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Voronoi diagrams arise naturally in various spatial analyses. More importantly for this au-
thor, they also tend to be aesthetically attractive, making them useful for crafting compelling
illustrations.

Efficiently constructing a Voronoi diagram, however, is not particularly straightforward. In
this note I work through the geometric structure of Voronoi diagrams and an algorithm that
leverages that structure to construct Voronoi diagrams with the maximum possible perfor-
mance.

1 Tessellating A Plane

A Voronoi diagram, also known as a Dirichlet tessellation, is an organization of a plane
into subsets defined by the nearest proximity to a given collection of points.

From what I can tell the standard reference for Voronoi diagrams, and other topics in compu-
tational geometry, is Berg et al. (2008). This text is often referred to as “the 4Ms”, which I
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can only infer refers to the fact that three out of the four authors share the first name “Mark”
with the forth, non-Mark author being an honorary “M”. I humbly suggest that “Mark, Marky,
Mark, and the Funky Bunch” is more appropriate, but to each their own.

To formally define a Voronoi diagram consider a two-dimensional Euclidean plane ℝ2 and a
collection of sites

( 𝑠1 = (𝑥1, 𝑦1), … , 𝑠𝑁 = (𝑥𝑁 , 𝑦𝑁) ) ⊂ ℝ2.
Give a particular site 𝑠𝑛 we can construct a subset of points that are closer to that site than
any other site,

c𝑛 = {𝑝 ∈ ℝ2 ∣ 𝑑(𝑝, 𝑠𝑛) < 𝑑(𝑝, 𝑠𝑛′) forall 𝑛′ ≠ 𝑛},
where 𝑑(𝑝, 𝑝′) is a distance function. These subsets are also known as cells. The Voronoi
diagram of (𝑠1, … , 𝑆𝑁) is the corresponding collection of these proximity-based subsets (Fig-
ure 1).
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Figure 1: (a) A Voronoi diagram defined by a collection of sites (𝑠1, … , 𝑠𝑁), here shown in red,
is a collection of subsets, each containing points that are closer to one site than the
others. (b) The boundary between these subsets consists of points that are equally
distant to two or more sites at the same time.

The standard Voronoi diagram considers the Euclidean distance function,

𝑑(𝑝, 𝑝′) = √(𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2.

In theory, however, this construction can be generalized to other distance functions. At the
same time Voronoi diagrams can be defined on higher-dimensional real spaces and even more
general non-Euclidean ometric spaces.

A Voronoi diagram almost forms partition of a Euclidean plane. The snag is that points that
are equally distant from two or more sites don’t fall into any of the cells, but rather form a
singular boundary between the cells. The combination of the Voronoi cells and the boundary
between them, however, does form a proper partition.
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Because each cell contains one, and only one, site, we can always label the cells by the associated
site (Figure 2a). Similarly we can label the linear segment that forms the boundary between
two neighboring cells by the sites associated with those two cells, and the points separating the
corners of three or more neighboring cells by the sites associated with those cells (Figure 2b,
Figure 2b).
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Figure 2: (a) Each of the cells in a Voronoi diagram can be labeled with the unique site that
it contains. (b, c) Similarly the boundaries between neighboring cells can be labeled
with the sites contained by those cells. For the purposes of labeling the the order
of the sites is arbitrary; here (3, 2) is just as good as (2, 3) while (2, 7, 3), (3, 7, 2),
(3, 2, 7), (7, 3, 2), and (7, 2, 3) are just as good as (2, 3, 7).

2 The Geometry of Voronoi Diagrams

The boundary between the cells of a Voronoi diagram is useful in its own right. In particular
it defines an undirected graph, with linear edges separating neighboring pairs of cells and
punctual vertices separating neighboring triplets of cells.

In practice it is often easier to construct this Voronoi graph and then derive the Voronoi cells
from it rather than trying to construct the Voronoi cells directly. The vertices and edges of
the Voronoi graph exhibit rich geometric structure that provides the foundation for powerful
construction algorithms.

2.1 Voronoi Vertices

The vertices of the Voronoi graph are defined by points that are the same distance from three
neighboring Voronoi cells (Figure 3). Consequently we can uniquely label each vertex with a
triplet the sites contained by those cells,

(𝑠𝑛1
, 𝑠𝑛2

, 𝑠𝑛3
).
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Because not every triplet of Voronoi cells are neighbors, however, not every triplet of sites
defines a valid vertex. Fortunately Euclidean geometry provides tools for distinguishing the
valid vertices.

δ δ

δ

Figure 3: Each vertex in a Voronoi graph is given by a point on the boundary between three
neighboring Voronoi cells. This point is by definition equally distant to the sites
contained by those cells.

Any triplet of distinct points falls onto a unique circumcircle with center

𝑥𝑐 = 1
2

(𝑥2
𝑛1

+ 𝑦2
𝑛1

) (𝑦𝑛2
− 𝑦𝑛3

) + (𝑥2
𝑛2

+ 𝑦2
𝑛2

) (𝑦𝑛3
− 𝑦𝑛1

) + (𝑥2
𝑛3

+ 𝑦2
𝑛3

) (𝑦𝑛1
− 𝑦𝑛2

)
𝑥𝑛1

(𝑦𝑛2
− 𝑦𝑛3

) + 𝑥𝑛2
(𝑦𝑛3

− 𝑦𝑛1
) + 𝑥𝑛3

(𝑦𝑛1
− 𝑦𝑛2

)

𝑦𝑐 = 1
2

(𝑥2
𝑛1

+ 𝑦2
𝑛1

) (𝑥𝑛3
− 𝑥𝑛2

) + (𝑥2
𝑛2

+ 𝑦2
𝑛2

) (𝑥𝑛1
− 𝑥𝑛3

) + (𝑥2
𝑛3

+ 𝑦2
𝑛3

) (𝑥𝑛2
− 𝑥𝑛1

)
𝑥𝑛1

(𝑦𝑛2
− 𝑦𝑛3

) + 𝑥𝑛2
(𝑦𝑛3

− 𝑦𝑛1
) + 𝑥𝑛3

(𝑦𝑛1
− 𝑦𝑛2

)

and radius
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Consequently the center of the circumcircle defined by three sites is equidistant to those sites,
and hence defines a potential vertex in the Voronoi graph.
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The three sites defining a circumcircle are the three closest sites to this potential vertex if and
only if no other sites are inside of the circumcircle. In other words Voronoi vertices are defined
by empty circumcircles.

(a) (b)

Figure 4: Not every triplet of sites defines a vertex in a Voronoi graph. (a) Vertices are
defined by triplets of sites that define empty circumcircles. (b) Triplets of sites
whose circumcircles contain other sites do not define proper vertices.

2.2 Voronoi Edges

The edges in a Voronoi graph are comprised of points equidistant to two neighboring cells
(Figure 5), allowing us to uniquely label each Voronoi edge with the pair of sites contained by
those cells. Once, again, however, we have to take care because arbitrary pairs of sites do not
always define valid edges.

Before worrying out isolating proper edges let’s first work out the geometry of potential edges.
Any pair of sites defines a line that connects them and a mid point on that line that is equally
distant to the sites. The perpendicular bisector of two sites is the line perpendicular to
this connecting line that intersects with the midpoint (Figure 6a). Every point along the per-
pendicular bisector between two sites is equally distant from those two sites and, consequently,
could contribute to a Voronoi edge (Figure 6b).

In order to determine which segment, if any, of a perpendicular bisector forms a Voronoi edge
we come back to circles. Any point along a perpendicular bisector is the center of a unique
circle that includes the two defining sites. If no other sites are on or inside of this circle then
those two sites are the nearest neighbors to each other and that point is, by definition, part of
a Voronoi edge.

As we move along the perpendicular bisector these circles will eventually intersect with another
site. When they do the point along the bisector will be equally distant to three sites – the two
initial sites and this new site – but the interior of the circle will remain empty. In other words
the Voronoi edge terminates as soon as we hit a Voronoi vertex.
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Figure 5: Each edge in a Voronoi graph is defined by linear boundary between two neighboring
Voronoi cells. All of the points on a Voronoi edge are equally distant to the two sites
contained by those cells.
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Figure 6: (a) The perpendicular bisector between two points is the line ℓ⟂ that is perpendic-
ular to line connecting those points, ℓ, and intersects the midpoint between them.
(b) Every Voronoi edge falls along a perpendicular bisector between two sites, but
generally is only a segment of that line. Moreover not every perpendicular bisector
contains a Voronoi edge.
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Figure 7: Circles centered at points along a perpendicular bisector and intersecting with a pair
of sites are useful for identifying contributions to Voronoi edges. (a) If there are no
other sites on or inside of the circle then the center is part of a Voronoi edge. (b) If
there is one or more sites inside of the circle then the center does not contribute to a
Voronoi graph at all. (c) If there is another site on the circle then the center defines
a Voronoi vertex. Each Voronoi edge terminates when these circles first meet a third
site.

2.3 Voronoi Faces

The edges of a Voronoi graph trace around each site, defining faceted faces in the graph
that correspond to the Voronoi cells (Figure 8). When working over the entire, unbounded,
Euclidean plane not all of these faces will be closed. While some of the sites will be entirely
enclosed by a path of edges, some will be bounded on only one side by a path of edges. I will
refer to these as closed faces and open faces, respectively.

(a) (b)

Figure 8: The edges of a Voronoi graph trace out faces which identify the Voronoi cells. (a) I
will refer to faces that are completely enclosed by edges as closed faces and (b) faces
that are only partially enclosed as open faces.
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3 Fortune’s Algorithm

There are here are multiple ways to construct a Voronoi graph, but most of them suffer from
wasteful computation. For large enough numbers of sites these approaches quickly become
too expensive to be practical. Fortunately there is one elegant approach that, while not at all
initially obvious, is able to construct a Voronoi graph as efficiently as possible.

3.1 Inefficient Approaches

Before diving into an efficient solution let’s consider some of the more straightforward but
ultimately inefficient approaches.

One way to identify all of the vertices in a Voronoi graph is to loop over each triplet of sites
and then construct the corresponding circumcircles. For each of these circumcircles we then
loop over the remaining sites to check for inclusion, with the centers of the empty circumcircles
defining vertices.

We could then construct candidate Voronoi edges by looping over each pair of sites and checking
to see if they are associated with any vertices. For each valid pair we could scan across the
corresponding perpendicular bisector, construct circles, and check if any other sites appear on
or within them.

Because there are
(𝑁

3 ) = 𝑁 (𝑁 − 1) (𝑁 − 2)
6

triplets of sites and
(𝑁

2 ) = 𝑁 (𝑁 − 1)
2

pairs of sites to consider, however, the number of operations we need to implement this brute-
force approach scales cubically with the number of sites. Adding twice as many sites requires
six times more operations, and hence six times the cost.

That said, much of this cost is wasted on the redundant queries of each site. We should be
able to construct Voronoi graphs more efficiently if we can query each site fewer times. One
more efficient approach is to loop over each site, construct the (𝑁 − 1) half-planes bounded
by the perpendicular bisector between the active site and each other site, and then construct
the corresponding Voronoi face from the intersection of those half-planes. This cost of this
approach scales only quadratically.

We can, however, do even better. By systematically scanning across a plane Fortune’s al-
gorithm Berg et al. (2008) is able construct a Voronoi graph with a number of operations
proportional to 𝑁 log 𝑁 . This performance turns out to be theoretically optimal. The main
downside of Fortune’s algorithm is that is requires some care to understand and then implement
in a way that achieves that optimal scaling.
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3.2 The Sweep Line

Fortune’s algorithm processes the sites not by working through a list but rather by geometri-
cally scanning across the ambient plane with the use of a sweep line. Sites on one side of the
sweep line are active and can contribute to the construction of the Voronoi graph while sites
on the other side are inactive and cannot yet contribute. As the sweep line progresses more
sites are processed and more of the Voronoi graph is built up.

In theory a sweep line can progress in any direction, but most references consider vertical lines
that scan horizontally from left to right, horizontal lines that scan vertically from top to bottom,
or horizontal lines that scan vertically from bottom to top. These axis-aligned orientations of
the sweep line make geometric calculations substantially more straightforward.

Here I will consider a vertical sweep line that scans horizontally from left to right and denote
the horizontal position of the sweep line at any time by 𝑆.

3.3 The Beach Line

A sweep line partitions the ambient plane into two subsets, one containing all of the active
sites and one containing all of the inactive sites. This allows us to focus the construction of
the Voronoi graph on just one subset of the entire plane and ignore the other. That said, not
all of the Voronoi graph to the left of the sweep line is completely determined by the active
sites; some features of the Voronoi diagram can be influenced by inactive sites just beyond the
sweep line.

