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In 2006 Netflix announced the infamous Netflix Prize. The competition challenged anyone
to use a data set of customer movie reviews to inform predictions for a second, held-out set
of customer movie reviews. Superficially the Netflix challenge was a mixed success, although
from a broader perspective it demonstrated the perils of poorly-chosen metrics for predictive

performance and the subtleties of data privacy. Wikipedia summarizes the history well.

Beyond the Netflix Prize itself the corresponding data set is a nice example of some of the
problems that can arise in a wide range of practical applications. For instance not only are
customer preferences limited to five star ratings but also the interpretation of those ratings


https://web.archive.org/web/20200510213032/https://www.netflixprize.com/assets/rules.pdf
https://en.wikipedia.org/wiki/Netflix_Prize

are ambiguous and typically not consistent across customers. Some customers are generous
with their five star ratings while some are meager with not only their five star ratings but also
their four star and sometimes even three star ratings.

In addition to the idiosyncratic rating scales any analysis of this data also has to contend with
idiosyncratic customer preferences. Because not every customer will agree on the quality of a
given movie we have to decide whether we want to try to learn an aggregate preference across
the entire population or the individual customer preferences.

In this chapter I develop a Bayesian analysis of a subset of the Netflix training data set, not in
an attempt to win the Netflix Prize decades too late but rather to demonstrate some strategies
for approaching these analysis challenges.

Importantly this analysis will not be the first time that Netflix has been associated with
Bayesian inference. In 2016 Amy Hogan (@alittlestats) presented her influential Bae’s Theo-
rem,

p(Netflix | chill) p(chill)

p(chill | Netflix) = P (Netfiix)

1 Setup

As always we begin by setting up our local R environment.

par(family="serif", las=1, bty="1",
cex.axis=1, cex.lab=1, cex.main=1,
xaxs="i", yaxs="i", mar = c(5, 5, 3, 5))

library(rstan)

rstan_options(auto_write = TRUE) # Cache compiled Stan programs
options(mc.cores = parallel::detectCores()) # Parallelize chains
parallel:::setDefaultClusterOptions(setup_strategy = '"sequential")

util <- new.env()
source('mcmc_analysis_tools_rstan.R', local=util)
source('mecmc_visualization_tools.R', local=util)

2 Data Exploration

The full Netflix Prize training data set consisted of 100,480,507 customer-movie pairs, each
accompanied by an ordinal rating between one and five “stars”, with one being the worst


https://twitter.com/alittlestats/status/664923862853922820
https://twitter.com/alittlestats/status/664923862853922820

rating and five being the best. The observed ratings spanned 480,189 anonymized customers
and 17,770 movies.

To allow for a more manageable demonstration I reduced the full data set by considering only
the first 1000 movies and then randomly subsampling 100 customers and 200 movies with
probabilities proportional to the total number of ratings. This left 2,415 total ratings.

Finally to facilitate model implementations, and add another layer of anonymizing obfuscating,
I relabeled the selected customers and movies with contiguous indices.

data <- read_rdump('data/ratings.data.R')

cat (sprintf ("%s Customers", data$N_customers))

100 Customers

cat(sprintf("%s Movies", data$N_movies))

200 Movies

cat (sprintf("%s Total Ratings", data$N_ratings))

2415 Total Ratings

Despite the data subsampling favoring customers with more ratings, most of the selected
customers rated only a few movies. Overall the training data set is relatively sparse, with only
a few customers contributing most of the ratings.

par (mfrow=c(1, 1), mar=c(5, 5, 2, 1))
util$plot_line_hist(table(data$customer_idxs),

-0.5, 95.5, 5,
xlab="Number of Ratings Per Customer")
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Similarly most of the selected movies have only a few ratings.
par (mfrow=c(1, 1), mar=c(5, 5, 2, 1))
util$plot_line_hist(table(data$movie_idxs),

-0.5, 55.5, 2,
xlab="Number of Ratings Per Movie")

Warning in check_bin_containment(bin_min, bin_max, values): 2 values (1.0%)

fell above the binning.
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This sparsity is even more evident if we visualize the customer-movie pairings.

xs <- seq(1l, data$N_movies, 1)
ys <- seq(l, data$N_customers, 1)
zs <- matrix(0, nrow=data$N _movies, ncol=data$N_customers)

for (n in 1:data$N_ratings) {
zs[data$movie_idxs[n], data$customer_idxs([n]] <- 1
}

par (mfrow=c(1, 1), mar = c(5, 5, 1, 1))

image(xs, ys, zs, col=c("white", util$c_dark_teal),
xlab="Movie", ylab="Customer")
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The observed ratings are slightly biased towards large values, with far more four star ratings
than two star ratings. From the data alone, however, we cannot determine whether or not this
is because most movies that had been rated were relatively good or because most customers
were just generous with their ratings.

par (mfrow=c(1, 1), mar=c(5, 5, 2, 1))

util$plot_line_hist(data$ratings,
-0.5, 6.5, 1, xlab="Ratings")
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That said there is substantial heterogeneity in the rating behavior across customers. Customer
70, for example, gave many high ratings while Customer 23 gave many low ratings.

par (mfrow=c(2, 3), mar=c(5, 5, 1, 1))

for (c in (7, 23, 40, 70, 77, 100)) {
util$plot_line_hist(data$ratings[data$customer_idxs == c],
-0.5, 6.5, 1,
xlab="Rating", main=paste('Customer', c))
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Similarly we see strong variation in the observed ratings across movies. Movies 117 and 180,
for example, are particularly well-reviewed.

par (mfrow=c(2, 3), mar=c(5, 5, 1, 1))

for (m in c(33, 53, 61, 80, 117, 180)) {
util$plot_line_hist(data$ratings[data$movie_idxs == m],
-0.5, 6.5, 1,
xlab="Rating", main=paste('Movie', m))
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When critiquing any model of these ratings we want to be able to interrogate this variation
in rating behavior across customers and movies. Even with the subsampled data, however,
visualizing a histogram of ratings for each customer and movie would be far too ungainly. A
more scalable, albeit less informative, approach is to compute a scalar summary of the ratings
within each group, and then construct a histogram of those stratified summaries.

The only problem here is identifying useful summary statistics. Because ordinal spaces are not
equipped with a distinguished metric empirical moments are ill-defined; in particular given
any order-preserving map

f:{1,2,3,4,5} > R

we can construct a distinct empirical mean,

9
muf: N f(rn)7
anl

and corresponding higher-order empirical moments.

That said, most of these empirical moments share similar qualitative behaviors. If a stratified
histogram is peaked towards central values, for example, then most empirical means will end
up somewhere near that peak. Even if empirical moments capture different behaviors, however,
they can still be useful for comparing observed and posterior predictive behaviors.



For this case study I'll assume a metric with equal unit distances between neighboring ordinal
elements, with the resulting empirical mean

1 N

mu,; = T,
f Ar§::”

n=1

We can then stratify this mean by customers and movies and histogram the resulting ensemble
of summaries.

par (mfrow=c(1, 2), mar=c(5, 5, 2, 1))

mean_rating_customer <-
sapply(1:data$N_customers,
function(c) mean(data$ratings[data$customer_idxs == c]))
util$plot_line_hist(mean_rating_customer,
0, 6, 1,
xlab="Customer-wise Average Ratings")

mean_rating _movie <-
sapply (1:data$N_movies,
function(m) mean(data$ratings[data$movie_idxs == m]))
util$plot_line_hist(mean_rating movie,
0, 6, 0.5,
xlab="Movie-wise Average Ratings")

10
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Of course an empirical mean captures only some of the rating behavior within each strata. We
can capture more with a summary that is sensitive to the dispersion of ratings in each strata,
such as the empirical variance or empirical entropy. Note one nice advantage of the empirical
entropy relative to the empirical variance is that it does not require a choice of metric over
the ordinal values.

Here let’s go with the empirical variance based on the same assumptions as our empirical
mean, or rather a modified empirical variance that defaults to zero when a strata consists of
only one value.

safe_var <- function(vals) {
if (length(vals) == 1)
(0)
else
(var(vals))

par (mfrow=c(1, 2), mar=c(5, 5, 2, 1))

var_rating_customer <-
sapply(1:data$N_customers,
function(c) safe_var(data$ratings[data$customer_idxs == c]))
util$plot_line_hist(var_rating_customer,
0, By, 0.6,

11



var_rating _movie <-

xlab="Customer-wise Rating Variances")

sapply(1:data$N_movies,

function(m) safe_var(data$ratings[data$movie_idxs
util$plot_line_hist(var_rating movie,
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The main limitation with these stratified summary statistics is that they are sensitive to only
the marginal variation across movies and customers.
heterogeneity across movies or customers but not heterogeneity across movies and customers
at the same time. Unfortunately because each customer-movie pair has at most one rating,
and most have no ratings, we can’t just stratify summary statistics by both customer and

movie.

One potential compromise is to construct empirical covariances for each pair of customers or
movies. For example given our assumed metric the empirical covariance between two movies

0, 5, 0.5,

xlab="Movie-wise Rating Variances")
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where N is the number of customers, r,, is the rating given to movie m by customer ¢, and

. 1 e

= — T
K NC i cm

The immediate issue is that, because not every customer rates every movie, many of the r_,,
in these sums will be undefined. All we can do here is limit the sums to the customers who
have rated both movies.

More formally let c,, denote the set of customers who have rated movie m and N ,,, denote

the number of elements in that set. Similarly let c,, ,,, denote the set of customers who have

rated both movies my and m, with N¢ ,,, ., the number of elements in that set. Then we can

define
1

Pmimy = Pmym, = N 1 § (’rcrn1 - lu’ml) ’ (’rmn2 - lum2>
C,mymy CECrn i my
with )
K = Tem
Cm cEC,,

the movie-wise empirical means that we’ve already constructed.

All of this said given the relative sparsity of the observed ratings the set c,, ,,, will be empty
for most pairs of movies. Even fewer pairs of movies will have the N¢ ,,, ,,,, > 1 needed for
Prm,m, 10 be well-defined, let alone N, ,,, large enough for p,,, ., to provide an informative
summary.

