler form

N ~ ~
I Lar(@0) Ly (Gy)
P Ty

N ~ N ~
x Hn:1 I(l,r)(:l:n) Hn:1 I(b,t) (yn>

=Nt — b~

I(foo,min(in))(b I(max(gzn),+oo) (r)

L(l,r b, t)

lr— 1N
oo min(,) (0) Lmax(g,) +o00) ()
|t — b '

The first indicator function keeps the left window boundary below all observed z positions
while the second indicator function keeps the right window boundary above all observed y
positions. Similarly the last two indicator functions ensure that the bottom window boundary
is below, and the top window boundary is above, all observed y positions. As the number of
observations N grows the denominator pulls the likelihood function closer and closer to the
minimum and maximum z and y positions.

Because the likelihood function can always be written in terms of min(Zz,,), max(Z,,), min(g,,),
and max(y,,) regardless of what the individual positions are, these extreme values are sufficient
statistics for this particular observational model.

4 Bayesian Inference

This simplified likelihood function is straightforward to implement in Stan, allowing us to
readily quantify posterior inferences for the window geometry given observed star positions.

4.1 Setup

As always we begin by setting up our local R environment.

par(family="serif", las=1, bty="1",
cex.axis=1, cex.lab=1, cex.main=1,
xaxs="i", yaxs="i", mar = c(5, 5, 3, 5))

c_light <- c("#DCBCBC")
c_light_highlight <- c("#C79999")
c_mid <- c("#B97C7C")
c_mid_highlight <- c("#A25050")
c_dark <- c("#8F2727")
c_dark_highlight <- c("#7C0000")

c_light_teal <- c("#6BSESE")
c_mid_teal <- c("#487575")
c_dark_teal <- c("#1D4F4F")

library(colormap)

disc_colors <- c("#FFFFFF", "#DCBCBC", "#C79999", "#B97C7C",
"#A25050", "#8F2727", "#7C0000")

In particular we’ll need to load RStan and my recommended Hamiltonian Monte Carlo analysis
suite.

library(rstan)

rstan_options(auto_write = TRUE) # Cache compiled Stan programs
options(mc.cores = parallel::detectCores()) # Parallelize chains
parallel:::setDefaultClusterOptions(setup_strategy = "sequential")

util <- new.env()

source('mcmc_analysis_tools_rstan.R', local=util)

4.2 Explore Data

Let’s start by reading in the observed star positions.

data <- read_rdump("data/stars.data.R")

The observed stars positions imply that the window is situated towards the top right corner
of the wall but the precise edges of the windows are hard to resolve.

L <- 3
par (mfrow=c(1, 1), mar=c(0, 0, 0, 0))

plot(0, type='n',
xlim=c(-L, +L), ylim=c(-L, +L),
axes=FALSE, ann=FALSE)
rect(-L, -L, +L, L, col = "black")
points(data$xs, data$ys, col="white", pch=8)

4.3 Quantify Posterior Distribution

In addition to the requirement of a positive window size,

l<r
b <t,

the window geometry is constrained by the wall geometry,

—L<l<+L

—L<r<+L
—L<b<+L
—L<t<+L.

If we don’t have any additional information about the position of the window then our domain
expertise is captured by the uniform prior density function subject to these constraints,

p(l,7,b,t) = p(l,r) p(b,t)
= uniform(l | —L,+L) uniform(r | I, +L)
- uniform(b | —L, 4+ L) uniform(¢ | b, +L)

With this prior model the posterior density function completely decouples into independent
posterior density functions for each of the two directions,

p(l,?“, bat | ilvﬂh 7iNagN)
X p<i17ﬂ17 75:N7 gN) | la r, bat)p(LT? b’t>
I(—oo,rnin(a?n)) (l) I(max(i‘n),—i-oo) (T>

|r — [N
) I(—oo,min(g]n))a)) I(max(ﬂn),+oo)<t>
|t —bN

-uniform(l | —L, +L) uniform(r | [,+L)
-uniform(b | —L, +L) uniform(t | b, +L)
I(foo,min(aﬂcn)) () I(max<azn),+oo)(7“)
|r — N