Consider, for example, a single active site

𝑠𝑛 = (𝑥𝑛, 𝑦𝑛)

and the sweep line position
𝑆 > 𝑥𝑛.

If a point (𝑥, 𝑦) to the left of the sweep line is closer to 𝑠𝑛 than the sweep line,

(𝑥 − 𝑥𝑛)2 − (𝑦 − 𝑦𝑛)2 < (𝑆 − 𝑥)2,

then we it will be closer to 𝑠𝑛 than any other site that might be hiding beyond the sweep line.
On the other hand any point to the left of the sweep line that is closer to the sweep line than
it is to 𝑠𝑛,

(𝑥 − 𝑥𝑛)2 − (𝑦 − 𝑦𝑛)2 > (𝑆 − 𝑥)2,
could be be closer to an inactive site on the other side of the sweep line that we have not yet
taken into account.

Consequently when determining site proximity we cannot analyze the entire region to the left
of the sweep line. Instead we can analyze only the subset of points that are closer to 𝑠𝑛 than
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they are to the sweep line. The boundary of this analyzable subset is defined by the points
equidistant to 𝑠𝑛 and the sweep line, which traces out the rotated parabola (Figure 9)

𝑥 = 𝑓(𝑦) = 1
2 (𝑆 + 𝑥𝑛 − (𝑦 − 𝑦𝑛)2

𝑆 − 𝑥𝑛
) .

S

δδ

δ′

δ′

p

δ′′

δ′′

Figure 9: The subset of points that are equally distant from a focus, 𝑠, and a vertical line
𝑆, form a rotated parabola. In Fortune’s algorithm the points to the left of this
parabola are safe to analyze for their contribution to the Voronoi graph.

When there are multiple active sites then the region that we can safely analyze is comprised
of the points that are closer to any of the active sites than they are to the sweep line. The
boundary of this region is defined by the segmented envelope of the parabolas between each
active site and the sweep line (Figure 10). Given its resemblance to the shape made by waves
washing up on a beach (Figure 11) this boundary is known as the beach line.

Each parabolic segment, or arc, in a beach line is associated with a single site. The parabola
between any given site and the sweep line, however, can contribute to the beach line multiple
times. Consequently we cannot use the originating sites to uniquely label the arcs.

Neighboring arcs on the beach line are generated from neighboring sites. The discontinuities
along the beach line that separate each pair of neighboring arcs are known as breakpoints
(Figure 12). Each breakpoint is uniquely labeled by an ordered pair of the sites associated
with those arcs. Note that ordering is important here: (𝑠𝑛1

, 𝑠𝑛2
) and (𝑠𝑛2

, 𝑠𝑛1
) correspond to

two different breakpoints.

Given a sweep line position 𝑆 we can readily calculate the intersection of each pair of neighbor-
ing parabolas, and hence the position of the corresponding breakpoint. The vertical position 𝑦
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sn1

sn2

sn3

S

Figure 10: The beach line is the boundary separating points that are closer to any active site,
here 𝑠𝑛1

, 𝑠𝑛2
, and 𝑠𝑛3

, and points that are closer to the the sweep line, 𝑆. This
boundary is comprised of a sequence of intersecting parabolic arcs. Note that the
parabola between 𝑠𝑛1

and 𝑆 contributes multiple arcs to the beach line here.

Figure 11: The parabolic arcs that make up a beach line are similar to the shape made by waves
washing up onto a beach, hence the name. Photo :copyright: Michael Betancourt.
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Figure 12: The breakpoints in a beach line separate the component arcs. Each breakpoint is
located at the intersection between the parabolas generated by two neighboring sites,
equally distant from the sweep line and those two sites while also being further from
any other sites. Each ordered pair of neighboring sites defines a unique breakpoint.
Here, for example, 𝑏𝑛1𝑛2

and 𝑏𝑛2𝑛1
are distinct breakpoints.

where the two parabolas generated by 𝑠𝑛1
and 𝑠𝑛2

intersect is implicitly given by the quadratic
equation

0 = ( 𝑥𝑛2
− 𝑥𝑛1⏟⏟⏟⏟⏟
𝑎

) 𝑦2

− 2 ( 𝑦𝑛2
(𝑆 − 𝑥𝑛1

) − 𝑦𝑛1
(𝑆 − 𝑥𝑛2

)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑏

) 𝑦

+ ( 𝑦2𝑛2
(𝑆 − 𝑥𝑛1

) − 𝑦2𝑛1
(𝑆 − 𝑥𝑛2

) − (𝑆 − 𝑥𝑛1
) (𝑆 − 𝑥𝑛2

) (𝑥𝑛2
− 𝑥𝑛1

)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑐

),

which admits two solutions,
𝑦± = 𝑏 ± 1

2 𝑎
√

𝑏2 − 𝑎 𝑐.

To determine which of these solutions is associated with the breakpoint 𝑏𝑛1𝑛2
, and hence which

is associated with 𝑏𝑛2𝑛1
, we’ll need to consider the relative position of the sites.

If 𝑠𝑛1
is ahead of 𝑠𝑛2

,
𝑥𝑛1

> 𝑥𝑛2

then the breakpoint 𝑏𝑛1𝑛2
will be above the breakpoint 𝑏𝑛2𝑛1

(Figure 13a). In this case

𝑎 = 𝑥𝑛2
− 𝑥𝑛1
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is negative so the higher solution is given by

𝑦𝑛1𝑛2
= 𝑦− = 𝑏 − 1

2 𝑎
√

𝑏2 − 𝑎 𝑐.

On the other hand if 𝑠𝑛1
is behind 𝑠𝑛2

,

𝑥𝑛1
< 𝑥𝑛2

then the breakpoint 𝑏𝑛1𝑛2
will be below the breakpoint 𝑏𝑛2𝑛1

(Figure 13b). Because the leading
coefficient is now positive,

𝑎 = 𝑥𝑛2
− 𝑥𝑛1

,
the appropriate solution is also given by

𝑦𝑛1𝑛2
= 𝑦− = 𝑏 − 1

2 𝑎
√

𝑏2 − 𝑎 𝑐.

In other words the the sign of 𝑎 conveniently adjusts the geometry correctly so that we can
always take

𝑦𝑛1𝑛2
= 𝑏 − 1

2 𝑎
√

𝑏2 − 𝑎 𝑐

and
𝑦𝑛2𝑛1

= 𝑏 + 1
2 𝑎

√
𝑏2 − 𝑎 𝑐.
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Figure 13: The parabolas defined by two points 𝑠𝑛1
and 𝑠𝑛2

intersect at two different points,
one of which gives the breakpoint 𝑏𝑛1𝑛2

and the other giving 𝑏𝑛2𝑛1
. (a) If 𝑥𝑛1

> 𝑥𝑛2
then 𝑏𝑛1𝑛2

is given by the higher of the two intersections, but (b) if 𝑥𝑛1
< 𝑥𝑛2

then
𝑏𝑛1𝑛2

is given by the lower of the two intersections.

When it comes to constructing Voronoi graphs the breakpoints are the most important part
of the beach line. Because they always falls onto the parabolas generated by two neighboring
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sites, each breakpoint is equally distant from those two sites and the sweep line. At the same
time each breakpoint is further from all other active sites as well as any inactive sights hiding
beyond the sweep line.

All of this is to say that, by construction, every breakpoint is the center of a circle containing
the two associated sites but includes no other sites. In other words, each breakpoint always
falls on a Voronoi edge no matter the position of the sweep line. Specifically the breakpoints
𝑏𝑛1𝑛2

and 𝑏𝑛2𝑛1
both fall on the Voronoi edge between 𝑠𝑛1

and 𝑠𝑛2
.

3.4 Evolving The Beach Line

As we scan the sweep line across a Euclidean plane the distances between the active sites and
the sweep line will change. This, in turn, changes the shape of the corresponding parabolas
and, ultimately, the shape of the beach line. As the beach line evolves the breakpoints trace
out the Voronoi edges, incrementally generating the entire Voronoi graph!

Every now and then the number of arcs comprising the beach line, known as the topology of
the beach line, also changes. When the sweep line passes over a new site, for example, a new
arc is added to the beach line. Similarly arcs can be removed from the beach line when they
are squeezed to a point by their neighboring arcs.

Conveniently we don’t need to continuously scan the sweep line in order to construct a Voronoi
diagram. The structure of a Voronoi diagram is completely determined by the behavior of the
beach line at the finite number of sweep line positions where the topology changes. If we
can efficiently determine these topology-changing events then we can efficiently build up a
Voronoi diagram in a finite number of operations.

3.4.1 Events Where The Beach Line Expands

Whenever the sweep line crosses a new site, that site becomes active and contributes a new
parabolic arc to the beach line. Because we know the position of all of the sites we know at
exactly which positions these site events will occur.

If the sweep line is positioned on a new site then the parabola of points equidistant from that
site and the sweep line is singular, consisting of just the new site itself. This forms a point
discontinuity with the rest of the beach line (Figure 14a). Although not technically correct,
these singular arcs are often visualized with a horizontal line extending from the new site to
the beach line (Figure 14b).

As the sweep line progresses past the new active site, the singular parabola widens into a more
well-behaved parabola (Figure 14c). This not only restores the continuity of the beach line
but also splits an existing parabolic arc into two new arcs. The introduction of a new active
site always splits an existing arc into a triplet of arcs, the outer two of which are generated by
the same site.
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Figure 14: At a site event the sweep line hits an inactive site which then becomes active. (a)
Initially the new active site introduces a new singular arc which splits the beach
line. (b) This singular arc is often visualized with a continuous horizontal line.
(c) As the sweep line proceeds past the site event, this singular arc widens into a
well-behaved parabola, separating one of the beach line arcs into two arcs.

For example let’s say that the sweep line passes the new site 𝑠𝑛2
. If the height of this site 𝑦𝑛2

intersects with an arc generated by the site 𝑠𝑛1
then the site event will split that arc into a

triplet of arcs, the outer two of which are generated by 𝑠𝑛1
and the center of which is generated

by 𝑠𝑛2
. These three arcs are then separated by two new breakpoints 𝑏𝑛1𝑛2

and 𝑏𝑛2𝑛1
.

Both of these new breakpoints fall on a Voronoi edge in between the sites 𝑠𝑛1
and 𝑠𝑛2

. As the
sweep line progresses the middle arc widens and the breakpoints separate, tracing out more
and more of that edge (Figure 15).

Figure 15: As the sweep line moves past a site event, the two new breakpoints separate and
scan across the Voronoi edge between the two neighboring sites.
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3.4.2 Events Where The Beach Line Contracts

The topology of the beach line can also change when one of the parabolic arcs collapses in
between its two neighboring arcs (Figure 16). In this case the collapsed arc is removed from
the beach line and its two neighboring arcs become new neighbors.

sn2

sn1

sn3

S

Figure 16: As the sweep line progresses, arcs on the beach line can collapse in between their
two neighboring arcs. When this happens the neighboring breakpoints converge to
a point. This convergence point is equally distant from the three active sites but
further from all other sites, defining a vertex in the Voronoi graph.

Consider three neighboring arcs generated from the active sites 𝑠𝑛2
, 𝑠𝑛2

, and 𝑠𝑛3
. If any two

of these sites are the same then the central arc will not collapse as the sweep line progresses
so we can safely assume that these sites are distinct.

When the central arc collapses its two neighboring breakpoints 𝑏𝑛1𝑛2
and 𝑏𝑛2𝑛3

will merge into
a new breakpoint 𝑏𝑛1𝑛3

. At that moment

𝑏𝑛1𝑛2
= 𝑏𝑛2𝑛3

= 𝑏𝑛1𝑛3

are equally distant from 𝑠𝑛2
, 𝑠𝑛2

, and 𝑠𝑛3
. Because this intersection is on the beach line it also

cannot be closer to any inactive sites hiding beyond the sweep line. In other words a collapsing
arc on the beach line always defines a Voronoi vertex!

This duality between arc collapses and Voronoi vertices is useful not only for building up the
Voronoi graph but also for predicting when arcs will collapse. By now it should be no surprise
that this prediction will involve circles.

For any triplet of neighboring arcs that correspond to the distinct sites 𝑠𝑛1
, 𝑠𝑛2

, and 𝑠𝑛3
we

can always construct a unique circumcircle with center (𝑥𝑐, 𝑦𝑐) and radius 𝑟. By construction
the center (𝑥𝑐, 𝑦𝑐) is equally distant to all three sites, and hence identifies exactly where the
central arc will collapse to a point.
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The center is also equally distant to vertical lines at 𝑥 = 𝑥𝑐 −𝑟 and 𝑥 = 𝑥𝑐 +𝑟, which define the
two possible sweep line configurations where the central arc will collapse. When 𝑆 = 𝑥𝑐 − 𝑟,
however, the sweep line will not yet have reached any of the three sites and they will not yet
have contributed any arcs to the beach line. Consequently a central arc generated by 𝑠𝑛2

can
collapse only when 𝑆 = 𝑥𝑐 + 𝑟 (Figure 17).
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Figure 17: If the central arc in a triplet of neighboring arcs collapses then it will do so when
the sweep line is at the far edge of the circumcircle spanned by those three sites.
This geometric extrapolation allows us to schedule future vertex events.