We can avoid any ill-defined or poorly informative empirical covariances by including only
those movie pairs with N¢ ,, ., sufficiently large enough in the final histogram. This also has
the added benefit of reducing the total number of summaries that we have to bin into the final
histogram visualization. Here I will require N¢ ,, p,, > 7.

Now that we’ve carefully laid out the math the implementation is relatively straightforward.
First we loop over the observed ratings twice, incrementing the partial sums for each pair of
movies when appropriate. This gives us

ZmlmQ = Z (Tcml - ﬂml) ’ (Tcm2 - ﬂm2)

C€Crmymy

and

Ne.mym, = Z 1.

CECrr iy

13



covar_rating movie <- matrix(0,
nrow=data$N_movies,
ncol=data$N_movies)

movie_pair_counts <- matrix(O0,
nrow=data$N_movies,
ncol=data$N_movies)

for (nl in 1:data$N_ratings) {
for (n2 in 1:data$N_ratings) {
if (data$customer_idxs[nl] == data$customer_idxs[n2]) {
ml <- data$movie_idxs([n1]
m2 <- data$movie_idxs[n2]
y <- (data$ratings[nl] - mean_rating movie[ml]) *
(data$ratings[n2] - mean_rating_movie[m2])

covar_rating_movie[ml, m2] <- covar_rating movie[ml, m2] + y
covar_rating _movie[m2, ml] <- covar_rating movie[m2, ml] + y
movie_pair_counts[ml, m2] <- movie_pair_counts[ml, m2] + 1
movie_pair_counts[m2, m1] <- movie_pair_counts[m2, m1] + 1

Next we compute

~

)

~ - MMy
pm1m2 -

—1

C,mimy

for each pair of movies where N ,, ,, is larger than 7.

m_pairs <- list()
covar_rating movie_filt <- c()

for (ml in 2:data$N_movies) {
for (m2 in 1:(m1 - 1)) {
if (movie_pair_counts[ml, m2] > 7) {
m_pairs[[length(m_pairs) + 1]] <- c(ml, m2)
covar_rating movie_filt <- c(covar_rating movie_filt,
covar_rating movie[ml, m2] /
(movie_pair_counts[ml, m2] - 1))

14



Finally we bin these values into a histogram that visualizes the range of these partial empirical
covariance behaviors.

par (mfrow=c(1, 1), mar=c(5, 5, 2, 1))
util$plot_line_hist(covar_rating movie_filt,

-4, 4, 0.25,
xlab="Movie-wise Rating Covariances")
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In order to construct posterior retrodictive checks later on we will need to select the poste-
rior predictive values for these same selected movie pairs. We might as well construct the
appropriate variable names now and have them ready.

covar_rating movie_filt_names <-
sapply(m_pairs,
function(p) pasteO('covar_rating movie_pred[',

pl1l, ',', pl2], '1'))

All of this said I think that there is still a lot of opportunity for better summary statistics
in applications like these, such as summaries that are more compatible with the structure of
an ordinal space and don’t require the assumption of an arbitrary metric and summaries that
better capture couplings between different strata.

15



3 Homogeneous Customer Model

Now that we’ve familiarized ourselves with the data we can make our first attempt at modeling
the data generating process that, well, generated it. Our models will be built on a foundation
of ordinal pairwise comparison modeling techniques.

Given a latent logistic probability density function we will use cut points to derive baseline
ordinal probabilities for each star rating. This baseline will not be tied to any particular movie
but rather a hypothetical default movie implied by the configuration of an induced Dirichlet
prior model.

Next we will assume that movies systematically shift these baseline probabilities to lower or
higher ratings depending on their quality. This is implemented with affinity parameters for
each movie that shift the latent logistic probability density function, and hence the derived
ordinal probabilities, based on customer preference. Initially we will assume that the rating
behavior is homogeneous across customers so that we need only a single set of cut points to
model all of the data.

Lastly assuming that our domain expertise about consumer preferences is exchangeable we
will model the movie affinity parameters hierarchically. To avoid degeneracy in the customer-
movie comparisons we will need to anchor the population location of this hierarchical model to
zero, the same anchor location used in the induced Dirichlet prior model. Given the sparsity
of observed ratings we’ll implement this hierarchical model with a monolithic non-centered
parameterization.

fit <- stan(file="stan_programs/modell.stan",
data=data, seed=8438338,
warmup=1000, iter=2024, refresh=0)

Despite the initial model complexity there are no diagnostic issues indicating suspect compu-
tation.

diagnostics <- util$extract_hmc_diagnostics(fit)
util$check_all_hmc_diagnostics(diagnostics)

A1l Hamiltonian Monte Carlo diagnostics are consistent with reliable
Markov chain Monte Carlo.

samplesl <- util$extract_expectand_vals(fit)
base_samples <- util$filter_expectands(samplesi,
c('gamma_ncp',
'tau_gamma',

16


https://betanalpha.github.io/assets/chapters_html/ordinal_modeling.html

'cut_points'),
check_arrays=TRUE)
util$check_all_expectand_diagnostics(base_samples)

All expectands checked appear to be behaving well enough for reliable
Markov chain Monte Carlo estimation.

Consequently we're ready to investigate this model’s retrodictive performance.

The model appears to be flexible enough to capture the behavior of the aggregate ratings.
par (mfrow=c(1, 1), mar=c(5, 5, 1, 1))

util$plot_hist_quantiles(samplesl, 'rating pred', -0.5, 6.5, 1,

baseline_values=data$ratings,
xlab="All Ratings")
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On the other hand the retrodictive performance is much worse if we look at individual customer
behaviors. In particular there is much more heterogeneity in the observed data than what the
model can reproduce, which isn’t surprising given that we explicitly assumed homogeneous
customer behavior.

17



par (mfrow=c(2, 3), mar=c(5, 5, 1, 1))

for (c in c(7, 23, 40, 70, 77, 100)) {
names <- sapply(which(data$customer_idxs == c),
function(n) pasteO('rating_pred[', n, ']'))
filtered_samples <- util$filter_expectands(samplesl, names)

customer_ratings <- data$ratings[data$customer_idxs == c]
util$plot_hist_quantiles(filtered_samples, 'rating_pred',
0.5, .8, i,

baseline_values=customer_ratings,
xlab="Ratings",
main=paste('Customer', c))

}
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On the other hand the model doesn’t seem to have a problem capturing the heterogeneity in
the observed ratings stratified across movies, at least for this quick spot check.

par (mfrow=c(2, 3), mar=c(5, 5, 1, 1))

for (m in c(33, 53, 61, 80, 117, 180)) {

18



names <- sapply(which(data$movie_idxs == m),
function(n) pasteO('rating_pred[', n, ']1'))
filtered_samples <- util$filter_expectands(samplesl, names)

movie_ratings <- data$ratings[data$movie_idxs == m]
util$plot_hist_quantiles(filtered_samples, 'rating_pred',
0.8, .8, i

baseline_values=movie_ratings,
xlab="Ratings",
main=paste('Movie', m))

}
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To better investigate the variation in retrodictive performance, however, we need to look
beyond just a few customers and movies. We can examine the behavior of all customers and
movies at the same time with histograms of the stratified summary statistics we discussed
above

Here we see that the posterior predictive behavior of the customer-wise empirical means are
more narrowly distributed than what we see in the observed data. At the same time the
posterior predictive customer-wise empirical variances concentrate at larger values than the
observed customer-wise empirical variances.

19



par (mfrow=c(2, 2), mar=c(5, 5, 1, 1))

util$plot_hist_quantiles(samplesl, 'mean_rating_ customer_pred',
0, 6, 0.5,
baseline_values=mean_rating_customer,
xlab="Customer-wise Average Ratings")

util$plot_hist_quantiles(samplesl, 'mean_rating movie_pred',
0, 6, 0.6,
baseline_values=mean_rating movie,
xlab="Movie-wise Average Ratings")

util$plot_hist_quantiles(samplesl, 'var_rating_customer_pred',
0, 7, 0.5,
baseline_values=var_rating_customer,
xlab="Customer-wise Rating Variances")

Warning in check_bin_containment(bin_min, bin_max, collapsed_values,
"predictive value"): 239 predictive values (0.1%) fell above the binning.

util$plot_hist_quantiles(samplesl, 'var_rating_movie_pred',
0, 7, 0.5,
baseline_values=var_rating movie,
xlab="Movie-wise Rating Variances")

Warning in check_bin_containment(bin_min, bin_max, collapsed_values,
"predictive value"): 1287 predictive values (0.2),) fell above the binning.

20
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Finally the collection of selected movie empirical covariances appears to be more heavy-tailed
in the observed data relative to the posterior predictions.

par (mfrow=c(1, 1), mar=c(5, 5, 1, 1))

filtered_samples <-
util$filter_expectands(samplesi,
covar_rating movie_filt_names)

util$plot_hist_quantiles(filtered_samples, 'covar_rating movie_pred',
-4.25, 4.25, 0.25,
baseline_values=covar_rating movie_filt,
xlab="Filtered Movie-wise Rating Covariances")

Warning in check_bin_containment(bin_min, bin_max, collapsed_values,
"predictive value"): 273 predictive values (0.0%) fell below the binning.

Warning in check_bin_containment(bin_min, bin_max, collapsed_values,
"predictive value"): 2329 predictive values (0.0%) fell above the binning.
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4 Independent, Heterogeneous Customer Model

All of our retrodictive checks tell a consistent story — customers do not rate movies the same way
as each other. Fortunately it’s straightforward to model each customer’s idiosyncratic behavior
by allowing them with their own set of cut points, and hence baseline rating probabilities.

fit <- stan(file="stan_programs/model2.stan",

data=data, seed=8438330,
warmup=1000, iter=2024, refresh=0)

Frustratingly, the computation suffers from a few stray divergences.

diagnostics <- util$extract_hmc_diagnostics(fit)
util$check_all_hmc_diagnostics(diagnostics)

Chain 4: 2 of 1024 transitions (0.2%) diverged.
Divergent Hamiltonian transitions result from unstable numerical

trajectories. These instabilities are often due to degenerate target
geometry, especially "pinches". If there are only a small number of

22



divergences then running with adept_delta larger than 0.801 may reduce
the instabilities at the cost of more expensive Hamiltonian
transitions.

samples2 <- util$extract_expectand_vals(fit)
base_samples <- util$filter_expectands(samples2,
c('gamma_ncp',
'"tau_gamma',
'cut_points'),
check_arrays=TRUE)
util$check_all_expectand_diagnostics(base_samples)

All expectands checked appear to be behaving well enough for reliable
Markov chain Monte Carlo estimation.