-uniform(l | —L, +L) uniform(r | [,+L)

oo mingg,) (0) Lmax(g,) +o0) ()

|t — 0|
- uniform(b | —L, 4+ L) uniform(¢ | b, +L)
X p(l,T | flvﬂl’ 75N737N)

‘p(b,t | 551’3717 viz”N,ZjN)-

In particular we can immediately pushforward the four-dimensional posterior density func-
tion into two-dimensional, marginal posterior density functions for the horizontal and vertical
geometries,

T U B I min(% (Z)Imx~ i (7‘)
p(Lr | Zy, Y15, TN Un) X (o0 (mn))’r_(l‘;f (), +0)

-uniform(! | —L, +L) uniform(r | [, +L)

10

and

~ o~ ~ o~ I—oo,min Y (b> Imax U,)s+00 <t>
p(b7t|mlay17“-7$N7yN)O(((yn>it_b(|N (B) 20)

-uniform(b | —L, +L) uniform(t | b,+L).

Plotting these marginal posterior density functions demonstrates how our inferences push up
against the constraints imposed by the minimum and maximum star positions.

par (mfrow=c(1, 2), mar=c(5, 5, 2, 1))

K <- 200
left_grid <- seq(-L, +L, 2 x L / (K - 1))
right_grid <- seq(-L, +L, 2 * L / (K - 1))

post_pds <- matrix(0, nrow=K, ncol=K)

for (k in 1:K) {
for (kk in 1:K) {
if (left_grid[k] > min(data$xs)) {
post_pds [k, kk] <- 0
} else if (right_grid[kk] < max(data$xs)) {
post_pds [k, kk] <- 0O
} else {
post_pds [k, kk] <- (right_grid[kk] - left_grid[k])**(-data$N)
}
}
}

disc_colors <- c("#FFFFFF", "#DCBCBC", "#C79999", "#B97C7C",
"#A25050", "#8F2727", "#7C0000")
cont_colors <- colormap(colormap=disc_colors, nshades=100)

image(left_grid, right_grid, post_pds, col=rev(cont_colors),
xlim=c(-L, +L), xlab=c("Left"), ylim=c(-L, +L), ylab=c("Right"),
main="Horizontal Dimensions")

abline(v=min(data$xs), 1lty=2, lwd=2, col="#DDDDDD")

text(0.75, -2.75, "min(x_n)", col="#DDDDDD")

abline (h=max(data$xs), 1lty=2, lwd=2, col="#DDDDDD")

text(2, 1.25, "max(x_n)", col="#DDDDDD")

K <- 200
bottom_grid <- seq(-L, +L, 2 * L / (K - 1))

11

top_grid <- seq(-L, +L, 2 * L / (K - 1))
post_pds <- matrix(0, nrow=K, ncol=K)

for (k in 1:K) {
for (kk in 1:K) {
if (bottom_grid[k] > min(data$ys)) {
post_pds [k, kk] <- 0
} else if (top_gridl[kk] < max(data$ys)) {
post_pds [k, kk] <- 0O
} else {
post_pds [k, kk] <- (top_grid[kk] - bottom_grid[k])**(-data$N)
}
}
}

image (bottom_grid, top_grid, post_pds, col=rev(cont_colors),
xlim=c(-L, +L), xlab=c("Bottom"), ylim=c(-L, +L), ylab=c("Top"),
main="Vertical Dimensions")

abline(v=min(data$ys), 1lty=2, lwd=2, col="#DDDDDD")

text(l, -2.75, "min(y_n)", col="#DDDDDD")

abline(h=max(data$ys), 1lty=2, lwd=2, col="#DDDDDD")

text(2, 1.5, "max(y_n)", col="#DDDDDD")

12

Horizontal Dimensit Vertical Dimensiol

3 3
2 - 24
1 1
% o
S 04 S 04
_1 — _1 —
_2 — _2 —
B TTTTTT B ITTTT T
-3 0 2 -3 0 2
Left Bottom

If we want to extract additional information out of our posterior distribution then we’ll need
to resort to posterior expectation values and the Markov chain Monte Carlo estimators that
approximate them.