That said, this collapse can contribute to the Voronoi graph only if it occurs to the right of
the beach line, where the structure of the Voronoi graph has not yet been established. If 𝑥𝑐
falls to the left of the current beach line then advancing the sweep line forward will cause the
central arc to not collapse but rather expand, with the breakpoints diverging away from each
other.

One particularly straightforward way to determine if a central arc will collapse as the sweep
line progresses forward is to directly check if 𝑦𝑛1𝑛2

= 𝑦𝑛2𝑛3
at 𝑆 = 𝑥𝑐 + 𝑟. While this works

fine in theory, it can be awkward to implement in practice as checking the equality of two
floating point numbers is always tricky.

We can also use the relative positions of 𝑠𝑛1
, 𝑠𝑛2

, and 𝑠𝑛3
to determine whether some arcs will

converge or diverge. For example if site 𝑠𝑛2
is behind both 𝑠𝑛1

and 𝑠𝑛3
,

𝑥𝑛2
< 𝑥𝑛1

𝑥𝑛2
< 𝑥𝑛3

,
then the Voronoi edges, and the breakpoints that flow along them, will converge (Figure 18a).
On the other hand if 𝑠𝑛2

is ahead of the other two sites,

𝑥𝑛2
> 𝑥𝑛1

𝑥𝑛2
> 𝑥𝑛3

,
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then the Voronoi edges will diverge, pulling the breakpoints away from each other (Fig-
ure 18b).

The mixed cases where
𝑥𝑛1

< 𝑥𝑛2
< 𝑥𝑛3

or
𝑥𝑛1

> 𝑥𝑛2
> 𝑥𝑛3

are indeterminate (Figure 18c, Figure 18d). Depending upon the vertical positioning of the
sites the central arc can collapse or expand as the sweep line progresses. The behavior in these
cases can probably be worked out with some clever geometry, but I have yet not been able to
figure out that geometry myself. Consequently I will use the more direct approach mentioned
above.

sn2

sn1

sn3

(a)

sn2

sn1

sn3

(b)

sn2

sn1

sn3

(c)

sn2

sn1

sn3

(d)

Figure 18: The central arc of any triplet of neighboring beach line arcs, here generated by the
sites 𝑠𝑛1

, 𝑠𝑛2
, and 𝑠𝑛3

, will not always collapse as the sweep line progresses forward.
(a) If 𝑠𝑛2

is behind the other two sites then the arc it generates will eventually
collapse, but (b) if 𝑠𝑛2

is ahead of the other two sites then the arc it generates
will only ever expand. (c, d) When 𝑠𝑛2

is in between the two other sites we need
additional information to determine if the corresponding arc will collapse.

If a central arc will eventually collapse as the sweep line progresses then that collapse defines
vertex event, also known as a circle event, at 𝑆 = 𝑥𝑐 + 𝑟. At this sweep line position the
breakpoints 𝑏𝑛1𝑛2

and 𝑏𝑛2𝑛3
will intersect at (𝑥𝑐, 𝑦𝑐), defining a new vertex that we can add
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to the Voronoi graph (Figure 19). This vertex then spawns a new Voronoi edge along which
the new merged breakpoint 𝑏𝑛1𝑛3

will flow.

sn2
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Figure 19: When a central arc collapses, two Voronoi edges terminate at a Voronoi vertex and
a new Voronoi edge between the sites that generate the remaining arcs is created.

3.5 The Algorithm

Now that we know how and when the topology of a beach line can change we can organize
those changes into an algorithm that builds up a Voronoi graph dynamically.

Fortune’s algorithm starts with an event queue consisting of events defined by sweep line
positions where an arc is added to or removed from the beach line. The algorithm then
proceeds iteratively, processing each event in the queue one at a time, expanding the structure
of the Voronoi graph, and adding new events as necessary. Initially the event queue is filled
with only site events, one for each site, but vertex events are also added as the site events are
processed.

In this section we’ll review the basic steps required to process both site and vertex events,
as well as clean up after the event queue has been fully processed. Section 4 will focus on
the implementation of these steps, which becomes a good bit more complicated if we want to
ensure efficient computation.

3.5.1 Site Events

Processing a site event requires adding a new arc to the beach line. To do this we have to scan
across the current beach line to find the existing arc that meets the height of the new event.
We then split that arc in two, inserting a new arc generated by the new site into the beach
line along with two new, neighboring breakpoints.
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Inserting a new arc into the beach line can also modify the remaining event queue.

For one the new arc will disrupt any triplets of neighboring arcs that contain the split arc. If
any of those disrupted arc triplets correspond to future vertex events then they have to be
removed from the event queue.

At the same time inserting a new arc also creates two triplets of neighboring arcs, each of which
could potentially spawn a vertex event. If the central arc of any of these triplets eventually
collapses then we need to add a new vertex event to the event queue where the central arc will
be removed.

To make this all a bit more concrete consider an initial beach line comprised of three successive
arcs, 𝛼1,

(𝛼1, 𝛼2, 𝛼4, 𝛼2, 𝛼3).
When the sweep line then passes a new site it introduces a new arc 𝛼4. Let’s say that this arc
splits𝛼2, resulting in the new beach line

(𝛼1, 𝛼2, 𝛼4, 𝛼2, 𝛼3).

This site event breaks the initial triple (𝛼1, 𝛼2, 𝛼3) and invalidates any associated vertex events.
It also, however, introduces two new triples, (𝛼1, 𝛼2, 𝛼4) and (𝛼4, 𝛼2, 𝛼3), which have to be
considered for new vertex events.

3.5.2 Vertex Events

Our first task when we encounter a vertex event in the event queue is to expand the current
Voronoi graph. This starts by adding a new Voronoi vertex, connecting it to two of the
previously existing Voronoi edges, and then creating a new Voronoi edge. Exactly how we
accomplish this expansions depends on how the graph itself is being implemented.

Once the Voronoi graph has been updated we then remove the central arc from the beach line
and update the breakpoints appropriately.

Lastly we have to clean up the event queue. The removal of the central arc will invalidate
any vertex event in the event queue where the central arc was previously neighbors with the
removed arc. On the other hand the removal also creates two new triplets of neighboring arcs
along the beach line, each of which could spawn a new vertex event. If any of these triplets
feature a collapsing central arc then we have to add a corresponding vertex event to the event
queue.

Again to make this a bit more concrete let’s consider an initial beach line comprised of the
five successive arcs,

(𝛼1, 𝛼2, 𝛼3, 𝛼4, 𝛼5).
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At a vertex event the central arc 𝛼3 collapses, resulting in the new beach line

(𝛼1, 𝛼2, 𝛼4, 𝛼5).

.

This vertex event breaks two initial triples, (𝛼1, 𝛼2, 𝛼3) and (𝛼3, 𝛼4, 𝛼5), invalidating any as-
sociated vertex events still in the event queue. At the same time the deletion of 𝛼3 introduces
two new triples, (𝛼1, 𝛼2, 𝛼4) and (𝛼2, 𝛼4, 𝛼5), each of which could define new vertex events.

3.5.3 Clean Up

As we process events the queue will eventually empty. When there are no more events to
process the algorithm will have found all of the Voronoi vertices and all of the Voronoi edges.
That said some of those edges will be dangling, anchored to a vertex on only one side because
they stretch out to infinity in the other direction (Figure 20a).

(a) (b) (c)

Figure 20: (a) After running Fortune’s algorithm some of the edges in the Voronoi graph will be
connected to vertices on only one side. The other side extends out towards infinity.
(b) When visualizing a Voronoi graph in practice we can consider only a finite range
of values. The best we can do is visualize the graph within a finite bounding box
that contains all of the Voronoi vertices. (c) For visualization purposes we can
anchor any dangling edges to points where they meet the bounding box.

We can handle these dangling edges in a few different ways. For example from a graph theory
perspective we could anchor any dangling edges to a single “vertex at infinity” that quantifies
the common unboundedness of those edges. This approach, however, does not yield particularly
compelling visualizations.

For visualization purposes it is more useful to create a rectangular bounding box that con-
tains all of the Voronoi vertices (Figure 20b), and then anchor the dangling edges to points
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along this rectangle (Figure 20c). Specifically the new anchor for a dangling edge will be the
point where the perpendicular bisector between the two associated sites intersects with the
bounding box.

4 Implementing Fortune’s Algorithm

Once we’ve built up enough familiarity with planar geometry, the motivation for Fortune’s
algorithm, particularly the utility of a beach line and its evolution, becomes less obscure.
That said, there is still work to do to ensure that we can implement the algorithm in a way
that achieves its maximum possible performance.

For example when processing a site event we need to be able to efficiently search through the
arcs on the current beach line. If we naively scan through the entire beach line every time we
process a new site event then the the number of operations needed to implement Fortune’s
algorithm with scale with not 𝑁 log 𝑁 but rather 𝑁2. To achieve that 𝑁 log 𝑁 scaling we need
to implement the beach line in a way that allows for efficient searching.

Similarly we need to keep track of the next event while we add and delete events from the
event queue. We could accomplish this by sorting the entire event queue after every update,
but this is wasteful and also spoils the optimal 𝑁 log 𝑁 scaling.

Fortunately (pun very much intended) if we leverage some standard data structures from com-
puter science then we can avoid these potential slowdowns and implement Fortune’s algorithm
as efficiently as possible.

4.1 Implementing Voronoi Graphs

In theory graphs can be implemented with a just list of points for each vertex and list of pairs
of points for each edge. While these lists allow us to draw a graph easily enough, they don’t
provide enough information to perform basic graph operations, such as tracing along paths of
edges to derive faces.

The doubly-connected edge list (Berg et al. 2008) is a data structure that efficiently
captures not only the components of a graph but also the relationships between those com-
ponents. These relationships in turn make it straightforward to efficiently implement graph
algorithms.

A doubly-connected edge list is itself built up from lists of three primitive data structures:
half-edges, vertices, and faces.
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4.1.1 Half-Edges

Doubly-connected edge lists don’t actually represent undirected edges. Instead the data struc-
ture splits each undirected edge into two directed edges known as half-edges (Figure 21).

he

Figure 21: Doubly-connected edge lists represent undirected edges with a pair of directed
half-edges. Each half-edge includes references to other structures in the doubly-
connected edge lists, including the vertex from which the half-edge originates and
neighboring half-edges.

To situate them within the full graph, each half-edge is endowed with a collection of references
to other objects in the doubly-connected edge list. For example each half-edge includes a
reference to the vertex from which the half-edge originates. Similarly each half-edge includes
references to three other half-edges – the previous half-edge that points into it, the next half-
edge that it points into, and the twin half-edge that completes it to form a full undirected
edge (Figure 22). Finally each half-edge includes a reference to the face located to its left.

These references make a variety of graph operations straightforward to implement. For instance
the originating vertex and twin half-edge references provide enough information to draw a half-
edge as a directed line segment, starting at the position of the originating vertex and then
ending at the position of the twin’s originating vertex.

Similarly we can use the previous and next references to trace through paths in the graph.
These paths can then be used to quantify topological information about the graph, such as
the configuration of the faces.

Voronoi graphs generally feature unbounded edges, with only one side terminating at a vertex
and the other shooting off towards infinity. In this case some of the half-edges will feature
empty next half-edge references while their twins will feature empty originating vertex and
previous half-edge references.
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Figure 22: Each half-edge in a doubly-connected edge lists includes reference three other half-
edges. The previous half-edge, here labeled “he.prv”, identifies the half-edge that
points into it while the next half-edge, here labeled “he.nxt”, identifies the half-edge
that it points into. Finally the twin half-edge, here labeled “he.twin”, identifies the
half-edge that completes it to form a full undirected edge.

4.1.2 Vertices

Each vertex in a doubly-connected edge list is specified with its spatial position and a reference
to any one half-edge that originates from it (Figure 23). The relationship of a vertex to the
rest of graph can then be completely reconstructed from this information.

For example all of the half-edges that originate at a given vertex can always be accessed by
repeatedly following the twin and next references from the one included half-edge (Figure 24).
Equivalently we can iteratively follow the previous and then twin references. In the same way
we can also access the half-edges that terminate at a given vertex.