One possibility is that the replicated cut points are messing with the hierarchical geometry of
the movie affinities. That said the movie affinities most susceptible to degenerate behavior in
a non-centered parameterization are those with the most ratings, and those do not exhibit any
obvious geometric pathologies.

idxs <- as.numeric(names(tail(sort(table(data$movie_idxs)), 9)))

names <- sapply(idxs, function(m) pasteO('gammal', m, ']'))
util$plot_div_pairs(names, 'tau_gamma', samples2, diagnostics)

23
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At this point we could spend some time investigating for any degenerate behavior between
the cut points that could be causing problems, or even between some cut points and some
movie affinities. Given the small number of divergences, however, let’s just run again with a
less aggressive step size adaptation and cope with the increased computational cost. We can
always come back to this investigation later if this ends up being our final model.

fit <- stan(file="stan_programs/model2.stan",
data=data, seed=8438330,

warmup=1000, iter=2024, refresh=0,
control=list('adapt_delta'=0.9))

Fortunately that seems to have done the trick and now our diagnostics are squeaky clean.

diagnostics <- util$extract_hmc_diagnostics(fit)
util$check_all_hmc_diagnostics(diagnostics)

A1l Hamiltonian Monte Carlo diagnostics are consistent with reliable
Markov chain Monte Carlo.
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samples2 <- util$extract_expectand_vals(fit)
base_samples <- util$filter_expectands(samples?2,
c('gamma_ncp',
'tau_gamma',
'cut_points'),
check_arrays=TRUE)
util$check_all_expectand_diagnostics(base_samples)

A1l expectands checked appear to be behaving well enough for reliable
Markov chain Monte Carlo estimation.

Has our retrodictive performance improved?

Interestingly the behavior of the aggregate ratings isn’t quite as consistent between the ob-
served data and posterior predictions as it was before. That said the increased retrodictive
tension isn’t necessarily large enough to be a concern yet.

par (mfrow=c(1, 1), mar=c(5, 5, 1, 1))

util$plot_hist_quantiles(samples2, 'rating pred', -0.5, 6.5, 1,
baseline_values=data$ratings,
xlab="All Ratings")
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More importantly the retrodictive performance for the customers that we’ve spot checked is
much better.

par (mfrow=c(2, 3), mar=c(5, 5, 1, 1))

for (¢ in c(7, 23, 40, 70, 77, 100)) {
names <- sapply(which(data$customer_idxs == c),
function(n) pasteO('rating pred[', n, ']'))
filtered_samples <- util$filter_expectands(samples2, names)

customer_ratings <- data$ratings[data$customer_idxs == cl
util$plot_hist_quantiles(filtered_samples, 'rating_pred',
0.8, 6.5, i,

baseline_values=customer_ratings,
xlab="Ratings",
main=paste('Customer', c))

}
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This improvement in the customer-wise behaviors hasn’t come at any cost to the movie-wise
retrodictive performance, at least for this limited spot check.
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par (mfrow=c(2, 3), mar=c(5, 5, 1, 1))

for (m in c(33, 53, 61, 80, 117, 180)) {
names <- sapply(which(data$movie_idxs == m),
function(n) pasteO('rating_pred[', n, ']'))
filtered_samples <- util$filter_expectands(samples2, names)

movie_ratings <- data$ratings[data$movie_idxs == m]
util$plot_hist_quantiles(filtered_samples, 'rating_pred',
-0.5, 6.5, 1,

baseline_values=movie_ratings,
xlab="Ratings",
main=paste('Movie', m))

}
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Do the histograms of stratified summary statistics tell a similar story? The retrodictive tension
in the customer-wise empirical means and empirical variances has decreased, although some
remains in the empirical variances.
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par (mfrow=c(2, 2), mar=c(5, 5, 1, 1))

util$plot_hist_quantiles(samples2, 'mean_rating_customer_pred',
0, 6, 0.5,
baseline_values=mean_rating_customer,
xlab="Customer-wise Average Ratings")

util$plot_hist_quantiles(samples2, 'mean_rating movie_pred',
0, 6, 0.6,
baseline_values=mean_rating movie,
xlab="Movie-wise Average Ratings")

util$plot_hist_quantiles(samples2, 'var_rating_customer_pred',
0, 7, 0.5,
baseline_values=var_rating_customer,
xlab="Customer-wise Rating Variances")

Warning in check_bin_containment(bin_min, bin_max, collapsed_values,
"predictive value"): 400 predictive values (0.1%) fell above the binning.

util$plot_hist_quantiles(samples2, 'var_rating_movie_pred',
0, 7, 0.5,
baseline_values=var_rating movie,
xlab="Movie-wise Rating Variances")

Warning in check_bin_containment(bin_min, bin_max, collapsed_values,
"predictive value"): 2589 predictive values (0.3)%) fell above the binning.
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Moreover the retrodictive tension in the collection of selected movie empirical covariances
remains.

par (mfrow=c(1, 1), mar=c(5, 5, 1, 1))

filtered_samples <-
util$filter_expectands(samples?2,
covar_rating movie_filt_names)

util$plot_hist_quantiles(filtered_samples, 'covar_rating movie_pred',
-4.25, 4.25, 0.25,
baseline_values=covar_rating movie_filt,
xlab="Filtered Movie-wise Rating Covariances")

Warning in check_bin_containment(bin_min, bin_max, collapsed_values,
"predictive value"): 370 predictive values (0.0%) fell below the binning.

Warning in check_bin_containment(bin_min, bin_max, collapsed_values,
"predictive value"): 248 predictive values (0.0%) fell above the binning.
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If we were content with these mild retrodictive tensions then we would move on to exploring
the posterior inferences themselves. For example we could visualize the marginal posterior
inferences for the interior cut points of each customer.

par (mfrow=c(4, 1), mar=c(5, 5, 1, 1))

for (k in 1:4) {
names <- sapply(l:data$N_customers,
function(r) pasteO('cut_points[', r, ',', k, '1"))
util$plot_disc_pushforward_quantiles(samples2, names,
x1lab="Customer",
display_ylim=c(-6, 6),
ylab=pasteO('cut_point[', k, ']'))

30



6
_g aw.-s‘ﬂ.-_—..ﬂ.‘w.m-f\“'mm'd—
I I I I I

cut_point[’

20 40 60 80 100
Customer
E 6
8_| (6) a-uw_s-ﬁ.s'.quﬁ—‘-mv
= T T T T T
>
© 20 40 60 80 100
Customer
E 6
S 0 %ﬁ-ﬁ*’:—‘ﬁ%ﬁ.Mﬁmwﬁm.‘
= - T T T T T
(]
20 40 60 80 100
Customer
§_ 8 3—__'_.-_,.,v_.-r._-.v'-._'_,'-‘_—-fl—‘.n-_qm_-u._-_-$'-f\_.:|-m
= 6 T T T T T
[}
20 40 60 80 100
Customer

The interior cut points are a bit more interpretable when visualized together, especially when
comparing different customers. For example to compare Customer 23 and Customer 70 we
might overlay the marginal posterior visualizations of the four interior cut points of each
customer in adjacent plots.

par (mfrow=c(2, 1), mar=c(5, 5, 1, 1))

cols <- c(util$c_mid, util$c_mid_highlight,
util$c_dark, util$c_dark_highlight)

6 = 28
k <-1
name <-pasteO('cut_points[', c, ',', k, ']")

util$plot_expectand_pushforward(samples2[[name]],
50, flim=c(-9, 9), ylim=c(0, 2),
col=cols[k],
display_name='Interior Cut Points',
main=paste('Customer', c))
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for (k in 2:4) {
name <-pasteO('cut_points[', ¢, ',', k, ']")
util$plot_expectand_pushforward(samples2[[name]],
50, flim=c(-9, 9),
col=cols[k], border="#BBBBBBS8S",
add=TRUE)

text(0, 1.65, "cut_points[1]", col=util$c_mid)
text(2, 1.4, "cut_points[2]", col=util$c_mid_highlight)
text(4, 1.1, "cut_points[3]", col=util$c_dark)
text(6, 0.5, "cut_points[4]", col=util$c_dark_highlight)

c <- 70
k <-1
name <-pasteO('cut_points[', c, ',', k, ']")

util$plot_expectand_pushforward(samples2[[name]],
50, flim=c(-9, 9), ylim=c(0, 2),
col=cols[k],
display_name='Interior Cut Points',
main=paste('Customer', c))

Warning in util$plot_expectand_pushforward(samples2[[name]], 50, flim
8 values (0.2%) fell below the histogram binning.

Warning in util$plot_expectand_pushforward(samples2[[name]], 50, flim
0 values (0.0%) fell above the histogram binning.

for (k in 2:4) {
name <-pasteO('cut_points[', ¢, ',', k, ']1")
util$plot_expectand_pushforward(samples2[[namel],
50, flim=c(-9, 9),
col=cols[k], border="#BBBBBB8S",
add=TRUE)

text(-5.75, 0.35, "cut_points[1]", col=util$c_mid)

text (-3, 0.85, "cut_points[2]", col=util$c_mid_highlight)
text(-2, 1.1, "cut_points[3]", col=util$c_dark)

text(1.0, 1.25, "cut_points[4]", col=util$c_dark_highlight)
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This allow us to see that Customer 23 is pretty stingy; a movie affinity needs to be pretty
large in order for the probability of a large rating to become non-negligible. On the other
hand Customer 70 is much more generous; they are likely to give even a mediocre movie a
high rating.