The summary statistics min(Z,,), max(Z,,), min(y,,), and max(g,,) make for natural retrodictive
summaries here. Conveniently we can compute the posterior predictive summary statistics
directly in the generated quantities block.

fit <- stan(file="stan_programs/fit_window.stan",

data=data, seed=8438338,
warmup=1000, iter=2024, refresh=0)

Conveniently our diagnostics show no serious indications of computational infidelity.

diagnostics <- util$extract_hmc_diagnostics(fit)
util$check_all_hmc_diagnostics(diagnostics)

A1l Hamiltonian Monte Carlo diagnostics are consistent with reliable
Markov chain Monte Carlo.

13

samples <- util$extract_expectand_vals(fit)
base_samples <- util$filter_expectands(samples,
c('left', 'right',
'bottom', 'top'))
util$check_all_expectand_diagnostics(base_samples)

left:
Chain 2: Left tail hat{xi} (0.294) exceeds 0.25.

Large tail hat{xil}s suggest that the expectand might not be
sufficiently integrable.

None of the four summary statistics exhibit any appreciable retrodictive tension, suggesting
that our modeling assumptions are adequate.

par (mfrow=c(2, 2), mar=c(5, 5, 2, 1))

util$plot_expectand_pushforward(samples[['min_x_pred']], 25, 'min_x',
baseline=min(data$xs))
util$plot_expectand_pushforward(samples[['max_x_pred']], 25, 'max_x',
baseline=max(data$xs))
util$plot_expectand_pushforward(samples[['min_y_pred']], 25, 'min_y',
baseline=min(data$ys))
util$plot_expectand_pushforward(samples[['max_y_pred']], 25, 'max_y',
baseline=max(data$ys))

14

Estimated Bin
Probabilities / Bin Widt
Estimated Bin
Probabilities / Bin Widt

-25 -1.0 0.5 0.0 1.0 20 3.C
min_x max_Xx
= =
S S
c S c S
m £ m £
© m © m
= =
© ®©
E 2 E 2
i3 82
o) o)
e e
o -2 0 1 o 05 15 25
min_y max_y

The Markov chain Monte Carlo fit now allows us to examine marginal posterior inferences
for each individual parameter. All four of the marginal posterior distributions concentrate
towards the hard edge imposed by the observed summary statistics.

par (mfrow=c(2, 2), mar=c(5, 5, 2, 1))

util$plot_expectand_pushforward(samples[['left']], 25,

'Left Window Edge', flim=c(-L, +L))
abline(v=min(data$xs), 1lty=2, lwd=2, col="#DDDDDD")
text(1, 1.4, "min(x_n)", col="#DDDDDD")

util$plot_expectand_pushforward(samples[['right']], 25,

'Right Window Edge', flim=c(-L, +L))
abline(v=max(data$xs), lty=2, lwd=2, col="#DDDDDD")
text(0.25, 1, "max(x_n)", col="#DDDDDD")

util$plot_expectand_pushforward(samples[['bottom']], 25,

'Bottom Window Edge', flim=c(-L, +L))
abline(v=min(data$ys), 1lty=2, lwd=2, col="#DDDDDD")
text(l, 1.4, "min(y_n)", col="#DDDDDD")

util$plot_expectand_pushforward(samples[['top']l], 25,

15

'"Top Window Edge', flim=c(-L, +L))
abline(v=max(data$ys), 1lty=2, lwd=2, col="#DDDDDD")
text(0.75, 1.5, "max(y_n)", col="#DDDDDD")

5 5
c3 c3
m .S m £
- @ I - @
g9 ! g9
= |J| Es
18 I 08
S T rrr 11 =

o -3 -1 1 3 o -3 -1 1 3

Left Window Edge Right Window Edg

J

-3 -1 1 3

Estimated Bin
Probabilities / Bin Width
Estimated Bin
Probabilities / Bin Width

-3 -1 1 3
Bottom Window Edge Top Window Edge

Perhaps the most useful benefit of our Markov chain Monte Carlo fit is that we can visualize
the inferred window geometry directly instead of having to recreate it from its individual
pieces.