Once we can access all of the neighboring half-edges we can then access additional information
about the local structure of the graph. Neighboring vertices, for instance, are given by the
originating vertex references of the twin of any half-edge that originates at the initial vertex.

4.1.3 Faces

Finally each face in the graph is specified by any one half-edge along its boundary (Figure 25a).
This provides enough information to trace out the entire face boundary by following the next
or previous references from that one included half-edge (Figure 25b, Figure 25c).
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v.pos

v.he

Figure 23: Each vertex in a doubly-connected edge list includes its spatial position, here de-
noted “v.pos” and a reference to any one half-edge that originates from it, here
denoted “v.he”.

When working with more complex graphs, such as graphs containing disconnected faces or
faces that are completely surrounded by other faces, we need to include additional half-edge
references, such as one along the exterior boundary and one along each internal boundary.
Because Voronoi graphs do not exhibit these topological features, however, we won’t need to
worry about this additional information here.

4.1.4 Satellite Data

Depending upon the application the half-edge, vertex, and face data structures can also include
additional information in the form of satellite data. For example when using a doubly-
connected edge list to represent a Voronoi graph it will be helpful to include information
about the associated sites, three for each vertex object and one for each face object. Note that
we don’t need to store the two sites associated with an edge; this information can be recovered
from the sites of the left faces of the corresponding half-edges.

4.1.5 Bounding Box and Pseudo-Vertices

The visualization of Voronoi graphs is easier if we add a few more objects to the doubly-
connected edge list data structure. In particular, a natural addition is the configuration of
a bounding box as well as pseudo-vertices along that bounding box that can be used to
terminate any dangling half-edges. This ensures, for example, that every half-edge includes

26



v.he

(a)

v.he.pv.he

(b)
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v.he.p.t

(c)

v.he.pv.he

v.he.p.t.p.t

v.he.p.t.p

v.he.p.t

(d)

Figure 24: (a) The one half-edge referenced in a vertex object is enough to reconstruct the
entire structure of the graph around that vertex. For example if we follow the
reference to (b) the previous half-edge, “v.he.p”, (c) and then its twin, “v.he.p.t”,
we recover another half-edge that originates from that vertex. (d) Repeating this
operation recovers all of the half-edges that originate from that vertex.
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Figure 25: (a) Each face in a doubly-connected edge list includes a reference to any one half-
edge along its boundary. By following the next and previous references from that
one half-edge we can always trace out the entire boundary of the face. (b) If the
face is closed then we can follow either the next or previous references until we
return to the initial half-edge. (c) If the face is open then we have to follow both
the next and previous half-edges until they we encounter an empty reference.

a non-empty originating vertex references which in turns makes visualization functions more
uniform.

4.2 Implementing Beach Lines

A beach line consists of parabolic arcs and the breakpoints that separate them. Critically
these objects exhibit a consistent ordering.

As we work through Fortune’s algorithm we will need to be able to efficiently search through
these ordered objects. Moreover, we need to be able to add and remove arcs and breakpoints
without disrupting the ordering. Conveniently all of these operations can be implemented with
a slightly modified binary search tree (Cormen et al. 2022) that lacks an explicit key.

Many references, in particular Berg et al. (2008), recommend a binary search tree with two
types of nodes: one to represent arcs and one to represent the breakpoints. Unfortunately
this representation introduces some awkward implementation problems that are poorly docu-
mented. Your humble author has not yet been able to work these issues out.

In this note I will adopt a different representation inspired by, although slightly different from,
the approach taken in pvigier’s blog. Here beach lines will be implemented with a binary search
tree where every node represents an arc and its lower breakpoint paired together (Figure 26).
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Figure 26: (a) Every beach line (b) can be decomposed into a collection of ordered arc and lower
breakpoint pairs. (c) These ordered arc/breakpoint pairs can then implemented
with a key-less binary search tree data structure.
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Beyond a reference to their parent and child nodes in the tree, each nodes contains satellite
data that allows us to reconstruct the local structure of the beach line for any sweep line
configuration, and hence implement the sequential updates in Fortune’s algorithm.

4.2.1 Node Data

Each node in a beach line tree includes a reference to the site that generates the corresponding
arc. Because the parabola generated by a single site can contribute to the beach line multiple
times, multiple nodes can share the same site reference.

Once we know the generating site we can dynamically compute the shape of the arc for any
position of the sweep line. If we also know the position of the neighboring breakpoints we can
then plot the full extent of the arc in the beach line.

To that end the site information is complemented with a reference to the Voronoi half-edge that
originates from the lower breakpoint. From that reference we can derive the sites associated
with the Voronoi edge, in particular from the left face of the half-edge and the left face of its
twin. In turn those sites allow us to compute the intersection of the corresponding parabolas,
and hence the position of the lower breakpoint.

Because the first arc in a beach line is always unbounded below, it does not feature a lower
breakpoint. Consequently the smallest node in any beach line tree will always feature an empty
half-edge reference. Every other node, however, will feature a non-trivial reference.

As the sweep line progresses the half-edges associated with each breakpoint will not yet have an
originating Voronoi vertex. For visualization purposes we can always display these half-edges
as if they originated from the current position of the corresponding breakpoint (Figure 27).

Finally, to avoid repeated searches through the event queue each node also includes a reference
to any vertex events that are centered on the corresponding arc. This allows us to, for example,
quickly find events that need to be removed from the event queue when an arc is removed from
the beach line.

4.2.2 Tree Operations

The key difference (absolutely an intentional pun) between these beach line trees and generic
binary search trees is that the latter don’t feature a traditional key. Ordering of the nodes
in a beach line tree is determined not by static key values but rather by the relative vertical
position of the arcs and breakpoints along the corresponding beach line. As the sweep line
progresses the absolute positions change but the relative positions, and hence the structure of
the binary tree, remains invariant.

Beach line trees share most of the same operations as standard binary search trees, such
as predecessor, successor, and deletion operations. Without static keys, however, beach line
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Figure 27: Initially the half-edges stored in each node are not anchored to any Voronoi vertices.
When visualizing the progression of Fortune’s algorithm we can instead anchor each
half-edge to the current position of the corresponding breakpoint. This ensures that
the half-edges always span at least a segment of full Voronoi edge, shown here in
dark teal.

trees do not feature traditional key search or key insertion operations. In order to implement
Fortune’s algorithm we need to introduce slight different versions of these operations.

For example Fortune’s algorithm requires an arc search where we find the arc in a beach line
that intersects with a particular vertical position 𝑦 when the sweep line is at position 𝑆. To
find the corresponding arc node in a beach line tree we can modify the standard key search
operation, comparing 𝑦 to dynamically-computed breakpoint heights at each step instead of
keys (Figure 28).

Once we find an appropriate node we then need to be able to insert nodes immediately before
or after it, expanding the beach line with a new arc and breakpoint. Fortunately these insert-
before and insert-after operations are straightforward to implement (Figure 29).

For example to insert a new node after an existing node we check to see if it has a right child.
If it does not then we can insert the new node as the existing node’s right child. If there is a
right child then we find the successor to the existing node, which will always have no left child
otherwise it would not be a proper successor. Then we can insert the new node in that empty
left child position.
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Figure 28: Unlike the nodes in standard binary search trees, the nodes in beach line trees are
not equipped with static keys. Given a sweep line position, however, we can search
for positional intersections. (a) To find the arc that intersects 𝑦 = −1.931 we start
at the root node. We first compute the height of the lower breakpoint for the
current sweep line position, here −0.517, and then move to the left child because
the breakpoint height is above 𝑦. If 𝑦 were above the lower breakpoint height then
we would compute the current height of the upper breakpoint and move to the right
child if it is below 𝑦. Otherwise we would terminate the search. (b, c) We then
repeat this process, progressing down the tree until the search terminates. Here we
terminate after one iteration.
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(a) (b)

Figure 29: Without static keys beach line trees do not support key insertion operations. They
do, however, allow for insertion of a new node, here shown in light teal, before
or after a given node, here shown in dark teal. (a) For example the insert-after
operation begins by checking if the right child of the given node is empty and, if it
is, then inserts the new node as a new right child. (b) If the right child is occupied
then the insert-after operation moves to the successor node. Because the left child
of the successor will always be empty if the initial right child is not, the operation
can safely insert the new node there. The insert-below operation is symmetric, only
moving backwards instead of forwards.

4.2.3 Balancing

The number of operations needed to implement all of these beach line tree operations scales
with the height of a particular tree. Now the height of most trees scales logarithmically with
the number of nodes, with in the context of Fortune’s algorithm also scales logarithmically with
the number of sites. Consequently for most trees these operations require only a logarithmic
number of operations, and a typical evaluation of Fortune’s algorithm will achieve an overall
𝑁 log 𝑁 cost scaling.

Unfortunately the height of every possible binary tree is not always logarithmic in the number
of nodes. In the worst case the height of a tree can be linear in the number of nodes, pushing
up the overall cost scaling of Fortune’s algorithm to quadratic.

In order to realize the optimal performance of Fortune’s algorithm we need to be able to avoid
excessively tall, or unbalanced trees. Conveniently this can be accomplished with the use of
self-balancing binary trees, in particular red-black trees (Cormen et al. 2022). These
data structures modify the standard insertion and deletion operations to ensure that nodes
are well-distributed across the entire tree.

With the use of red-black trees and balanced insertion and deletion operations we can ensure
𝑁 log 𝑁 cost scaling for any evaluation of Fortune’s algorithm.

4.3 The Event Queue

The event queue in Fortune’s algorithm can be efficiently implemented with a priority queue
data structure (Cormen et al. 2022). Priority queues are equipped with an operation for
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“popping” the next element off of the queue as well as operations for inserting and deleting
elements while maintaining the overall order of the elements.

To implement Fortune’s algorithm we’ll need to consider two types of events. Vertex events
contain the position of the sweep line where an arc will collapse and a reference to the node
in the beach line tree that represents that arc. Site events, on the other hand, contain the
position where sweep line will encounter a new site as well as a reference to that site.

4.4 Event Processing

Fortune’s algorithm proceeds by popping the next event off of the event queue, using that
event to advanced the sweep line, and then updating the Voronoi graph as necessary. With
the operations of doubly-connected edge lists and binary search trees, processing each event is
relatively straightforward.

4.4.1 Processing Site Events

Processing a site event begins by using the arc search operation of the beach line tree to find
the arc that intersects with the height of the new site by searching through the beach line
tree.

Because splitting this arc will invalidate any existing vertex event centered on it, we have to
remove any corresponding vertex event from the event queue. This is straightforward given
the vertex event reference held in each node.

As the sweep line passes the new site, the intersecting arc will split into three arcs, with two
new breakpoints between them (Figure 30a, Figure 30b). This expansion is implemented by
creating two new nodes, one associated with the new site and one with the site generating the
existing arc, and then inserting them into the beach line tree with two balanced insert-after
operations (Figure 30c).

The half-edges of these two new nodes are always twinned to each other (Figure 31). Together
the half-edges define a new Voronoi edge associated with the old and new sites.

Lastly incorporating the new site creates up to two new triplets of neighboring arcs that might
generate new vertex events. Fortunately the nodes in the beach line tree representing these new
triplets can be readily accessed with the predecessor and successor beach line operations.
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Figure 30: (a) A site event splits one of the arcs in the initial beach line into three arcs,
with two new breakpoints. (b) This corresponds to two new arc-breakpoint pairs
being introduced. (c) The addition of the two new arc-breakpoint pairs is readily
implemented by twice applying the insert-after operation to the initial beach line
tree.
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Figure 31: The introduction of a new site introduces a new Voronoi edge which is implemented
with two new half-edges in the Voronoi graph that are twinned with each other. A
reference to each of these half-edges is stored in the the two new nodes added to
the beach line tree. For example here a reference to the half-edge he1 is stored in
the node (𝑏𝑛6𝑛2

, 𝑠𝑛2
) while a reference to he2 is stored in the node (𝑏𝑛2𝑛6

, 𝑠𝑛6
).
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4.4.2 Processing Vertex Events

The first step when processing a new vertex event is to remove any other vertex events that
will become invalid after we remove the collapsing arc. This can be done efficiently by using
the predecessor and successor operations of the beach line tree to find the neighboring arcs,
and then removing any vertex events referenced in those arcs.

Next we manage the expansion of the Voronoi graph. We begin by adding a new vertex to
the doubly-connected edge list at the point where the collapsing arc becomes singular and the
neighboring breakpoints intersect.

Then we have to deal with the Voronoi edges. We create a new half-edge originating at the
new vertex and its twin that, for the moment, is left unanchored (Figure 32). Lastly we have
to carefully connect the previous and next references between these two new half-edges, the
two half-edges associated with the neighboring breakpoints, and their twins (Figure 33).