At the same time we can investigate the inferred affinities for each movie.
par (mfrow=c(2, 1), mar=c(5, 5, 1, 1))

util$plot_expectand_pushforward(samples2[['tau_gamma']],
25, flim=c(0, 1),
display_name='tau_gamma')

names <- sapply(l:data$N_movies,
function(m) pasteO('gammal', m, ']'))
util$plot_disc_pushforward_quantiles(samples2, names,
xlab="Movie",
ylab="Affinity")
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While there is a lot of uncertainty, not surprising given the limited data, we can definitely see
some trends. For example the concentration of the tau_gamma marginal posterior distribution
away from zero indicates substantial variation in the movie affinities. Moreover despite the
uncertainties we can clearly differentiate the best movies from the worst movies. We’ll do even
more with these movie affinity inferences in the next section.

5 Hierarchical Customer Model

At this point we need to address a stark asymmetry in the last model. Although we’re account-
ing for heterogeneity in both customer and movie behaviors, we’re modeling only the latter
hierarchically. We don’t have any domain expertise that obstructs the exchangeability of the
customers so why don’t we model the individual interior cut points hierarchically as well? All
we need is an appropriate multivariate population model.

Conveniently the induced Dirichlet prior naturally composes with the hyper Dirichlet popula-
tion model that I discussed in my die fairness case study. This makes for a natural interior
cut point population model that pools each customer’s baseline ratings towards a common
behavior.

Note that this is not the most general hierarchical model that we might consider. This model
assumes that the heterogeneity in the interior cut points is independent of the heterogeneity

34


https://betanalpha.github.io/assets/chapters_html/die_fairness.html

in the movie affinities; more generally those heterogeneities could be coupled together. That
said T think that it is pretty reasonable to assume that how each customer translates their
preferences into a movie rating is independent of those particular preferences.

fit <- stan(file="stan_programs/model3.stan",
data=data, seed=8438338,
warmup=1000, iter=2024, refresh=0)

The hierarchical model over the interior cut points has already proved useful — the mild com-
putational issues that we had considered in the last model fit have vanished.

diagnostics <- util$extract_hmc_diagnostics(fit)
util$check_all_hmc_diagnostics(diagnostics)

A1l Hamiltonian Monte Carlo diagnostics are consistent with reliable
Markov chain Monte Carlo.

samples3 <- util$extract_expectand_vals(fit)
base_samples <- util$filter_expectands(samples3,
c('gamma_ncp',
'tau_gamma',
'cut_points',
'mu_q', 'tau_q'),
check_arrays=TRUE)
util$check_all_expectand_diagnostics(base_samples)

All expectands checked appear to be behaving well enough for reliable
Markov chain Monte Carlo estimation.

Overall the retrodictive performance is a little bit better than in the previous model. In par-
ticular the agreements in the aggregate ratings histogram and stratified empirical covariances
histogram have improved slightly. On the other hand the retrodictive tension in the stratified
empirical variances stubbornly persists. We shouldn’t expect too much performance, however,
given that the hierarchical structure doesn’t add any flexibility to the customer behaviors
beyond what we had already included.

par (mfrow=c(1, 1), mar=c(5, 5, 1, 1))
util$plot_hist_quantiles(samples3, 'rating pred', -0.5, 6.5, 1,

baseline_values=data$ratings,
xlab="All Ratings")
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par (mfrow=c(2, 3), mar=c(5, 5, 1, 1))

for (¢ in c(7, 23, 40, 70, 77, 100)) {
names <- sapply(which(data$customer_idxs == c),
function(n) pasteO('rating_pred[', n, ']'))
filtered_samples <- util$filter_expectands(samples3, names)

customer_ratings <- data$ratings[data$customer_idxs == c]
util$plot_hist_quantiles(filtered_samples, 'rating pred',
-0.5, 6.5, 1,

baseline_values=customer_ratings,
xlab="Ratings",
main=paste('Customer', c))
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par (mfrow=c(2, 3), mar=c(5, 5, 1, 1))

for (m in c(33, 53, 61, 80, 117, 180)) {
names <- sapply(which(data$movie_idxs == m),
function(n) pasteO('rating pred[', n, ']'))
filtered_samples <- util$filter_expectands(samples3, names)

movie_ratings <- data$ratings[data$movie_idxs == m]
util$plot_hist_quantiles(filtered_samples, 'rating_pred',
-0.5, 6.5, 1,

baseline_values=movie_ratings,
xlab="Ratings",
main=paste('Movie', m))
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par (mfrow=c(2, 2), mar=c(5, 5, 1, 1))

util$plot_hist_quantiles(samples3, 'mean_rating_customer_pred',
0, 6, 0.5,
baseline_values=mean_rating_customer,
xlab="Customer-wise Average Ratings")

util$plot_hist_quantiles(samples3, 'mean_rating movie_pred',
0, 6, 0.6,
baseline_values=mean_rating_movie,
xlab="Movie-wise Average Ratings")

util$plot_hist_quantiles(samples3, 'var_rating_customer_pred',
0, 7, 0.5,
baseline_values=var_rating_customer,
xlab="Customer-wise Rating Variances")

Warning in check_bin_containment(bin_min, bin_max, collapsed_values,
"predictive value"): 227 predictive values (0.1%) fell above the binning.
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util$plot_hist_quantiles(samples3, 'var_rating_movie_pred',
0, 7, 0.5,
baseline_values=var_rating movie,
xlab="Movie-wise Rating Variances")

Warning in check_bin_containment(bin_min, bin_max, collapsed_values,
"predictive value"): 2264 predictive values (0.3%) fell above the binning.
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par (mfrow=c(1, 1), mar=c(5, 5, 1, 1))
filtered_samples <-
util$filter_expectands(samples3,

covar_rating movie_filt_names)
util$plot_hist_quantiles(filtered_samples, 'covar_rating movie_pred',
-4.25, 4.25, 0.25,
baseline_values=covar_rating movie_filt,
xlab="Filtered Movie-wise Rating Covariances")

Warning in check_bin_containment(bin_min, bin_max, collapsed_values,
"predictive value"): 355 predictive values (0.0%) fell below the binning.

39



Warning in check_bin_containment(bin_min, bin_max, collapsed_values,
"predictive value"): 432 predictive values (0.0%) fell above the binning.
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Assuming that we are satisfied with this retrodictive performance there many ways that we
can explore and utilize the associated inferences.

For example with the new hierarchical structure we can investigate what we learned about not
only each individual customer but also the population of customers. The marginal posterior
distribution for tau_q suggests a small but non-negligible heterogeneity in the interior cut
points. Moreover the inferences for the baseline probabilities mu_q suggest that customers are
relatively optimistic, with four star ratings being more probable than tree star ratings for a
neutral movie with zero affinity.

par (mfrow=c(2, 1), mar=c(5, 5, 1, 1))

util$plot_expectand_pushforward(samples3[['tau_q'l],
25, flim=c(0, 0.3),
display_name='tau_q')

names <- sapply(1:5, function(k) pasteO('mu_ql', k, ']"))
util$plot_disc_pushforward_quantiles(samples3, names,

xlab="Rating",

ylab="Baseline Rating Probability")
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The regularizing influence of the hierarchical model is strongest for those customers with the
fewest ratings. For example Customer 42 has only three observed ratings, and the hierarchical
inferences for their interior cut points shift and narrow pretty substantially relative to the
inferences from the previous model.

c <- 42

cat(sprintf("Customer %s: %s ratings",
c, table(data$customer_idxs) [c]))

Customer 42: 3 ratings
par (mfrow=c(2, 2), mar=c(5, 5, 1, 1))

lab2_xs <- c(1.5, 2, -4, -3)
lab2_ys <- c(0.15, 0.25, 0.35, 0.35)

lab3_xs <- c(-6, -5, 3, 3.5)
lab3_ys <- c(0.25, 0.4, 0.5, 0.6)
for (k in 1:4) {
name <- pasteO('cut_points[', c, ',', k, ']")
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util$plot_expectand_pushforward(samples2[[name]],
50, flim=c(-10, 5), ylim=c(0, 1.0),
col=util$c_light,
display_name='Interior Cut Points',
main=paste('Customer', c))

name <- pasteO('cut_points[', ¢, ',', k, '1")
util$plot_expectand_pushforward(samples3[[name]],
50, flim=c(-10, 5),
col=util$c_dark, border="#BBBBBB83",
add=TRUE)

text (lab2_xs[k], lab2_ys[k], "Model 2", col=util$c_light)
text (lab3_xs[k], lab3_ys[k], "Model 3", col=util$c_dark)

}

Warning in util$plot_expectand_pushforward(samples2[[namel]], 50, flim = c(-10,
1 value (0.0%) fell below the histogram binning.

Warning in util$plot_expectand_pushforward(samples2[[namel]], 50, flim = c(-10,

: 0 value (0.0%) fell above the histogram binning.

Warning in util$plot_expectand_pushforward(samples3[[namel], 50, flim = c(-10,
1 value (0.0%) fell below the histogram binning.