First let’s flatten the Markov chains into a single array for each parameter.

left_samples <- c(samples[['left']], recursive=TRUE)
right_samples <- c(samples[['right']], recursive=TRUE)
bottom_samples <- c(samples[['bottom']], recursive=TRUE)
top_samples <- c(samples[['top']l], recursive=TRUE)

Subsetting these flattened arrays selects out a selection of realized window geometries consis-
tent with the observed data. Plotting these over against the observed star positions puts our
inferences into a direct geometric context.

16

plot_idxs <- seq(l, 4096, 150)

disc_colors <- c("#B97C7C", "#A25050", "#8F2727", "#7C0O000")
line_colors <- colormap(colormap=disc_colors,
nshades=length(plot_idxs))

par (mfrow=c(1, 1), mar=c(0, 0, 0, 0))

plot(0, type='n',
xlim=c(-L, +L), ylim=c(-L, +L),
axes=FALSE, ann=FALSE)

rect(-L, -L, +L, +L, col = "black")

points(data$xs, data$ys, col="white", pch=8)

for(s in seq_along(plot_idxs)) {
plot_idx <- plot_idxs[s]
lines(c(left_samples([plot_idx], right_samples[plot_idx],
right_samples[plot_idx], left_samples([plot_idx],
left_samples[plot_idx]),
c(bottom_samples[plot_idx], bottom_samples[plot_idx],
top_samples[plot_idx], top_samples[plot_idx],
bottom_samples[plot_idx]),
col=line_colors[s], lwd=2)

17

Finally let’s compare our posterior inferences to the actual window geometry.

truth <- read_rdump("data/truth.data.R")

par (mfrow=c(1, 1), mar=c(0, 0, 0, 0))

plot(0, type='n',
xlim=c(-L, +L), ylim=c(-L, +L),
axes=FALSE, ann=FALSE)

rect(-L, -L, +L, +L, col = "black")

points(data$xs, data$ys, col="white", pch=8)

for(s in seq_along(plot_idxs)) {
plot_idx <- plot_idxs[s]
lines(c(left_samples[plot_idx], right_samples[plot_idx],
right_samples[plot_idx], left_samples([plot_idx],
left_samples[plot_idx]),
c(bottom_samples[plot_idx], bottom_samples[plot_idx],
top_samples([plot_idx], top_samples[plot_idx],

18

bottom_samples[plot_idx]),
col=line_colors[s], 1lwd=2)

lines(c(truth$left, truth$right, truth$right, truth$left, truth$left),
c(truth$bottom, truth$bottom, truth$top, truth$top, truth$bottom),
col="white", lwd=6)

lines(c(truth$left, truth$right, truth$right, truth$left, truth$left),
c(truth$bottom, truth$bottom, truth$top, truth$top, truth$bottom),
col=c_mid teal, lwd=3)

Interesting in turns out that we have a bit of a void in the observed stars, with the minimum
x position relatively far away from the true left window edge. Our posterior uncertainties,
however, are able to account for this fluctuation and ensure that we aren’t lead astray.

5 Conclusion

Inferring the dimensions of a window from the stars we see through it is an excellent demonstra-
tion of narratively generative modeling in action. Our understanding of the data generating

19

process directly informs an observational model and sets the context for constructing an ini-
tial prior model. Moreover the structure of that observational model immediately motivates
informative summary statistics on which we can build powerful posterior retrodictive checks.

As a literal textbook exercise this problem is nice enough to admit a substantial amount of
analytic simplification. That said many of most interpretable insights are still obstructed
by intractable calculations and tools like Markov chain Monte Carlo are invaluable to the
implementation of a rich analysis.