At this point we’re ready to remove the collapsing arc and replace its two neighboring break-
points with a new merged breakpoint (Figure 34a, Figure 34b). This can be done by updating
the half-edge reference of the successor node and then applying a balanced deletion operation
(Figure 34c).

Lastly there are two new triplets of neighboring arcs that we have to check for possible new
vertex events. Once again we can efficiently access these arcs by repeatedly applying the
predecessor and successor beach line tree operations.

4.5 Clean Up

Once the event queue has been exhausted we are left with a doubly-connected edge list that
contains all of the information about the Voronoi graph, and hence the Voronoi diagram.

At this point the beach line tree will not be empty. In fact the remaining breakpoint nodes
reference all of the half-edges with unbounded origins. If we want to visualize the Voronoi
graph neatly then we want to anchor these dangling edges by creating a bounding box and
then adding a pseudo-vector to the doubly-connected edge list for the intersection of each
dangling half-edge with that boundary.

5 Demonstration

To put all of this discussion into practice let’s work through a full implementation of Fortune’s
algorithm in R. Although doubly-connected edge lists, binary search trees, and event queues
can all be implemented with functional programming I strongly prefer a more object-oriented
approach. To achieve object-oriented programming in R I will use R6 classes (Chang 2025), at
the cost of some clumsy interactions with base R graphics. At least using R6 classes gets us
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Figure 32: Vertex events require substantial updates to the half-edges of the Voronoi graph. (a)
The breakpoints that merge in a vertex event contain references to two half-edges,
here he1 and he3. (b) When processing a vertex event we delete these references (c)
Then we create two new half-edges, one of which is referenced by the new vertex,
here he5, and one of which is referenced by the new breakpoint, here he6.
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Figure 33: The trickiest part of processing a vertex event is making sure that the four existing
half-edges and the two new half-edges all properly reference each other. These
references ultimately define the structure of the Voronoi graph.

pass-by-reference semantics for class instances instead of R’s usual call-by-need/lazy evaluation
semantics!

library(R6)

Warning: package 'R6' was built under R version 4.3.3

Speaking of graphics, let’s tweak the local graphics configuration.

par(family="serif", las=1, bty="l",
cex.axis=1, cex.lab=1, cex.main=1,
xaxs="i", yaxs="i", mar = c(5, 5, 3, 1))

c_light <- c("#DCBCBC")
c_light_highlight <- c("#C79999")
c_mid <- c("#B97C7C")
c_mid_highlight <- c("#A25050")
c_dark <- c("#8F2727")
c_dark_highlight <- c("#7C0000")

c_light_teal <- c("#6B8E8E")
c_mid_teal <- c("#487575")
c_dark_teal <- c("#1D4F4F")
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Figure 34: (a) A vertex event removes one of the arcs in the initial beach line, replacing the two
neighboring breakpoints with a new merged breakpoint. (b) This corresponds to
removing one of the initial arc-breakpoint pairs and then updating the breakpoint
information in another arc-breakpoint pair. (c) The removal of the deprecated arc-
breakpoint pair is implemented by applying the deletion operation to the initial
beach line tree.
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5.1 Beach Line

To define a beach line we’ll first need nodes.

This class implements arc-breakpoint nodes with satellite data for the associated site, half-
edge, and vertex event. Note that the site variables are integer indices which will be used to
access site information from global arrays.

The variable red denotes the coloring of the node which is used for balancing binary trees.

node <- R6Class("node",
public = list(

site = NULL,
parent = NULL,
left = NULL,
right = NULL,
red = FALSE,
id = NULL,
he = NULL, # Half-edge originating at (predecessor$site, site)
scheduled_vertex = NULL,
initialize = function(beachline) {
if (is.integer(beachline)) {
self$id <- beachline

} else {
self$parent <- beachline$nil
self$left <- beachline$nil
self$right <- beachline$nil

beachline$last_node_id <- beachline$last_node_id + 1
self$id <- beachline$last_node_id

}
}

)
)

The id variable allows us to determine if any two node instances refer to the same object.
In many programming languages this is done by directly comparing memory addresses, but
because R6 classes are built up from R environments this is not possible here.

`==.node` = function(x, y) { x$id == y$id }
`!=.node` = function(x, y) { x$id != y$id }
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A beach line tree itself is defined by its root node. Here we’ll be using a self-balancing red-
black binary tree which uses the coloring of the nodes to limit the height of any given tree.
Red-black binary trees requires a dedicated null, or nil, node.

beachline <- R6Class("beachline",
public = list(
nil = NULL,
root = NULL,
last_node_id = NULL,
initialize = function() {

self$nil <- node$new(as.integer(0))
self$root <- self$nil
self$last_node_id <- as.integer(1)

}
))

The beachline class also gives us a place to keep track of the node indices.

5.1.1 Black-Red Binary Tree Operations

The insert_fixup function balances a binary tree after we add the node z.

beachline$set("private", "left_rotate",
function(x) {
if (x$right == self$nil)

return()

y <- x$right
x$right <- y$left

if (y$left != self$nil)
y$left$parent <- x

y$parent <- x$parent

if (x$parent == self$nil) {
self$root <- y

} else {
if (x$parent$left == x)
x$parent$left <- y

else
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x$parent$right <- y
}

y$left <- x
x$parent <- y

})

beachline$set("private", "right_rotate",
function(x) {
if (x$left == self$nil)

return()

y <- x$left
x$left <- y$right

if (y$right != self$nil)
y$right$parent <- x

y$parent <- x$parent

if (x$parent == self$nil) {
self$root <- y

} else {
if (x$parent$right == x)
x$parent$right <- y

else
x$parent$left <- y

}

y$right <- x
x$parent <- y

})

beachline$set("private", "insert_fixup",
function(z) {
while (z$parent$red) {

if (z$parent == z$parent$parent$left) {
y <- z$parent$parent$right
if (y$red) {
z$parent$red <- FALSE
y$red <- FALSE
z$parent$parent$red <- TRUE
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z <- z$parent$parent
} else {
if (z == z$parent$right) {
z <- z$parent
private$left_rotate(z)

}
z$parent$red <- FALSE
z$parent$parent$red <- TRUE
private$right_rotate(z$parent$parent)

}
} else {
y <- z$parent$parent$left

if (y$red) {
z$parent$red <- FALSE
y$red <- FALSE
z$parent$parent$red <- TRUE
z <- z$parent$parent

} else {
if (z == z$parent$left) {
z <- z$parent
private$right_rotate(z)

}
z$parent$red <- FALSE
z$parent$parent$red <- TRUE
private$left_rotate(z$parent$parent)

}
}

}
self$root$red <- FALSE

})

The insert_fixup function then allows us to implement balanced insert-before and
insert-after operations.

beachline$set("public", "insert_before",
function(x, y) {
if (x$left == self$nil) {

x$left <- y
y$parent <- x

} else {
z <- self$predecessor(x)
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z$right <- y
y$parent <- z

}

y$left <- self$nil
y$right <- self$nil
y$red <- TRUE

private$insert_fixup(y)
})

beachline$set("public", "insert_after",
function(x, y) {
if (x$right == self$nil) {

x$right <- y
y$parent <- x

} else {
z <- self$successor(x)
z$left <- y
y$parent <- z

}

y$left <- self$nil
y$right <- self$nil
y$red <- TRUE

private$insert_fixup(y)
})

Deleting a node from a red-black tree takes some care. To properly remove a node we’ll need
to be able to calculate the boundaries of sub-trees.

beachline$set("public", "min",
function(x) {
if (x == self$nil)

return(self$nil)
while (x$left != self$nil)

x <- x$left
x

})
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beachline$set("public", "max",
function(x) {
if (x == self$nil)

return(self$nil)
while (x$right != self$nil)

x <- x$right
x

})

Then we’ll need to carefully balance the tree.

beachline$set("private", "transplant",
function(u, v) {
if (u$parent == self$nil) {

self$root <- v
} else {

if (u == u$parent$left) {
u$parent$left <- v

} else {
u$parent$right <- v

}
}
v$parent <- u$parent

})

beachline$set("private", "delete_fixup",
function(x) {
while (x != self$root && !x$red) {

if (x == x$parent$left) {
w <- x$parent$right

if (w$red) {
w$red <- FALSE
x$parent$red <- TRUE
private$left_rotate(x$parent)
w <- x$parent$right

}

if (!w$left$red && !w$right$red) {
w$red <- TRUE
x <- x$parent

} else {
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if (!w$right$red) {
w$left$red <- FALSE
w$red <- TRUE
private$right_rotate(w)
w <- x$parent$right

}

w$red <- x$parent$red
x$parent$red <- FALSE
w$right$red <- FALSE
private$left_rotate(x$parent)
x <- self$root

}
} else {
w <- x$parent$left

if (w$red) {
w$red <- FALSE
x$parent$red <- TRUE
private$right_rotate(x$parent)
w <- x$parent$left

}

if (!w$right$red && !w$left$red) {
w$red <- TRUE
x <- x$parent

} else {
if (!w$left$red) {
w$right$red <- FALSE
w$red <- TRUE
private$left_rotate(w)
w <- x$parent$left

}

w$red <- x$parent$red
x$parent$red <- FALSE
w$left$red <- FALSE
private$right_rotate(x$parent)
x <- self$root

}
}

}
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x$red <- FALSE
})

beachline$set("public", "delete",
function(z) {
y <- z
y_old_red <- y$red

if (z$left == self$nil) {
x <- z$right
private$transplant(z, z$right)

} else if (z$right == self$nil) {
x <- z$left
private$transplant(z, z$left)

} else {
y <- self$min(z$right)
y_old_red <- y$red
x <- y$right

if (y != z$right) {
private$transplant(y, y$right)
y$right <- z$right
y$right$parent <- y

} else {
x$parent <- y

}

private$transplant(z, y)
y$left <- z$left
y$left$parent <- y
y$red <- z$red

}

if (!y_old_red)
private$delete_fixup(x)

})

Neighboring nodes can be accessed with precursor and successor operations.

beachline$set("public", "predecessor",
function(x) {
if (x$left != self$nil) {
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return(self$max(x$left))
} else {

y <- x$parent
while ( y != self$nil

&& x == y$left) {
x <- y
y <- y$parent

}
return(y)

}
})

beachline$set("public", "successor",
function(x) {
if (x$right != self$nil) {

return(self$min(x$right))
} else {

y <- x$parent
while ( y != self$nil

&& x == y$right) {
x <- y
y <- y $parent

}
return(y)

}
})

5.1.2 Visualization Functions

Visualizing the nodes in a binary search tree is particularly elegant with recursive functions.
That said any function that interacts with base R graphics objects has to be external to the
R6 class.

beachline$set("public", "height",
function(node=NULL) {
if (is.null(node))

node <- self$root

if (node == self$nil)
return(0)
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left_height <- self$height(node$left)
right_height <- self$height(node$right)

1 + max(left_height, right_height)
})

Just to minimize the text, we’ll display only the site that generates the arc associated with
each node and not any information about the lower breakpoint.

plot_node <- function(nil, node,
x, y,
delta_x, delta_y,
text_cex) {

if (node$left != nil) {
lines(c(x, x - delta_x), c(y, y - delta_y),

col=c_mid_teal, lwd=2)
plot_node(nil, node$left,

x - delta_x, y - delta_y,
delta_x / 2, delta_y, text_cex)

}

if (node$right != nil) {
lines(c(x, x + delta_x), c(y, y - delta_y),

col=c_mid_teal, lwd=2)
plot_node(nil, node$right,

x + delta_x, y - delta_y,
delta_x / 2, delta_y, text_cex)

}

if (node$red)
points(x, y, pch=16, col=c_dark, cex=3)

else
points(x, y, pch=16, col="black", cex=3)

text(x, y, col="white", cex=text_cex,
labels=node$site)

}

plot_tree <- function(tree, delta=0.5, text_cex=0.75) {
H <- tree$height()
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par(mar=c(0, 0, 0, 0))

plot(NULL,
xlab='', ylab='', xaxt="n", yaxt="n", frame.plot=F,
xlim=c(-delta * (2**(H - 1) + 1), delta * (2**(H - 1) + 1)),
ylim=c(-(H - 0.5) * delta, 0.5 * delta))

plot_node(tree$nil, tree$root, 0, 0,
delta * 2**(H - 2), delta, text_cex)

}

5.1.3 Fortune’s Algorithm Geometry Calculations

As we’ve seen, implementing Fortune’s algorithm requires a lot of geometric calculations.