Warning in util$plot_expectand_pushforward(samples3[[namel], 50, flim = c(-10,

: 0 value (0.0%) fell above the histogram binning.
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We can also see the impact of the hierarchical model if we examine the interior cut point
inferences for the two models across all customers. The more uncertain customer inferences
in the previous model, especially for the first and last cut points, are pulled towards the other
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par (mfrow=c(4, 1), mar=c(5, 5, 1, 1))

for (k in 1:4) {
names <- sapply(l:data$N_customers,

function(c) pasteO('cut_points[', c, ',', k, '1"))

yname <- pasteO('cut_points[', k, ']"')

util$plot_disc_pushforward_quantiles(samples3, names,

xlab="customer",
display_ylim=c(-6, 6),
ylab=yname)

43



6
-6 i—"a\'f.ﬁ-m“.m.-ﬂ
I T

cut_points|
o

20 40 60 80 100

customer

@

E 6

8_ g L—N.quw

=7 T T T T T

5

© 20 40 60 80 100
customer

@

< 6

© 0 aqd\mﬂfw—lwq—fw

o

- 6 T T T T T

5

© 20 40 60 80 100
customer

i)

g 8 a‘#_w—.'.-'—“'—”w_m-\o‘b v

o

=7 T T T T T

5

© 20 40 60 80 100
customer

The hierarchical influence, however, doesn’t change the qualitative details. For example Cus-
tomer 23 is still stingy with their ratings while Customer 70 is still generous.

par (mfrow=c(2, 1), mar=c(5, 5, 1, 1))

cols <- c(util$c_mid, util$c_mid_highlight,
util$c_dark, util$c_dark_highlight)

c <- 23
k <-1
name <-pasteO('cut_points[', c, ',', k, ']")

util$plot_expectand_pushforward(samples3[[name]],
50, flim=c(-9, 9), ylim=c(0, 2),
col=cols[k],
display_name='Interior Cut Points',
main=paste('Customer', c))

for (k in 2:4) {
name <-pasteO('cut_points[', c, ',', k, ']")
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util$plot_expectand_pushforward(samples3[[namel],
50, flim=c(-9, 9),
col=cols[k], border="#BBBBBBSS",
add=TRUE)

text(-1, 1.65, "cut_points[1]", col=util$c_mid)

text(2, 1.55, "cut_points[2]", col=util$c_mid_highlight)
text(4.25, 1, "cut_points[3]", col=util$c_dark)

text(6.25, 0.5, "cut_points[4]", col=util$c_dark_highlight)

c <- 70
k <-1
name <-pasteO('cut_points[', ¢, ',', k, ']")

util$plot_expectand_pushforward(samples3[[namel],
50, flim=c(-9, 9), ylim=c(0, 2),
col=cols[k],
display_name='Interior Cut Points',
main=paste('Customer', c))

Warning in util$plot_expectand_pushforward(samples3[[name]], 50, flim
11 values (0.3%) fell below the histogram binning.

Warning in util$plot_expectand_pushforward(samples3[[name]], 50, flim
0 values (0.0%) fell above the histogram binning.

for (k in 2:4) {
name <-pasteO('cut_points[', ¢, ',', k, ']1")
util$plot_expectand_pushforward(samples3[[name]],
50, flim=c(-9, 9),
col=cols[k], border="#BBBBBBS8S",
add=TRUE)

text(-5.75, 0.4, "cut_points[1]", col=util$c_mid)

text (-3, 0.9, "cut_points[2]", col=util$c_mid_highlight)
text(-2, 1.2, "cut_points[3]", col=util$c_dark)

text(1.0, 1.4, "cut_points[4]", col=util$c_dark_highlight)
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Of course we can still investigate the behavior of individual movies and the hierarchical popu-
lation of movies. The hierarchical regularization of the interior cut points allows the observed
ratings to slightly better inform the movie affinities.

par (mfrow=c(2, 1), mar=c(5, 5, 1, 1))

util$plot_expectand_pushforward(samples3[['tau_gamma']l],
50, flim=c(0, 1),
display_name='tau_gamma')

names <- sapply(l:data$N_movies,
function(m) pasteO('gammal', m, ']'))
util$plot_disc_pushforward_quantiles(samples3, names,
xlab="Movie",
ylab="Affinity")
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Now let’s go one step further than we did in the previous section and use these movie inferences
to rank the movies by their expected affinities. This is just one heuristic for ranking items
based on their inferred qualities, but one that has the advantage of being relatively fast to
compute.

expected_affinity <- function(m) {
util$ensemble_mcmc_est (samples3[[paste0('gammal', m, ']J')]1]1) [1]
}

expected_affinities <- sapply(l:data$N_movies,
function(m) expected_affinity(m))

post_mean_ordering <- sort(expected_affinities, index.return=TRUE)$ix

We can then use this ranking to select the five worst movies for this particular set of cus-
tomers.

print(data.frame("Rank"=200:196,

"Movie"=head(post_mean_ordering, 5)),
row.names=FALSE)
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Rank Movie

200 31
199 159
198 13
197 40
196 175

To be a bit less pessimistic we could also consider the five best movies for this particular set
of customers.

print(data.frame("Rank"=5:1,

"Movie"=tail (post_mean_ordering, 5)),
row.names=FALSE)

Rank Movie

5 193
4 33
3 117
2 44
1 180

We also have a variety of ways to make inferential comparisons between two movies at a
time. For example we could just overlay the marginal posterior distributions for each movie
affinity.

par (mfrow=c(1, 1), mar=c(5, 5, 1, 1))

ml <- head(post_mean_ordering, 1)
name <-pasteO('gammal[', ml, ']"')
util$plot_expectand_pushforward(samples3[[name]],
50, flim=c(-3, 3),
ylim=c(0, 1.35),
col=util$c_mid,
display_name='Affinity')
text(-1.25, 1.3, paste('Movie', ml), col=util$c_mid)

m2 <- tail(post_mean_ordering, 1)

name <-pasteO('gammal[', m2, ']"')

util$plot_expectand_pushforward(samples3[[name]],
50, flim=c(-3, 3),
col=util$c_dark,
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border="#BBBBBB38",
add=TRUE)
text(1.25, 1.3, paste('Movie', m2), col=util$c_dark)

Movie 31 Movie 180

Estimated Bin
Probabilities / Bin Width

Affinity

Even better we can directly compute the probability that one movie affinity is larger than the
other. Here there is little ambiguity whether or not the top ranked movie is actually better
than the worst ranked movie.

var_repl <- list('gl'
Ig2l

paste0('gammal', m1,']"),
pasteO('gammal', m2,']"'))

p_est <-
util$implicit_subset_prob(samples3,
function(gl, g2) gl < g2,
var_repl)

format_string <- pasteO("Posterior probability that movie %i affinity ",
"> movie %i affinity = %.3f +/- %.3f.")
cat(sprintf (format_string, ml, m2, p_est[1], 2 * p_est[2]))

Posterior probability that movie 31 affinity > movie 180 affinity = 1.000 +/- 0.000.
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6 Hierarchical Customer Model With Heterogeneous Affinities

There are two main limitations with the last model. Firstly there is the mild retrodictive
tension in a few of the summary statistics. Secondly it makes the strong assumption that
once the different interpretations of ratings are taken into account all customers have the
same opinion about each movie. This for example prevents us from making personalized
recommendations to each customer.

Incorporating individual tastes into the model would inform much more nuanced inferences and
predictions. It could even resolve some of the retrodictive tension. The immediate challenge
with trying to infer personal movie preferences, however, is that customers rate only a very
small proportion of the available movies.

xs <- seq(1l, data$N_movies, 1)
ys <- seq(l, data$N_customers, 1)
zs <- matrix (0, nrow=data$N_movies, ncol=data$N_customers)
for (n in 1:data$N_ratings) {
zs[data$movie_idxs[n], data$customer_idxs[n]] <- 1
}
par (mfrow=c(1, 1), mar = c(5, 5, 1, 1))

image(xs, ys, zs, col=c("white", util$c_dark_teal),
xlab="Movie", ylab="customer")
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In the machine learning literature the problem of filling in unobserved comparisons, like
customer-movie ratings in this application, is often known as “matrix completion” in anal-
ogy to filling in the missing cells in this pairwise comparison matrix.

Because most of the ratings are unobserved the only way to inform individual customer pref-
erences for each movie is to pool correlations in each movie affinities across customers. For
example we might model each customers’ movie affinities as common baseline affinities plus
individual deviations,

Ye =0 + 5(:'
We can then pool these individual deviations together with a multivariate normal population
model,

p(d,.) = multi-normal(0, X)

with

_ T

YX=r1,-®, -7,

Whatever we learn about the population baseline 7., the population scales 7., and the pop-
ulation correlations @, fill in whatever elements of any particular customer affinity vector v,
that might be unobserved.

Because our domain expertise about the movies is still exchangeable we can model the baseline
movie affinities hierarchically as well,

p(Yo,m) = normal(0, 7. ).
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We’re now modeling the interior cut points, the baseline movie affinities, and the individual
customer affinities hierarchically all at the same time. Pretty neat.

Given the sparsity of observed ratings we’ll implement the normal and multivariate normal
hierarchical models with non-centered parameterizations.

fit <- stan(file="stan_programs/model4.stan",
data=data, seed=8438338, init=0,
warmup=1000, iter=2024, refresh=0)

People complain about frustration with diagnostic warnings, but how bad can they be if we
don’t see serious warnings for this complex model with 40,706 degrees of freedom? Turns out
Hamiltonian Monte Carlo is pretty good!

diagnostics <- util$extract_hmc_diagnostics(fit)
util$check_all_hmc_diagnostics(diagnostics)

A1l Hamiltonian Monte Carlo diagnostics are consistent with reliable
Markov chain Monte Carlo.

samples4 <- util$extract_expectand_vals(fit)
base_samples <- util$filter_expectands(samples4,
c('gammaO_ncp',
'tau_gammaO',
'delta_gamma_ncp',
'tau_delta_gamma',
'L_delta_gamma',
'cut_points',
'mu_q', 'tau_q'),
check_arrays=TRUE)
util$check_all_expectand_diagnostics(base_samples,
exclude_zvar=TRUE)

tau_delta_gamma[97]:
Chain 1: hat{ESS} (39.565) is smaller than desired (100).