Acknowledgements

A very special thanks to everyone supporting me on Patreon: Adam Fleischhacker, Adriano
Yoshino, Alessandro Varacca, Alexander Noll, Alexander Petrov, Alexander Rosteck, Andrea
Serafino, Andrew Mascioli, Andrew Rouillard, Andrew Vigotsky, Ara Winter, Austin Rochford,
Avraham Adler, Ben Matthews, Ben Swallow, Benoit Essiambre, Bertrand Wilden, Bradley
Kolb, Brandon Liu, Brendan Galdo, Brynjolfur Gauti Jonsson, Cameron Smith, Canaan Breiss,
Cat Shark, Charles Naylor, Charles Shaw, Chase Dwelle, Chris Jones, Christopher Mehrvarzi,
Colin Carroll, Colin McAuliffe, Damien Mannion, dan mackinlay, Dan W Joyce, Dan Waxman,
Dan Weitzenfeld, Daniel Edward Marthaler, Darshan Pandit, Darthmaluus , Dav Pe, David
Galley, David Wurtz, Denis Vlasic¢ek, Doug Rivers, Dr. Jobo, Dr. Omri Har Shemesh, Dylan
Maher, Ed Cashin, Edgar Merkle, Eric LaMotte, Ero Carrera, Fugene O’Friel, Felipe Gonzalez,
Fergus Chadwick, Finn Lindgren, Florian Wellmann, Geoff Rollins, Guido Biele, Hikan Jo-
hansson, Hamed Bastan-Hagh, Hauke Burde, Hector Munoz, Henri Wallen, hs, Hugo Botha,
Ian, Tan Costley, idontgetoutmuch, Ignacio Vera, Ilaria Prosdocimi, Isaac Vock, J, J Michael
Burgess, jacob pine, Jair Andrade, James C, James Hodgson, James Wade, Janek Berger,
Jason Martin, Jason Pekos, Jason Wong, jd, Jeff Burnett, Jeff Dotson, Jeff Helzner, Jeffrey
Erlich, Jesse Wolfhagen, Jessica Graves, Joe Wagner, John Flournoy, Jonathan H. Morgan,
Jonathon Vallejo, Joran Jongerling, JU, Justin Bois, Kadar Andras, Karim Naguib, Karim
Osman, Kejia Shi, Kristian Gardhus Wichmann, Lars Barquist, lizzie , LOU ODETTE, Luis
F, Marcel Liithi, Marek Kwiatkowski, Mark Donoghoe, Markus P., Marton Vaitkus, Matt
Moores, Matthew, Matthew Kay, Matthieu LEROY, Mattia Arsendi, Maurits van der Meer,
Michael Colaresi, Michael DeWitt, Michael Dillon, Michael Lerner, Mick Cooney, N Sanders,
N.S. , Name, Nathaniel Burbank, Nic Fishman, Nicholas Clark, Nicholas Cowie, Nick S, Oc-
tavio Medina, Ole Rogeberg, Oliver Crook, Olivier Ma, Patrick Kelley, Patrick Boehnke, Pau
Pereira Batlle, Peter Johnson, Pieter van den Berg , ptr, Ramiro Barrantes Reynolds, Radl
Peralta Lozada, Ravin Kumar, Rémi , Rex Ha, Riccardo Fusaroli, Richard Nerland, Robert
Frost, Robert Goldman, Robert kohn, Robin Taylor, Ryan Grossman, Ryan Kelly, S Hong,
Sean Wilson, Sergiy Protsiv, Seth Axen, shira, Simon Duane, Simon Lilburn, sssz, Stan_ user,
Stephen Lienhard, Stew Watts, Stone Chen, Susan Holmes, Svilup, Tao Ye, Tate Tunstall, Tat-
suo Okubo, Teresa Ortiz, Theodore Dasher, Thomas Kealy, Thomas Siegert, Thomas Vladeck,
Tom McEwen, Tomas Fryda, Tony Wuersch, Virginia Fisher, Vladimir Markov, Wil Yegelwel,
Will Farr, woejozney, yolhaj , yureq , Zach A, Zad Rafi and Zhengchen Cai.

20

References

MacKay, David J. C. 2003. Information Theory, Inference and Learning Algorithms. Cam-
bridge University Press, New York.

License

A repository containing all of the files used to generate this chapter is available on GitHub.