For example we’ll need to be able to compute the vertical position of the breakpoint separating
two neighboring arcs on a beach line. Site positions are accessed by indexing the global arrays
xs and ys.

beachline$set("public", "pair_intersection",
function(n1, n2, S) {
if (xs[n1] == S)

return(ys[n1])
if (xs[n2] == S)

return(ys[n2])

a <- xs[n2] - xs[n1]
b <- ys[n2] * (S - xs[n1]) - ys[n1] * (S - xs[n2])
c <- ( ys[n2]**2 * (S - xs[n1])

- ys[n1]**2 * (S - xs[n2])
- (S - xs[n1]) * (S - xs[n2]) * (xs[n2] - xs[n1]) )

e <- b / a
d <- sqrt( e**2 - c / a )
e - sign(a) * d

})

The horizontal position of a breakpoint can be recovered from the parabola defining each arc.
Here (fx, fy) defines the focal point of the parabola and S the vertical directrix.
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beachline$set("public", "parabola_xs",
function(parabola_ys, fx, fy, S) {
0.5 * ( (fx + S) - (parabola_ys - fy)**2 / (S - fx) )

})

We can’t forget the circumcircles.

beachline$set("public", "circumcircle",
function(n1, n2, n3) {
D <- 2 * ( xs[n1] * (ys[n2] - ys[n3])

+ xs[n2] * (ys[n3] - ys[n1])
+ xs[n3] * (ys[n1] - ys[n2]) )

xc <- ( (xs[n1]**2 + ys[n1]**2) * (ys[n2] - ys[n3])
+ (xs[n2]**2 + ys[n2]**2) * (ys[n3] - ys[n1])
+ (xs[n3]**2 + ys[n3]**2) * (ys[n1] - ys[n2]) ) / D

yc <- ( (xs[n1]**2 + ys[n1]**2) * (xs[n3] - xs[n2])
+ (xs[n2]**2 + ys[n2]**2) * (xs[n1] - xs[n3])
+ (xs[n3]**2 + ys[n3]**2) * (xs[n2] - xs[n1]) ) / D

dx <- xc - xs[n1]
dy <- yc - ys[n1]

if (dx > dy) {
r <- abs(dx) * sqrt(1 + (dy / dx)**2)

} else {
r <- abs(dy) * sqrt(1 + (dx / dy)**2)

}

c(xc, yc, r)
})

We can use these geometric functions to, for example, find the node representing the arc that
intersects with a given vertical position.

beachline$set("private", "arc_search",
function(z, y, S) {
while (1) {

z_left <- self$predecessor(z)
if (z_left != self$nil) {
by <- self$pair_intersection(z_left$site, z$site, S)
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if (y <= by) {
z <- z$left
next

}
}

z_right <- self$successor(z)
if (z_right != self$nil) {
by <- self$pair_intersection(z$site, z_right$site, S)
if (y > by) {
z <- z$right
next

}
}

break
}

return(z)
})

5.1.4 Fortune’s Algorithm Event Functions

With all of these auxiliary functions we are finally ready to implement event processing func-
tions.

One operating that appears over and over again when processing events is checking triplets of
arcs to see if they define a valid vertex event and, if so, adding that event to the event queue
queue.

As we discussed in Section 3.4.2 there is undoubtably a more elegant way to verify that alpha
will collapse as the sweep line progresses than comparing upper_int to lower_int, but it will
do for now.

beachline$set("private", "schedule_new_vertex_event",
function(queue, alpha_l, alpha, alpha_r, S) {
# Skip vertex if any of the neighboring arcs are nil
if (alpha_l == self$nil || alpha_r == self$nil) {

return()
}

# Skip vertex if any of the sites are the same
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if (alpha_l$site == alpha_r$site) {
return()

}

# Construct circumcircle
int <- self$circumcircle(alpha_l$site,

alpha$site,
alpha_r$site)

S_new <- int[1] + int[3]

lower_int <- self$pair_intersection(alpha_l$site,
alpha$site, S_new)

upper_int <- self$pair_intersection(alpha$site,
alpha_r$site, S_new)

if ( S_new > S
&& (abs(upper_int - lower_int) < (1e6 * .Machine$double.eps)) ) {

vertex_event <- event$new(NULL, S_new, NULL, alpha)
alpha$scheduled_vertex <- vertex_event
queue$insert_event(vertex_event)

}
})

Now we can process site events.

beachline$set("private", "process_site_event",
function(queue, graph, new_event) {
new_site <- new_event$site

# Initialize beachline if empty
if (self$root == self$nil) {

self$root <- node$new(self)
self$root$site <- new_site
return()

}

# Find beachline arc that intersects
# vertical position of new site
alpha <- private$arc_search(self$root,

ys[new_site],
new_event$x)
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# Delete any scheduled vertex
# events at intersecting arc
if (!is.null(alpha$scheduled_vertex)) {

queue$delete_event(alpha$scheduled_vertex)
alpha$scheduled_vertex <- NULL

}

# Split intersecting arc
alpha_r <- node$new(self)
alpha_r$site <- new_site

self$insert_after(alpha, alpha_r)

alpha_rr <- node$new(self)
alpha_rr$site <- alpha$site

self$insert_after(alpha_r, alpha_rr)

# Instantiate and connect new half-edges
new_he <- graph$new_half_edge(left_face=alpha$site) # (alpha, alpha_r)
new_he$twin <- graph$new_half_edge(left_face=new_site, # (alpha_r, alpha_rr)

twin=new_he)

alpha_r$he <- new_he
alpha_rr$he <- new_he$twin

# Attempt to schedule vertex events
# for the two new arc triplets
alpha_l <- self$predecessor(alpha)
private$schedule_new_vertex_event(queue,

alpha_l, alpha, alpha_r,
new_event$x)

alpha_rrr <- self$successor(alpha_rr)
private$schedule_new_vertex_event(queue,

alpha_r, alpha_rr, alpha_rrr,
new_event$x)

})

Vertex event processing follows.
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beachline$set("private", "process_vertex_event",
function(queue, graph, new_event) {
alpha <- new_event$arc

alpha_r <- self$successor(alpha)
alpha_rr <- self$successor(alpha_r)

alpha_l <- self$predecessor(alpha)
alpha_ll <- self$predecessor(alpha_l)

# Clean up deprecated vertex events in the queue
if (!is.null(alpha_r$scheduled_vertex)) {

queue$delete_event(alpha_r$scheduled_vertex)
alpha_r$scheduled_vertex <- NULL

}

if (!is.null(alpha_l$scheduled_vertex)) {
queue$delete_event(alpha_l$scheduled_vertex)
alpha_l$scheduled_vertex <- NULL

}

# Create vertex
int <- self$circumcircle(alpha_l$site, alpha$site, alpha_r$site)
v <- vertex$new(int[1:2], alpha_l$site, alpha$site, alpha_r$site)
graph$add_vertex(v)

# Connect vertex
alpha_r$he$origin <- v
alpha$he$origin <- v

new_he <- graph$new_half_edge(origin=v,
left_face=alpha_r$site)

new_he$twin <- graph$new_half_edge(left_face=alpha_l$site,
twin=new_he)

v$he <- new_he

# Connect half-edges
alpha$he$twin$nxt <- alpha_r$he
alpha_r$he$prv <- alpha$he$twin

alpha_r$he$twin$nxt <- new_he
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new_he$prv <- alpha_r$he$twin

new_he$twin$nxt <- alpha$he
alpha$he$prv <- new_he$twin

# Update active half-edges
alpha_r$he <- new_he$twin

# Delete deprecated arcs
self$delete(alpha)

# Check for new vertex events
private$schedule_new_vertex_event(queue,

alpha_ll, alpha_l, alpha_r,
new_event$x)

private$schedule_new_vertex_event(queue,
alpha_l, alpha_r, alpha_rr,
new_event$x)

})

Lastly we’ll wrap both of these event processing functions together.

beachline$set("public", "process_next_event",
function(queue, graph) {
next_event <- queue$pop_next_element()

if (!is.null(next_event$site)) {
private$process_site_event(queue,

graph,
next_event)

} else {
private$process_vertex_event(queue,

graph,
next_event)

}
})

5.1.5 Fortune’s Algorithm Visualization Functions

To monitor the progress of Fortune’s algorithm we’ll define some functions that allow us to
plot the shape of the beach line for any sweep line position, as well as the behavior of any
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preliminary Voronoi edges.

plot_arcs <- function(bl, S, x=NULL, y_min, y_max) {
if (is.null(x))

x <- bl$root

if (x == bl$nil)
return(y_max)

# Recurse right
y_max <- plot_arcs(bl, S, x$right, y_min, y_max)

# Plot arc
if (is.null(x$he)) {

# Plot parabola
if (y_min + 1e-3 < y_max) {
parabola_ys <- seq(y_min, y_max, 1e-3)
lines(bl$parabola_xs(parabola_ys, xs[x$site], ys[x$site], S),

parabola_ys, lty=2, lwd=2, col=c_mid)
}

} else {
# Compute left breakpoint
by <- bl$pair_intersection(x$he$left_face, x$site, S)
bx <- bl$parabola_xs(by, xs[x$site], ys[x$site], S)

# Plot parabola
if (by + 1e-3 < y_max) {
parabola_ys <- seq(by, y_max, 1e-3)
lines(bl$parabola_xs(parabola_ys, xs[x$site], ys[x$site], S),

parabola_ys, lty=2, lwd=2, col=c_mid)
}

# Plot left breakpoint
points(bx, by, col=c_light, pch=16)
text(bx + 0.1, by,

labels=paste0(x$he$left_face, ",", x$site))

# Save breakpoint position for plotting half-edges
x$he$pseudo_origin <- c(bx, by)

# Update upper bound
y_max <- by

}
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# Recurse left
y_max <- plot_arcs(bl, S, x$left, y_min, y_max)

return(y_max)
}

plot_beachline <- function(bl, S,
xlim=c(-4, 4),
ylim=c(-4, 4)) {

plot(xs, ys, col=c_dark, pch=16,
xlim=xlim, ylim=ylim,
main="")

# Plot sweep line
abline(v=S, col=c_mid_teal, lty=2)

# Plot site parabolas given the sweep line
for (i in which(xs < S)) {

text(xs[i] + 0.1, ys[i], i)
parabola_ys <- seq(ylim[1], ylim[2], 0.01)
lines(bl$parabola_xs(parabola_ys, xs[i], ys[i], S),

parabola_ys, lwd=2, col="#DDDDDD")
}

# Plot beach line
if (bl$root != bl$nil)

r <- plot_arcs(bl, S, y_min=ylim[1], y_max=ylim[2])
}

plot_beachline_half_edges <- function(bl, S, x=NULL,
lwd=2, col=c_mid_teal,
delta=0.08, eps=0.04,
theta=60, gamma=0.0075) {

if (is.null(x))
x <- bl$root

if (x != bl$nil) {
# Recurse right
plot_beachline_half_edges(bl, S, x$right,

lwd, col, delta,

59



eps, theta, gamma)

# Plot arc
if (!is.null(x$he)) {
if (is.null(x$he$origin)) p1 <- x$he$pseudo_origin
else p1 <- x$he$origin$pos

if (is.null(x$he$twin$origin)) p2 <- x$he$twin$pseudo_origin
else p2 <- x$he$twin$origin$pos

plot_half_edge(p1, p2, lwd, col, delta, eps, theta, gamma)
}

# Recurse left
plot_beachline_half_edges(bl, S, x$left,

lwd, col, delta,
eps, theta, gamma)

}
}

5.2 Event Queue

We’ll overload the event class to handle both site and vertex events at the same time. The
variable site is used for only site events while the variable arc is used for only vertex events.

event <- R6Class("event",
public=list(
x=NULL,
site=NULL,
arc=NULL,
queue_idx=NULL,
initialize = function(i, x, site, arc) {

self$queue_idx <- i
self$x <- x
self$site <- site
self$arc <- arc

}))

The event queue itself is a pretty straightforward implementation of a priority queue data
structure. When creating a new event queue instance we pass in a vector of indices for the
available sites which are then used to create the site events that initially populate the queue.
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event_queue <- R6Class("event_queue",
public=list(
idxs=NULL,
events=NULL,
length=0,
initialize = function(sites, xs) {

self$length <- length(sites)
self$idxs <- 1:self$length
for (i in seq_along(sites)) {
new_event <- event$new(i, xs[i], i, NULL)
self$events <- append(self$events,

new_event)
}
for (i in (self$length %/% 2):1) {
private$min_heapify(i)