Small empirical effective sample sizes result in imprecise Markov chain
Monte Carlo estimators.
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Unfortunately all of this added sophisticated doesn’t actually seem to improve the retrodictive
performance much. Even the retrodictive tension in the empirical covariances, which should
be particularly sensitive to added flexibility in the new model, is similar to what we saw with
the previous model. One possibility is that the multivariate normal population model is isn’t
sufficiently heavy-tailed to accommodate the more extreme tastes of the customers.

par (mfrow=c(1, 1), mar=c(5, 5, 1, 1))
util$plot_hist_quantiles(samples4, 'rating pred', -0.5, 6.5, 1,

baseline_values=data$ratings,
xlab="All Ratings")
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par (mfrow=c(2, 3), mar=c(5, 5, 1, 1))

for (¢ in c(7, 23, 40, 70, 77, 100)) {
names <- sapply(which(data$customer_idxs == c),
function(n) pasteO('rating pred[', n, ']'))
filtered_samples <- util$filter_expectands(samples4, names)

customer_ratings <- data$ratings[data$customer_idxs == c]
util$plot_hist_quantiles(filtered_samples, 'rating_pred',
-0.5, 6.5, 1,
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baseline_values=customer_ratings,
xlab="Ratings",
main=paste('Customer', c))

}
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par (mfrow=c(2, 3), mar=c(5, 5, 1, 1))

for (m in c(33, 53, 61, 80, 117, 180)) {
names <- sapply(which(data$movie_idxs == m),
function(n) pasteO('rating pred[', n, ']'))
filtered_samples <- util$filter_expectands(samples4, names)

movie_ratings <- data$ratings[data$movie_idxs == m]
util$plot_hist_quantiles(filtered_samples, 'rating_pred',
-0.5, 6.5, 1,

baseline_values=movie_ratings,
xlab="Ratings",
main=paste('Movie', m))
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par (mfrow=c(2, 2), mar=c(5, 5, 1, 1))

util$plot_hist_quantiles(samples4, 'mean_rating customer_pred',
0, 6, 0.5,
baseline_values=mean_rating_customer,
xlab="Customer-wise Average Ratings")

util$plot_hist_quantiles(samples4, 'mean_rating movie_pred',
0, 6, 0.6,
baseline_values=mean_rating_movie,
xlab="Movie-wise Average Ratings")

util$plot_hist_quantiles(samples4, 'var_rating_customer_pred',
0, 7, 0.5,
baseline_values=var_rating_customer,
xlab="Customer-wise Rating Variances")

Warning in check_bin_containment(bin_min, bin_max, collapsed_values,
"predictive value"): 307 predictive values (0.1%) fell above the binning.
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util$plot_hist_quantiles(samples4, 'var_rating_movie_pred',
0, 7, 0.5,
baseline_values=var_rating movie,
xlab="Movie-wise Rating Variances")

Warning in check_bin_containment(bin_min, bin_max, collapsed_values,
"predictive value"): 2321 predictive values (0.3%) fell above the binning.
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par (mfrow=c(1, 1), mar=c(5, 5, 1, 1))

filtered_samples <-
util$filter_expectands(samples4,
covar_rating movie_filt_names)

util$plot_hist_quantiles(filtered_samples, 'covar_rating movie_pred',
-4.25, 4.25, 0.25,
baseline_values=covar_rating movie_filt,
xlab="Filtered Movie-wise Rating Covariances")

Warning in check_bin_containment(bin_min, bin_max, collapsed_values,
"predictive value"): 113 predictive values (0.0%) fell below the binning.
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Warning in check_bin_containment(bin_min, bin_max, collapsed_values,
"predictive value"): 95 predictive values (0.0%) fell above the binning.
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The lack of any substantial improvements in the retrodictive performance suggests that we
might not have included enough data to really resolve individual customer preferences quite
yet. We can directly quantify how well we can resolve individual customer preferences by
examining our posterior inferences.

Posterior inferences for the interior cut point population behaviors are mostly consistent with
the previous model, although the baseline rating probabilities do slightly shift down to be
more centered around 3. This suggest that the previous model may have been contorting itself
a bit to account for the variation in customer tastes.

par (mfrow=c(1, 1), mar=c(5, 5, 1, 1))

util$plot_expectand_pushforward(samples3[['tau_q']],
25, flim=c(0, 0.3),
col=util$c_light,
display_name='tau_q')

text(0.05, 10, "Model 2", col=util$c_light)

util$plot_expectand_pushforward(samples4[['tau_q']],
25, flim=c(0, 0.3),
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col=util$c_dark,
border="#BBBBBB38",
add=TRUE)

text (0.2, 10, "Model 3", col=util$c_dark)
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par (mfrow=c(2, 1), mar=c(5, 5, 1, 1))

names <- sapply(1:5, function(k) pasteO('mu_q[', k, ']1'))
util$plot_disc_pushforward_quantiles(samples3, names,
xlab="Rating",
ylab="Baseline Rating Probability",
main="Model 3")

names <- sapply(1:5, function(k) pasteO('mu_q[', k, '1'))
util$plot_disc_pushforward_quantiles(samples4, names,
xlab="Rating",
ylab="Baseline Rating Probability",
main="Model 4")
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Similarly some of the individual customer interior cut points change slightly. For example the
cut points for Customer 23 shift a bit towards larger values.

par (mfrow=c(2, 2), mar=c(5, 5, 1, 1))
c <- 23

lab3_xs <- c(2, -0.5, 0, 1)
lab3_ys <- c(1.75, 0.5, 0.5, 0.25)

lab4_xs <- c(2, 4, 5.5, 8)
lab4_ys <- c(0.5, 0.5, 0.5, 0.25)

for (k in 1:4) {

name <-pasteO('cut_points[', ¢, ',', k, ']")

util$plot_expectand_pushforward(samples3[[namel],
40, flim=c(-2, 10),
col=util$c_light,
display_name=name)

util$plot_expectand_pushforward(samples4[[namel],
40, flim=c(-2, 10),
col=util$c_dark,
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border="#BBBBBB88" ,
add=TRUE)

text (lab3_xs[k], lab3_ys[k], "Model 3", col=util$c_light)
text (lab4_xs[k], lab4_ys[k], "Model 4", col=util$c_dark)
}
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The baseline movie affinities emulate the universal movie preferences in the previous model
and indeed inferences for them are similar, if slightly more heterogeneous.

par (mfrow=c(2, 2), mar=c(5, 5, 1, 1))

util$plot_expectand_pushforward(samples3[['tau_gamma']],
25, flim=c(0, 1.25),
display_name="tau_gamma",
main="Model 3")

names <- sapply(l:data$N_movies,
function(m) pasteO('gammal', m, ']'))
util$plot_disc_pushforward_quantiles(samples3, names,
xlab="Movie",
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ylab="Affinities",
main="Model 3")

util$plot_expectand_pushforward(samples4[['tau_gammaO']],
25, flim=c(0, 1.25),
display_name="tau_gammaO",
main="Model 4")

names <- sapply(1l:data$N_movies,
function(m) pasteO('gammaO[', m, ']'))
util$plot_disc_pushforward_quantiles(samples4, names,
xlab="Movie",
ylab="Baseline Affinities",
main="Model 4")
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Now, however, we can investigate the preferences idiosyncratic to each customer. For exam-
ple the individual movie affinity scales quantify how much the customers disagree about a
particular movie.

61



par (mfrow=c(1, 1), mar=c(5, 5, 1, 1))

names <- sapply(1:data$N_movies,
function(m) pasteO('tau_delta_gammal', m, ']'))
util$plot_disc_pushforward_quantiles(samples4, names,
xlab="Movie",
ylab="Affinity Variation Scales")
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Overall there is a lot of uncertainty, with the inferences for most of the movie affinity scales
concentrating around zero. That said a few stand out. For example the posterior inferences
for 7, 159 are starting to pull away from zero, suggesting that customers tend to disagree about
the quality of this movie more than usual.

par (mfrow=c(1, 1), mar=c(5, 5, 1, 1))

m <- 159

name <- pasteO('tau_delta_gammal', m, ']')

util$plot_expectand_pushforward(samples4[[name]],
25, flim=c(0, 10),
display_name=name)
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The inferred correlations in the multivariate normal population model allow us to inform
predictions for how a customer would react to unrated movies given the movies they have
rated. While most of the correlations are consistent with zero, here approximated by how
much of their marginal posterior probability concentrates on values below 0.05, a few are
consistent with larger values.

Note that I've had to break out some custom, heavily-optimized code here to calculate the
19,900 posterior probabilities reasonably efficiently.

apply_pushforward_expectation <- function(expectand_vals_list,
pushforward_expectand,
input_names) {
arg_name <- formalArgs(pushforward_expectand)

C <- dim(expectand_vals_list[[1]]) [1]
S <- dim(expectand_vals_list[[1]]) [2]

expectand_vals_env <- as.environment(expectand_vals_list)
access_val <- function(name) {
expectand_vals_env[[name]] [c, s]

3

I <- length(input_names)
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psh_fwd_exp_vals <- as.list(rep(NA, I))
pushforward_vals <- matrix(NA, nrow=C, ncol=S)

for (i in 1:1I) {
for (c in 1:C) {
for (s in 1:8) {
pushforward_vals[c, s] <-
as.numeric(do.call (pushforward_expectand,
setNames (list(access_val(input_names[[i]])),
arg_name)))
}
}
psh_fwd_exp_vals[[i]] <- util$ensemble_mcmc_est (pushforward_vals) [1]
}
return(as.numeric(psh_fwd_exp_vals))

}

M <- data$N_movies * (data$N_movies - 1) / 2
input_names <- as.list(rep(NA, M))

idx <- 1
for (ml in 2:data$N_movies) {
for (m2 in 1:(m1 - 1)) {
input_names[[idx]] <- pasteO('Phi[', m1, ',', m2, ']")
idx <- idx + 1

corr_probs <- apply_pushforward_expectation(samples4,
function(phi) phi < 0.05,
input_names)

par (mfrow=c(1, 1), mar=c(5, 5, 2, 1))

util$plot_line_hist(corr_probs, 0, 1, 0.01, col=util$c_dark,
xlab="Posterior Probability Phi[ml,m2] < 0.05")
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That said it’s more practical to investigate the consequence of these correlations. In particular
we can look at the movie affinities for each customer by adding together the common baselines
with their individual preferences. Here we’ll consider Customer 23.