The code in this case study is copyrighted by Michael Betancourt and licensed under the new
BSD (3-clause) license:

https://opensource.org/licenses/BSD-3-Clause

The text and figures in this case study are copyrighted by Michael Betancourt and licensed
under the CC BY-NC 4.0 license:

https://creativecommons.org/licenses/by-nc/4.0/

Original Computing Environment

writeLines(readLines(file.path(Sys.getenv("HOME"), ".R/Makevars")))

CC=clang

CXXFLAGS=-03 -mtune=native -march=native -Wno-unused-variable -Wno-unused-function -Wno-macr
CXX=clang++ -arch x86_64 -ftemplate-depth-256

CXX14FLAGS=-03 -mtune=native -march=native -Wno-unused-variable -Wno-unused-function -Wno-ma
CXX14=clang++ -arch x86_64 -ftemplate-depth-256

sessionInfo()

R version 4.3.2 (2023-10-31)
Platform: x86_64-apple-darwin20 (64-bit)
Running under: macOS Sonoma 14.4.1

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/4.3-x86_64/Resources/lib/libRblas.0.dylib

21

https://github.com/betanalpha/quarto_chapters/tree/main/case_studies/window_inference
https://opensource.org/licenses/BSD-3-Clause
https://creativecommons.org/licenses/by-nc/4.0/

LAPACK: /Library/Frameworks/R.framework/Versions/4.3-x86_64/Resources/1lib/1ibRlapack.dylib;

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

time zone: America/New_York
tzcode source: internal

attached base packages:

[1] stats graphics grDevices utils datasets methods base
other attached packages:

[1] rstan_2.32.6 StanHeaders_2.32.7 colormap_0.1.4
loaded via a namespace (and not attached):

[1] gtable_0.3.4 jsonlite_1.8.8 compiler_4.3.2 Rcpp_1.0.11

[6] stringr_1.5.1 parallel _4.3.2 gridExtra_2.3 scales_1.3.0

[9] yaml_2.3.8 fastmap_1.1.1 ggplot2_3.4.4 R6_2.5.1

[13] curl_5.2.0 knitr_1.45 tibble_3.2.1 munsell_0.5.0
[17] pillar_1.9.0 rlang 1.1.2 utfs8_1.2.4 V8 _4.4.1

[21] stringi_1.8.3 inline 0.3.19 xfun_0.41 RcppParallel 5.1.7
[256] cli_3.6.2 magrittr_2.0.3 digest_0.6.33 grid_4.3.2
[29] lifecycle_1.0.4 vctrs_0.6.5 evaluate 0.23 glue_1.6.2
[33] QuickJSR_1.0.8 codetools_0.2-19 stats4_4.3.2 pkgbuild_1.4.3
[37] fansi_1.0.6 colorspace_2.1-0 rmarkdown_2.25 matrixStats_1.2.0
[41] tools_4.3.2 loo_2.6.0 pkgconfig 2.0.3 htmltools_0.5.7

22

Stan
Program 1 fit_window.stan

data {
int<lower=1> N; // Number of observations
real xs[N]; // Observed x positions (m)
real ys[N]; // QObserved y positions (m)
}

transformed data {
real L = 3; // Maximum size (m)

// Sufficient statistics
real min_x = min(xs);

real max_x = max(xs);
real min_y = min(ys);
real max_y = max(ys);
}
parameters {
real<lower=-L, upper=min_x> left; // Position

real<lower=max_x, upper=+L> right; // Position
real<lower=-L, upper=min_y> bottom; // Position
real<lower=max_y, upper=+L> top; // Position

model {

of left window edge (m)
of right window edge (m)
of bottom window edge (m)
of top window edge (m)

// Implicit uniform prior density function within boundaries

// Observational model

target += - N * (log(right - left) + log(top - bottom));

}

generated quantities {
real min_x_pred;
real max_x_pred;
real min_y_pred;
real max_y_pred;
{
real xs_pred[N];
real ys_pred[N];
for (n in 1:N) {
xs_pred[n] = uniform_rng(left, right);
ys_pred[n] = uniform_rng(bottom, top);

b
23

min_x_pred = min(xs_pred);
max_x_pred = max(xs_pred);
min_y_pred = min(ys_pred);

max_y_pred = max(ys_pred);

	The Room
	The Observational Model
	The Likelihood Function
	Bayesian Inference
	Setup
	Explore Data
	Quantify Posterior Distribution

	Conclusion
	Acknowledgements
	References
	License
	Original Computing Environment