}
},
is_empty = function() {

self$length == 0
},
is_not_empty = function() {

self$length > 0
}))

event_queue$set("private", "min_heapify",
function(i) {
l <- 2 * i
r <- l + 1

if ( l <= self$length
&& self$events[[self$idxs[l]]]$x

< self$events[[self$idxs[i]]]$x) {
smallest <- l

} else {
smallest <- i

}

if ( r <= self$length
&& self$events[[self$idxs[r]]]$x
< self$events[[self$idxs[smallest]]]$x) {

smallest <- r
}
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if (smallest != i) {
n <- self$events[[self$idxs[i]]]$queue_idx
self$events[[self$idxs[i]]]$queue_idx <-
self$events[[self$idxs[smallest]]]$queue_idx

self$events[[self$idxs[smallest]]]$queue_idx <- n

n <- self$idxs[i]
self$idxs[i] <- self$idxs[smallest]
self$idxs[smallest] <- n

private$min_heapify(smallest)
}

})

event_queue$set("public", "insert_event",
function(new_event) {
self$length <- self$length + 1
self$idxs <- c(self$idxs, length(self$events) + 1)

new_event$queue_idx <- self$length
self$events <- append(self$events, new_event)

i <- self$length
while ( i > 1

&& self$events[[self$idxs[i %/% 2]]]$x
> self$events[[self$idxs[i]]]$x) {

n <- self$events[[self$idxs[i]]]$queue_idx
self$events[[self$idxs[i]]]$queue_idx <-
self$events[[self$idxs[i %/% 2]]]$queue_idx

self$events[[self$idxs[i %/% 2]]]$queue_idx <- n

n <- self$idxs[i]
self$idxs[i] <- self$idxs[i %/% 2]
self$idxs[i %/% 2] <- n

i <- i %/% 2
}

})

event_queue$set("public", "insert_site_event",
function(site, xs) {
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self$insert_event(event$new(NULL, xs[site], site, NULL))
})

event_queue$set("public", "insert_vertex_event",
function(S, arc) {
self$insert_event(event$new(NULL, S, NULL, arc))

})

event_queue$set("public", "pop_next_element",
function() {
if (self$length == 0) {

print("The queue is empty!")
return(NULL)

}

next_element <- self$events[[self$idxs[1]]]

self$idxs[1] <- self$idxs[self$length]
self$events[[self$idxs[1]]]$queue_idx <- 1

self$idxs <- self$idxs[-self$length]
self$length <- self$length - 1

private$min_heapify(1)

next_element
})

event_queue$set("public", "delete_event",
function(event) {
event$x <- self$events[[self$idxs[1]]]$x - 1

i <- event$queue_idx
while ( i > 1

&& self$events[[self$idxs[i %/% 2]]]$x
> self$events[[self$idxs[i]]]$x) {

n <- self$events[[self$idxs[i]]]$queue_idx
self$events[[self$idxs[i]]]$queue_idx <-
self$events[[self$idxs[i %/% 2]]]$queue_idx

self$events[[self$idxs[i %/% 2]]]$queue_idx <- n

n <- self$idxs[i]
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self$idxs[i] <- self$idxs[i %/% 2]
self$idxs[i %/% 2] <- n

i <- i %/% 2
}
e <- self$pop_next_element()

})

event_queue$set("public", "check_min_heapify",
function() {
if (self$length > 0) {

for (i in 1:self$length) {
if (i %/% 2 == 0) next
print( self$events[[self$idxs[i %/% 2]]]$x

<= self$events[[self$idxs[i]]]$x)
}

}
})

event_queue$set("public", "next_event",
function() {
if (self$length > 0)

self$events[[self$idxs[1]]]
})

5.3 Doubly-Connected Edge List

In order to represent a Voronoi graph we’ll need classes for half_edges, vertices, and faces and
then the doubly-connected edge list that encapsulates them.

Like the beach line nodes the half-edges uses a global indexing to allow for equality comparisons.
The pseudo_origin variable is used for plotting dangling half-edges that have not yet been
anchored to vertices.

half_edge <- R6Class("half_edge",
public=list(
pseudo_origin=NULL,
origin=NULL,
left_face=NULL,
twin=NULL,
prv=NULL,
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nxt=NULL,
visited=FALSE,
id=NULL,
initialize = function(graph, o, lf, t, p, n) {

self$origin <- o
self$left_face <- lf
self$twin <- t
self$prv <- p
self$nxt <- n

graph$last_half_edge_id <- graph$last_half_edge_id + 1
self$id <- graph$last_half_edge_id

}))

`==.half_edge` = function(x, y) { x$id == y$id }
`!=.half_edge` = function(x, y) { x$id != y$id }

vertex <- R6Class("vertex",
public=list(

pos=NULL,
n1=NULL,
n2=NULL,
n3=NULL,
he=NULL,
initialize = function(p, n1, n2, n3) {
self$pos <- p
self$n1 <- n1
self$n2 <- n2
self$n3 <- n3

}))

face <- R6Class("face",
public=list(

site=NULL,
he=NULL,
initialize = function(site, he) {
self$site <- site
self$he <- he

}))
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dcel <- R6Class("dcel",
public=list(

vertices=NULL,
pseudo_vertices=NULL,
faces=NULL,
xlim=NULL,
ylim=NULL,
last_half_edge_id = NULL,
initialize = function() {
self$vertices <- list()
self$pseudo_vertices <- list()
self$faces <- list()
self$last_half_edge_id <- as.integer(1)

},
add_vertex = function(v) {
self$vertices <-
append(self$vertices, v)

},
N_vertices = function() {
length(self$vertices)

},
add_pseudo_vertex = function(pv) {
self$pseudo_vertices <-
append(self$pseudo_vertices, pv)

},
N_pseudo_vertices = function() {
length(self$pseudo_vertices)

},
add_face = function(f) {
self$faces <-
append(self$faces, f)

},
N_faces = function() {
length(self$faces)

}))

dcel$set("public", "new_half_edge",
function(origin=NULL, left_face=NULL,

twin=NULL, prv=NULL, nxt=NULL) {
half_edge$new(self, origin, left_face, twin, prv, nxt)

})
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There are all kinds of operations that we can implement from the structure encoded in a
doubly-connected edge list. For example we can automatically compute a bounding box that
contains all of the vertices. The parameter q specifies how much multiplicative margin we add
around the smallest bounding box.

dcel$set("public", "compute_bounding_box",
function(q=0.05) {
# Set bounding box edges to
# extreme vertex positions
self$xlim <- c(self$vertices[[1]]$pos[1],

self$vertices[[1]]$pos[1])
self$ylim <- c(self$vertices[[1]]$pos[2],

self$vertices[[1]]$pos[2])

for (v in self$vertices[-1]) {
if (v$pos[1] > self$xlim[2]) {
self$xlim[2] <- v$pos[1]

} else if (v$pos[1] < self$xlim[1]) {
self$xlim[1] <- v$pos[1]

}

if (v$pos[2] > self$ylim[2]) {
self$ylim[2] <- v$pos[2]

} else if (v$pos[2] < self$ylim[1]) {
self$ylim[1] <- v$pos[2]

}
}

# Add proportional margins to bounding box
dx <- self$xlim[2] - self$xlim[1]
self$xlim[1] <- self$xlim[1] - q * dx
self$xlim[2] <- self$xlim[2] + q * dx

dy <- self$ylim[2] - self$ylim[1]
self$ylim[1] <- self$ylim[1] - q * dy
self$ylim[2] <- self$ylim[2] + q * dy

})

Given a bounding box we can then introduce pseudo-vertices to anchor any dangling half-
edges.
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dcel$set("public", "anchor_dangling_edges",
function(z, xs, ys) {
# Dangling edge
he <- z$he

if (!is.null(he)) {
nu <- he$twin$origin$pos
zeta <- -nu

i_left <- he$left_face
i_right <- he$twin$left_face
dangling_he <- he

# Anchored edges
he <- he$nxt
zeta <- zeta + he$twin$origin$pos

he <- he$twin$nxt
zeta <- zeta + he$twin$origin$pos

# Compute bisecting vector in the opposite
# direction of the anchored edges
delta <- c(ys[i_right] - ys[i_left],

xs[i_left] - xs[i_right])

# Compute closest bounding box intersection
bh <- ifelse(delta[1] > 0, self$xlim[2], self$xlim[1])
bv <- ifelse(delta[2] > 0, self$ylim[2], self$ylim[1])

pv_x <- bh
pv_y <- nu[2] + delta[2] * (pv_x - nu[1]) / delta[1]
if (pv_y < self$ylim[1] || pv_y > self$ylim[2]) {
pv_y <- bv
pv_x <- nu[1] + delta[1] * (pv_y - nu[2]) / delta[2]

}

# Anchor dangling edge to a new pseudo-vertex
# positioned at the bounding box intersection
pv <- vertex$new(c(pv_x, pv_y), NULL, NULL, NULL)
dangling_he$origin <- pv
pv$he <- dangling_he
self$add_pseudo_vertex(pv)
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# Recurse
self$anchor_dangling_edges(z$left, xs, ys)
self$anchor_dangling_edges(z$right, xs, ys)

}
})

More relevant to the construction of a Voronoi diagrams, we also can follow the half-edges to
automatically identify all of the faces in the graph, and hence cells in the diagram.

dcel$set("private", "reset_visitation",
function() {
for (v in self$vertices) {

he <- v$he
he$visited <- FALSE
he$twin$visited <- FALSE
he <- he$prv
he$visited <- FALSE
he$twin$visited <- FALSE
he <- he$twin$prv
he$visited <- FALSE
he$twin$visited <- FALSE

}
})

dcel$set("public", "find_faces",
function(he=NULL) {

if (is.null(he)) {
private$reset_visitation()
he <- self$vertices[[1]]$he

}

init_he <- he
open_face <- FALSE
closed_face <- FALSE

while (!he$visited) {
he$visited <- TRUE
he <- he$nxt
if (is.null(he)) {
open_face <- TRUE
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break
}
if (he == init_he) {
closed_face <- TRUE
break

}
}

he <- init_he
if (open_face) {

# Reverse to beginning of open boundary
while(!is.null(he$prv)) {
he <- he$prv

}

self$add_face(face$new(he$left_face, he))

# Shoot along open boundary
while(!is.null(he$nxt)) {
if(!he$twin$visited) self$find_faces(he$twin)
he <- he$nxt

}
}
if (closed_face) {

self$add_face(face$new(he$left_face, he))

# Shoot along closed boundary
while(1) {
if(!he$twin$visited) self$find_faces(he$twin)
he <- he$nxt
if (he == init_he) break

}
}

})

Why spend all of this time creating graphs if we can’t visualize them with aesthetic flair?

plot_half_edge <- function(pi, pf, lwd, col=c_mid_teal,
delta, eps, theta, gamma) {

r <- pf - pi
v <- r / sqrt(sum(r**2))
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r_perp <- c(r[2], -r[1])
w <- r_perp / sqrt(sum(r_perp**2))

# Perpendicular offset
gammax <- -gamma * w[1]
gammay <- -gamma * w[2]

# Arrow body
lines(c(pi[1], pf[1]) + gammax,

c(pi[2], pf[2]) + gammay,
lwd=lwd, col=col)

# Arrow head
phi_rad <- (90 - theta) * (3.14159265 / 180)
p3 <- pf - (delta + eps * tan(phi_rad)) * v - eps * w
p4 <- pf - delta * v

polygon(c(pf[1], p3[1], p4[1], pf[1]) + gammax,
c(pf[2], p3[2], p4[2], pf[2]) + gammay,
col=col, border=NA)

}

plot_vertex_edges <- function(v, lwd=2, ucol=c_mid_teal,
delta=0.1, eps=0.05,
theta=60, gamma=0.025) {

points(v$pos[1], v$pos[2],
pch=16, col=c_light_teal)

he <- v$he

while(1) {
if (is.null(he$origin)) p1 <- he$pseudo_origin
else p1 <- he$origin$pos

if (is.null(he$twin$origin)) p2 <- he$twin$pseudo_origin
else p2 <- he$twin$origin$pos

plot_half_edge(p1, p2,
lwd, ifelse(he$visited, c_mid, ucol),
delta, eps, theta, gamma)

he <- he$prv$twin

71



if (is.null(he) || he == v$he) break
}

}

plot_face_boundary <- function(f, lwd=2, col=c_mid_teal,
delta=0.1, eps=0.05,
theta=60, gamma=0.025) {

he <- f$he

while (1) {
points(he$origin$pos[1], he$origin$pos[2],

pch=16, col=col)

plot_half_edge(he$origin$pos, he$twin$origin$pos,
lwd, col,
delta, eps, theta, gamma)

he <- he$nxt
if (is.null(he) || he == f$he) break

}
}

plot_face <- function(f, col=c_mid_teal) {
# Trace boundary
he <- f$he

perimeter_xs <- c()
perimeter_ys <- c()

while (1) {
perimeter_xs <- c(perimeter_xs, he$origin$pos[1])
perimeter_ys <- c(perimeter_ys, he$origin$pos[2])

if (is.null(he$nxt)) {
perimeter_xs <- c(perimeter_xs, he$twin$origin$pos[1])
perimeter_ys <- c(perimeter_ys, he$twin$origin$pos[2])
break

}

he <- he$nxt

if (he == f$he) {
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# Close the perimeter
perimeter_xs <- c(perimeter_xs, he$origin$pos[1])
perimeter_ys <- c(perimeter_ys, he$origin$pos[2])
break

}
}

polygon(perimeter_xs, perimeter_ys, col=col, border=NULL)
}

5.4 Running Fortune’s Algorithm

Alright, let’s cut the pedagogical tension and finally build a Voronoi diagram.