par (mfrow=c(2, 1), mar=c(5, 5, 1, 1))
c <- 23

names <- sapply(l:data$N_movies,
function(m) pasteO('gammaO[', m, ']'))
util$plot_disc_pushforward_quantiles(samples4, names,
xlab="Movie",
ylab="Baseline Affinity",
main="Baseline")

names <- sapply(1l:data$N_movies,
function(m) pasteO('delta_gammal', c, ',', m, ']'))
util$plot_disc_pushforward_quantiles(samples4, names,
xlab="Movie",
ylab="Change in Affinity",
main=pasteO('Customer', c))
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expectands <- sapply(l:data$N_movies,
function(m)
local({ idx = m; function(xl, x2)
x1[idx] + x2[idx] }) )
names (expectands) <- sapply(l:data$N_movies,
function (m)
pasteO('gammal', c, ',', m, ']1'))

var_repl <- list('xl'=array(sapply(l:data$N_movies,
function (m)
paste0('gammalO[', m, ']1'))),
'x2'=array(sapply(l:data$N_movies,
function(m)
pasteO('delta_gammal', c,
L',om, 1))

affinity_samples <-
util$eval_expectand_pushforwards(samples4,
expectands,
var_repl)
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par (mfrow=c(1, 1), mar=c(5, 5, 1, 1))

names <- sapply(1:data$N_movies,
function(m) pasteO('gammal', ¢, ',', m, ']"))

util$plot_disc_pushforward_quantiles(affinity_samples, names,
xlab="Movie",
ylab="Affinity",
main=paste('Customer', c))
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Even better we can separately visualize the movie affinities that are directly informed by
observed ratings and those informed by only the multivariate normal hierarchical model. Note
that the affinities for the movies that Customer 23 did not rate are not only much more

uncertain but also much more uniform.

rated_movie_idxs <- data$movie_idxs[data$customer_idxs == c]
unrated _movie_idxs <- setdiff(1:data$N_movies, rated_movie_idxs)

par (mfrow=c(2, 1), mar=c(5, 5, 1, 1))

names <- sapply(l:data$N_movies,
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function(m) pasteO('gammal', c, ',', m, ']'))
util$plot_disc_pushforward_quantiles(affinity_samples, names,
xlab="Rated Movie",
ylab="Customer Affinity",
main=pasteO('Customer', c))
for (m in unrated _movie_idxs) {
polygon(c(m - 0.5, m + 0.5, m + 0.5, m- 0.5),
c(-4.75, -4.75, 4.75, 4.75), col="white", border=NA)

util$plot_disc_pushforward_quantiles(affinity_samples, names,
xlab="Unrated Movie",
ylab="Customer Affinity",
main=pasteO('Customer', c))
for (m in rated_movie_idxs) {
polygon(c(m - 0.5, m + 0.5, m + 0.5, m- 0.5),
c(-4.75, -4.75, 4.75, 4.75), col="white", border=NA)

}
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The immediate benefit of modeling individual preferences is that we can now make movie
recommendations bespoke to Customer 23.
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expected_affinity <- function(m) {
name <- pasteO('gammal', c, ',', m, ']")
util$ensemble mcmc_est(affinity_samples[[name]]) [1]

}

expected_affinities <- sapply(l:data$N_movies,
function(m) expected_affinity(m))

post_mean_ordering <- sort(expected_affinities, index.return=TRUE)$ix

par (mfrow=c(1, 1), mar=c(5, 5, 1, 1))

names <- sapply(post_mean_ordering,
function(m) pasteO('gammal', c, ',', m, ']"))

xname <- "Movies Ordered by Expected Affinity"
util$plot_disc_pushforward_quantiles(affinity_samples, names,
xlab=xname,

ylab="Affinity")
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Movies Ordered by Expected Affinity

From this we can infer what movies we think Customer 23 will like the least.
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print(data.frame("Rank"=200:196,
"Movie"=head(post_mean_ordering, 5)),
row.names=FALSE)

Rank Movie

200 40
199 13
198 78
197 55
196 119

As well as what movies we think they will like the most.
print(data.frame("Rank"=5:1,

"Movie'"=tail (post_mean_ordering, 5)),
row.names=FALSE)

Rank Movie

5 167
4 61
3 156
2 23
1 97

Of course there’s not much utility in recommending a customer a movie that they’ve already
seen. A much more useful recommendation is for movies that they haven’t yet seen but might
enjoy.

Here let’s assume that a movie has been unrated by a customer only if the customer has not yet
seen it. Consequently the recommendation task comes down to inferring the unrated movies
with the highest affinities for Customer 23.

expected_affinities <- sapply(unrated_movie_idxs,
function(m) expected_affinity(m))

post_mean_ordering <- sort(expected_affinities, index.return=TRUE)$ix

We can finally present a list of the top new movies to recommend to Customer 23.
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print(data.frame("Rank"=10:1,
"Movie"=tail (unrated_movie_idxs[post_mean_orderingl, 10)),
row.names=FALSE)

Rank Movie

10 72
186
15
155
86
161
107
43
87
193

=N Wd 0oy N 0 ©

All of this said we should have only mild confidence in these recommendations given the large
uncertainties.

par (mfrow=c(1, 1), mar=c(5, 5, 1, 1))

names <- sapply(unrated_movie_idxs[post_mean_ordering],
function(m) pasteO('gammal', c, ',', m, ']'))

xname <- "Unrated Movies Ordered by Expected Affinity"

util$plot_disc_pushforward_quantiles(affinity_samples, names,
xlab=xname,
ylab="Affinity")
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One subtlety with recommendations is that in most applications we cannot evaluate their
performance directly. For example absent any additional interrogation of Customer 23 the
only indication of how much they agree with one our recommendations is how well they rate
the movie in the future.

Fortunately we can use our inferences to predict not only movie recommendations but also
how we think Customer 23 would rate them. This would allow us to for example compare
predicted rankings to actual rankings.

movie_idx <- tail(unrated_movie_idxs[post_mean_ordering], 1)

logistic <- function(x) {
if (x > 0) {
1/ (1 + exp(-x))
} else {
e <- exp((x)
e/ (1+e)
+
}

expectands <- list(function(c, gamma) 1 - logistic(gamma - c[1]),
function(c, gamma) logistic(gamma - c[1]) -
logistic(gamma - c[2]),
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function(c, gamma) logistic(gamma - c[2]) -
logistic(gamma - c[3]),
function(c, gamma) logistic(gamma - c[3]) -
logistic(gamma - c[4]),
function(c, gamma) logistic(gamma - c[4]))
names (expectands) <- c('p[1]', 'p[2]', 'p[3]', 'pl4]', 'p[5]1")

var_repl <- list('c'=array(sapply(1:4,

function(k)
pasteO('cut_points[', ¢, ',', k, '1'))),
'gamma'=pasteO('gammal', c, ',', movie_idx, ']'))

for (k in 1:4) {
name <- pasteO('cut_points[', ¢, ',', k, ']")
affinity_samples[[name]] <- samples4[[name]]

}
prob_samples <-util$eval_expectand_pushforwards(affinity_samples,

expectands,
var_repl)

par (mfrow=c(1, 1), mar=c(5, 5, 1, 1))
util$plot_disc_pushforward_quantiles(prob_samples, names(expectands),

xlab="Rating",
ylab="Posterior Probability")
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0.8

Posterior Probability

Rating
Interestingly we don’t actually predict a particularly high rating for our top recommendation.

In hindsight, however, this shouldn’t be unexpected given how austere Customer 23 is with
their stars.

par (mfrow=c(1, 1), mar=c(5, 5, 1, 1))
util$plot_line_hist(data$ratings[data$customer_idxs == c],

=0.B8, G.8, i,
xlab="Rating", main=paste('customer', c))
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Another benefit of this hierarchical approach is that we are not limited to making inferences and
predictions for existing customers. In particular we can also make inferences and predictions
for new customers by sampling new interior cut points and movie affinities from the respective
hierarchical population models. With the dearth of observed ratings these predictions won’t
be all that precise, but at the same time that uncertainty prevents us from making overly
confident claims.

7 Computational Considerations

I want to emphasize that this case study is first and foremost a demonstrative analysis. In
particular I reduced the data not for any statistical reason by rather to ensure that the models
would not take too long to run. Ultimately the final model took about three hours to run on
my laptop which wasn’t too onerous, especially given the total number of parameters.

That said I do think it is useful to at least consider what the different priorities might be for
a more realistic analysis where a specific inferential goal would be driving the amount of data
to include and different computational resources might be available. What would it take to
speed up the fit of the final model or scale it up to a larger data set?

Recall that the overall cost of running Hamiltonian Monte Carlo can roughly be decomposed
into the number of iterations, the number of model evaluations per iteration, and the cost
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of each model evaluation. The number of model evaluations per iteration is driven by the
posterior geometry and how hard the Hamiltonian Monte Carlo algorithm has to work to
explore it. For a fixed data set the two main ways that we can reduce computation is to
improve the posterior geometry or speed up the model evaluations.

When working with hierarchical models we need to be considerate of the potentially problem-
atic geometries to which they are prone. In this case study we seemed to do okay with a
monolithic non-centered parameterization for the normal and multivariate normal hierarchies,
but we could possibly improve the geometry by non-centering the parameters corresponding
to more prolific movies and customers. Before considering that, however, we can estimate the
potential for improvement by examining the length of the numerical Hamiltonian trajectories,
and hence how many model evaluations were needed per iteration, in our last fit.

util$plot_num_leapfrogs_by_chain(diagnostics)

Chain 1 (Stepsize = 0.053) Chain 2 (Stepsize = 0.055

[ I I I I [ [ [ [ [ [ [
20 60 100 20 60 100

Numerical Trajectory Length Numerical Trajectory Leng

Chain 3 (Stepsize = 0.064) Chain 4 (Stepsize = 0.05)

[ [ [ [ [ [ I [ [ [ [ [
20 60 100 20 60 100

Numerical Trajectory Length Numerical Trajectory Leng

Despite the complexity of the final model the numerical Hamiltonian trajectories weren’t all
that long. Even in an ideal case we can’t do do much better than ten or so leapfrog steps per
trajectory; consequently the maximum possible speed up that we could get from improving
the geometry here would be less than an order of magnitude! That’s not trivial but it suggests
that the computational cost is not being dominated by the number of model evaluations but
rather the cost of each model evaluation itself.
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So how can we speed up the model evaluations? One immediate strategy is parallelization,
especially if we’re working with computers blessed with lots and lots of threads. For example
we can, at least in theory, parallelize the many matrix-vector products that are required in the
transformed parameters block. That said achieving these potential speed ups in practice is
always frustrated by the subtle input/output costs of passing all of the needed information to
each thread and back in each model evaluation.