We start by defining a collection of sites.

N <- 10

set.seed(54482248)
xs <- runif(N, -1, 1)
ys <- runif(N, -1, 1)

par(mfrow=c(1, 1), mar=c(5, 5, 4, 1))
plot(xs, ys, col=c_dark, pch=16,

xlim=c(-1.1, 1.1), ylim=c(-1.1, 1.1))
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Next we initialize the event queue and beach line tree.

queue <- event_queue$new(1:N, xs)

bl <- beachline$new()
voronoi <- dcel$new()

cat('Initial queue:\n')

Initial queue:

for (i in queue$idxs) {
arc <- queue$events[[i]]$arc
if (is.null(queue$events[[i]]$arc)) {

cat(paste(' S =', sprintf('%.3f', queue$events[[i]]$x), ':',
'Site Event at', queue$events[[i]]$site), '\n')

} else {
cat(paste(' S =', sprintf('%.3f', queue$events[[i]]$x), ':',

'Vertex Event at', queue$events[[i]]$arc$site), '\n')
}

}

S = -0.577 : Site Event at 6
S = -0.546 : Site Event at 2
S = -0.498 : Site Event at 1
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S = 0.177 : Site Event at 9
S = -0.090 : Site Event at 10
S = -0.286 : Site Event at 3
S = -0.254 : Site Event at 7
S = 0.328 : Site Event at 8
S = 0.765 : Site Event at 4
S = 0.878 : Site Event at 5

We can completely exhaust the event queue by running.

while (queue$is_not_empty()) {
bl$process_next_event(queue, voronoi)

}

Here, however, we’ll proceed a little bit more deliberately. This function processes the next
event with extreme verbosity, communicating the type of the event, visualizing both the current
beach line tree and the current beach line, and then displaying the status of the event queue.

process_next_event <- function() {
if (is.null(queue$next_event()$arc)) {

cat(paste0('Processing Site Event (',
queue$next_event()$site, ')\n'))

} else {
cat(paste('Processing Vertex Event (',

queue$next_event()$arc$site, ')\n'))
}

bl$process_next_event(queue, voronoi)

par(mfrow=c(2, 1))
plot_tree(bl, text_cex=0.6)
if (is.null(queue$next_event()$x)) {

plot_beachline(bl, 2,
c(-4, 2), c(-2, 2))

plot_beachline_half_edges(bl, S, col=c_dark_teal,
delta=0.08, eps=0.04, gamma=0.02)

for (v in voronoi$vertices)
plot_vertex_edges(v, ucol=c_light_teal,

delta=0.08, eps=0.04, gamma=0.02)
} else {

plot_beachline(bl, queue$next_event()$x,
c(-4, 2), c(-2, 2))
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plot_beachline_half_edges(bl, S, col=c_dark_teal,
delta=0.08, eps=0.04, gamma=0.02)

for (v in voronoi$vertices)
plot_vertex_edges(v, ucol=c_light_teal,

delta=0.08, eps=0.04, gamma=0.02)
}

cat('\n')
cat('Remaining queue:\n')
for (i in queue$idxs) {

arc <- queue$events[[i]]$arc
if (is.null(queue$events[[i]]$arc)) {
cat(paste(' S =', sprintf('%.3f', queue$events[[i]]$x),

':',
'Site Event at', queue$events[[i]]$site),
'\n')

} else {
cat(paste(' S =', sprintf('%.3f', queue$events[[i]]$x),

':',
'Vertex Event at', queue$events[[i]]$arc$site),
'\n')

}
}

}

Initially the beach line is empty. The first site event populates the beach line with a single
parabola.

process_next_event()

Processing Site Event (6)
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Remaining queue:
S = -0.546 : Site Event at 2
S = -0.090 : Site Event at 10
S = -0.498 : Site Event at 1
S = 0.177 : Site Event at 9
S = 0.878 : Site Event at 5
S = -0.286 : Site Event at 3
S = -0.254 : Site Event at 7
S = 0.328 : Site Event at 8
S = 0.765 : Site Event at 4

The next site event splits this monolithic parabola up into three arcs and introduces the first
Voronoi half-edges. Note that the lower arc is too small to be seen in this plot.

process_next_event()

Processing Site Event (2)
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Remaining queue:
S = -0.498 : Site Event at 1
S = -0.090 : Site Event at 10
S = -0.286 : Site Event at 3
S = 0.177 : Site Event at 9
S = 0.878 : Site Event at 5
S = 0.765 : Site Event at 4
S = -0.254 : Site Event at 7
S = 0.328 : Site Event at 8

At this point we’ll jump through the next few events until we’re about to encounter our first
vertex event.

for (i in 1:3) {
bl$process_next_event(queue, voronoi)

}

par(mfrow=c(2, 1))

plot_tree(bl, text_cex=0.6)
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plot_beachline(bl, queue$next_event()$x,
c(-4, 2), c(-2, 2))

plot_beachline_half_edges(bl, S, col=c_dark_teal,
delta=0.08, eps=0.04, gamma=0.02)
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for (v in voronoi$vertices)
plot_vertex_edges(v, ucol=c_light_teal,

delta=0.08, eps=0.04, gamma=0.02)

cat('')
cat('Remaining queue:')

Remaining queue:

for (i in queue$idxs) {
arc <- queue$events[[i]]$arc
if (is.null(queue$events[[i]]$arc)) {

cat(paste(' S =', sprintf('%.3f', queue$events[[i]]$x),
':',
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'Site Event at', queue$events[[i]]$site),
'\n')

} else {
cat(paste(' S =', sprintf('%.3f', queue$events[[i]]$x),

':',
'Vertex Event at', queue$events[[i]]$arc$site),
'\n')

}
}

S = -0.162 : Vertex Event at 2
S = -0.049 : Vertex Event at 2
S = -0.090 : Site Event at 10
S = 0.177 : Site Event at 9
S = 0.878 : Site Event at 5
S = 0.765 : Site Event at 4
S = 0.328 : Site Event at 8
S = 1.487 : Vertex Event at 6

In the first vertex event we start paring the beach line down. Here the arc node generated by
site 2 that sits between the breakpoints 𝑏32 and 𝑏27 is removed while our first Voronoi vertex
is created.

process_next_event()

Processing Vertex Event ( 2 )
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Remaining queue:
S = -0.090 : Site Event at 10
S = -0.049 : Vertex Event at 2
S = 0.328 : Site Event at 8
S = 0.177 : Site Event at 9
S = 0.878 : Site Event at 5
S = 0.765 : Site Event at 4
S = 1.487 : Vertex Event at 6

To not draw this process out too long let’s run Fortune’s algorithm to completion.

while (queue$is_not_empty()) {
bl$process_next_event(queue, voronoi)

}

The remaining breakpoint nodes each contain a dangling Voronoi half-edge.
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par(mfrow=c(2, 1))
plot_tree(bl, text_cex=0.6)

plot_beachline(bl, 2,
c(-4, 2), c(-2, 2))

plot_beachline_half_edges(bl, S, col=c_dark_teal,
delta=0.08, eps=0.04, gamma=0.02)

for (v in voronoi$vertices)
plot_vertex_edges(v, ucol=c_light_teal,

delta=0.08, eps=0.04, gamma=0.02)
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To visualize the entire Voronoi graph within the confines of a finite plot we’ll need a bounding
box.

We can always specify a bounding box of our own. This can be useful, for example, if we want
particular large or symmetric bounding boxes for visualization purposes.

voronoi$xlim <- c(-3, 3)
voronoi$ylim <- c(-3, 3)
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In most cases, however, it’s most convenient to dynamically adapt a bounding box to the
Voronoi vertices.

voronoi$compute_bounding_box(0.25)

Given a bounding box geometry we can anchor dangling half-edges to pseudo-vertices on the
bounding box.

voronoi$anchor_dangling_edges(bl$root, xs, ys)

Perhaps the simplest way to plot the Voronoi graph is to plot each Voronoi vertex along with
the half-edges originating from and terminating at those vertices.

par(mfrow=c(1, 1), mar=c(0, 0, 0, 0))
plot(xs, ys, axes=FALSE, ann=FALSE, col=c_dark, pch=16,

xlim=voronoi$xlim, ylim=voronoi$ylim,
main="")

for (n in 1:N)
text(xs[n], ys[n] - 0.1, n)

for (v in voronoi$vertices)
plot_vertex_edges(v, delta=0.08, eps=0.04, gamma=0.0075)

for (pv in voronoi$pseudo_vertices)
plot_vertex_edges(pv, delta=0.08, eps=0.04, gamma=0.0075)
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The real content of the Voronoi diagram, however, is in the faces.

voronoi$find_faces()

par(mfrow=c(1, 1), mar=c(0, 0, 0, 0))
plot(xs, ys, axes=FALSE, ann=FALSE, col=c_light, pch=16,

xlim=voronoi$xlim, ylim=voronoi$ylim,
main="")

for (n in 1:N)
text(xs[n], ys[n] - 0.1, n)

for (f in voronoi$faces) {
plot_face_boundary(f, col=c_light_teal,

delta=0.08, eps=0.04, gamma=0.01)
}

f <- voronoi$faces[[1]]
plot_face(f, col=c_light_teal)
plot_face_boundary(f, col=c_dark_teal,
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delta=0.08, eps=0.04, gamma=0.01)
points(xs[f$site], ys[f$site], col=c_dark, pch=16)
text(xs[f$site], ys[f$site] - 0.1, f$site)
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The beautiful thing about Fortune’s algorithm is that scaling up to more sights is not partic-
ularly expensive.

N <- 1000

xs <- runif(N, -1, 1)
ys <- runif(N, -1, 1)

queue <- event_queue$new(1:N, xs)

bl <- beachline$new()
voronoi <- dcel$new()

while (queue$is_not_empty()) {
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bl$process_next_event(queue, voronoi)
}

voronoi$compute_bounding_box(0.25)

voronoi$anchor_dangling_edges(bl$root, xs, ys)

voronoi$find_faces()

par(mfrow=c(1, 1), mar=c(0, 0, 0, 0))

plot(xs, ys, col=c_light, pch=16,
xlim=c(-1, 1), ylim=c(-1, 1),
main="")

for (f in voronoi$faces) {
plot_face(f, col=c_light_teal)

}
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6 Conclusion

Voronoi diagrams are straightforward to define but subtle to construct in practice, especially
if we want to maximize computational efficiency. Fortune’s algorithm systematizes the con-
struction of Voronoi diagrams, but understanding how the algorithm actually works requires
immersing ourselves in planar geometry. Moreover, effectively implementing Fortune’s algo-
rithm in practice requires familiarity with a variety of nontrivial data structures.

From a more optimistic perspective, Fortune’s algorithm provides a wealth of learning oppor-
tunities…
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License

A repository containing all of the files used to generate this chapter is available on GitHub.

The code in this case study is copyrighted by Michael Betancourt and licensed under the new
BSD (3-clause) license:

https://opensource.org/licenses/BSD-3-Clause

The text and figures in this chapter are copyrighted by Michael Betancourt and licensed under
the CC BY-NC 4.0 license:

https://creativecommons.org/licenses/by-nc/4.0/

Original Computing Environment

sessionInfo()

R version 4.3.2 (2023-10-31)
Platform: x86_64-apple-darwin20 (64-bit)
Running under: macOS 15.6.1

Matrix products: default
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BLAS: /Library/Frameworks/R.framework/Versions/4.3-x86_64/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.3-x86_64/Resources/lib/libRlapack.dylib; LAPACK version 3.11.0

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

time zone: America/New_York
tzcode source: internal

attached base packages:
[1] stats graphics grDevices utils datasets methods base

other attached packages:
[1] R6_2.6.1

loaded via a namespace (and not attached):
[1] compiler_4.3.2 fastmap_1.1.1 cli_3.6.2 tools_4.3.2
[5] htmltools_0.5.7 yaml_2.3.8 rmarkdown_2.25 knitr_1.45
[9] jsonlite_1.8.8 xfun_0.41 digest_0.6.33 rlang_1.1.2
[13] evaluate_0.23
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