Either approach to speeding up the fitting of the final model will be challenging, requiring
careful investigations and implementations and offering no guarantee of success. Even worse
neither of these strategies will really be able to compete with the quadratic cost of evaluating
the model, both in terms of N iomer * Nmovie a0d N2 .., if we attempt to add more customers
and/or movies. For example scaling up from 200 movies to 2000 movies, still only a fraction
of the total data set and an even more negligible part of the full data a company like Netflix
would have available, would require a 100 fold increase in the cost of evaluating the model.
Even if the posterior geometry doesn’t get any worst that pushes three hours to over a full

day of computation.

In practice we can fight quadratic scaling only so far. Ultimately the problem is that the
final model always has to compare every movie to every other movie. Consequently the most
effective scaling strategy is often to limit the number of movies to which each movie is compared.
More formally we need to introduce an appropriate sparsity structure on the movies so that
most of the N?2

Tovie COvariances are zero.

Many methods attempt to learn a sparsity structure consistent with the observed data, dy-
namically turning off covariances that end up too small. This, however, is an outrageously
difficult learning problem and approximate results tend to be fragile without unreasonable
amounts of data. We can usually do much better by taking advantage of our domain expertise
to motivate appropriate sparsity structures directly.

For example we could first group movies into genres before modeling common baseline affinities,
correlated deviations across genres, and perhaps even correlated deviations for each movie
within each genre. This effectively introduces a block-diagonal structure to the full covariance
matrix which scales much more efficiently without sacrificing all of the correlations that can
help inform predictions for unrated movies.

Given the sparsity of the observed ratings we can learn only so much. Consequently we might
as well build a more restricted model of meaningful behaviors that we have a hope of resolving
than attempting to learn details about which we just don’t have enough information.

8 Conclusion

In this case study I developed a relatively sophisticated analysis of consumer feedback that
accounts for not only how each customer interprets the possible ordinal ratings in different
ways but also the variation in their preferences. To learn anything about these behaviors in
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spite of the sparsity of the data we had to leverage our domain expertise and some formidable
modeling techniques.

If anything I hope that this case study demonstrates how powerful hierarchical modeling
techniques can be when used carefully. In particular to achieve our final inferences we used
our domain expertise to sketch out the data generating process first, and only then considered
opportunities for heterogeneous behaviors.

By starting with the broad features of the data generating process we established an explicit
context that made is easier to identify not only what behaviors were heterogeneous but also
what heterogeneous behaviors might be coupled together. Moreover the structure of those
behaviors motivated appropriate population models. In this way we were able to develop an
elaborate model with multiple, multivariate hierarchies without becoming to overwhelmed in
the process.

Hierarchical modeling is so much more than one-dimensional normal population models!
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Original Computing Environment

writeLines(readLines(file.path(Sys.getenv("HOME"), ".R/Makevars")))

CC=clang

CXXFLAGS=-03 -mtune=native -march=native -Wno-unused-variable -Wno-unused-function -Wno-macr
CXX=clang++ -arch x86_64 -ftemplate-depth-256

CXX14FLAGS=-03 -mtune=native —-march=native -Wno-unused-variable -Wno-unused-function -Wno-ma
CXX14=clang++ -arch x86_64 -ftemplate-depth-256

79


https://github.com/betanalpha/quarto_case_studies/tree/main/ratings
https://opensource.org/licenses/BSD-3-Clause
https://creativecommons.org/licenses/by-nc/4.0/

sessionInfo()

R version 4.3.2 (2023-10-31)
Platform: x86_64-apple-darwin20 (64-bit)
Running under: macOS Sonoma 14.4.1

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/4.3-x86_64/Resources/1ib/1ibRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.3-x86_64/Resources/lib/1ibRlapack.dylib;

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

time zone: America/New_York
tzcode source: internal

attached base packages:
[1] stats graphics grDevices utils datasets methods  base

other attached packages:
[1] colormap_0.1.4 rstan_2.32.6 StanHeaders_2.32.7

loaded via a namespace (and not attached):

[1] gtable_0.3.4 jsonlite_1.8.8 compiler_4.3.2 Rcpp_1.0.11

[5] parallel_4.3.2 gridExtra_2.3 scales_1.3.0 yaml_2.3.8

[9] fastmap_1.1.1 ggplot2_3.4.4 R6_2.5.1 curl_5.2.0

[13] knitr_1.45 tibble_3.2.1 munsell 0.5.0 pillar_1.9.0
[17] rlang 1.1.2 utf8_1.2.4 V8_4.4.1 inline_0.3.19
[21] xfun_0.41 RcppParallel_5.1.7 cli_3.6.2 magrittr_2.0.3
[25] digest_0.6.33 grid_4.3.2 lifecycle_1.0.4 vectrs _0.6.5

[29] evaluate_0.23 glue_1.6.2 QuickJSR_1.0.8 codetools_0.2-19
[33] stats4_4.3.2 pkgbuild_1.4.3 fansi_1.0.6 colorspace_2.1-0
[37] rmarkdown_2.25 matrixStats_1.2.0 tools_4.3.2 loo_2.6.0

[41] pkgconfig _2.0.3 htmltools_0.5.7
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Stan
Program 1 modell.stan

functions {
// Log probability density function over cut point
// induced by a Dirichlet probability density function
// over baseline probabilities and latent logistic
// density function.
real induced_dirichlet_lpdf(vector c, vector alpha) {
int K = num_elements(c) + 1;
vector[K - 1] Pi = inv_logit(c);
vector[K] p = append_row(Pi, [1]') - append_row([0]', Pi);

// Log Jacobian correction
real logJ = O;
for (k in 1: (X - 1)) {
if (c[k] >= 0)
logJ += -c[k] - 2 * log(1l + exp(-c[k]));
else
logJ += +c[k] - 2 * log(1l + exp(+cl[k]));

return dirichlet_lpdf(p | alpha) + logJ;

data {
int<lower=1> N_ratings;
array[N_ratings] int<lower=1, upper=5> ratings;

int<lower=1> N_customers;
array[N_ratings] int<lower=1, upper=N_customers> customer_idxs;

int<lower=1> N_movies;
array[N_ratings] int<lower=1, upper=N_movies> movie_idxs;

parameters {
vector [N_movies] gamma_ncp; // Non-centered movie affinities
real<lower=0> tau_gamma; // Movie affinity population scale

ordered[4] cut_points; // Customer rating cut points

}

transformed parameters {
// Centered movie affinities
. _ 81 .
vector [N_movies] gamma = tau_gamma * gamma_ncp;

}

model {
// Prior model
gamma_ncp ~ normal(0, 1);
tau_gamma ~ normal(0, 5 / 2.57);



Stan
Program 2 model2.stan

functions {
// Log probability density function over cut point
// induced by a Dirichlet probability density function
// over baseline probabilities and latent logistic
// density function.
real induced_dirichlet_lpdf(vector c, vector alpha) {
int K = num_elements(c) + 1;
vector[K - 1] Pi = inv_logit(c);
vector[K] p = append_row(Pi, [1]') - append_row([0]', Pi);

// Log Jacobian correction
real logJ = O;
for (k in 1: (X - 1)) {
if (c[k] >= 0)
logJ += -c[k] - 2 * log(1l + exp(-c[k]));
else
logJ += +c[k] - 2 * log(1l + exp(+cl[k]));

return dirichlet_lpdf(p | alpha) + logJ;

data {
int<lower=1> N_ratings;
array[N_ratings] int<lower=1, upper=5> ratings;

int<lower=1> N_customers;
array[N_ratings] int<lower=1, upper=N_customers> customer_idxs;

int<lower=1> N_movies;
array[N_ratings] int<lower=1, upper=N_movies> movie_idxs;

parameters {
vector [N_movies] gamma_ncp; // Non-centered movie qualities
real<lower=0> tau_gamma; // Movie quality population scale

array [N_customers] ordere cut_points; ustomer rating cut points
y [N t ] ordered[4] cut_points; // Cust ting cut point

}

transformed parameters {
vector [N_movies] gamma = tau_gamma *8§amma_ncp;

}

model {
// Prior model
gamma_ncp ~ normal(0, 1);
tau_gamma ~ normal(0, 5 / 2.57);



Stan
Program 3 model3.stan

functions {
// Log probability density function over cut point
// induced by a Dirichlet probability density function
// over baseline probabilities and latent logistic
// density function.
real induced_dirichlet_lpdf(vector c, vector alpha) {
int K = num_elements(c) + 1;
vector[K - 1] Pi = inv_logit(c);
vector[K] p = append_row(Pi, [1]') - append_row([0]', Pi);

// Log Jacobian correction
real logJ = O;
for (k in 1: (X - 1)) {
if (c[k] >= 0)
logJ += -c[k] - 2 * log(1l + exp(-c[k]));
else
logJ += +c[k] - 2 * log(1l + exp(+cl[k]));

return dirichlet_lpdf(p | alpha) + logJ;

data {
int<lower=1> N_ratings;
array[N_ratings] int<lower=1, upper=5> ratings;

int<lower=1> N_customers;
array[N_ratings] int<lower=1, upper=N_customers> customer_idxs;

int<lower=1> N_movies;
array[N_ratings] int<lower=1, upper=N_movies> movie_idxs;

parameters {
vector [N_movies] gamma_ncp; // Non-centered movie affinities
real<lower=0> tau_gamma; // Movie affinity population scale

array [N_customers] ordere cut_points; ustomer rating cut points
y [N t ] ordered[4] cut_points; // Cust ting cut point

simplex[5] mu_q; // Rating simplex population location
real<lower=0> tau_q; // Rating simplex population scale
}
83
transformed parameters {
// Centered movie affinities
vector [N_movies] gamma = tau_gamma * gamma_ncp;

}

model {



Stan
Program 4 model4.stan

functions {
// Log probability density function over cut point
// induced by a Dirichlet probability density function
// over baseline probabilities and latent logistic
// density function.
real induced_dirichlet_lpdf(vector c, vector alpha) {
int K = num_elements(c) + 1;
vector[K - 1] Pi = inv_logit(c);
vector[K] p = append_row(Pi, [1]') - append_row([0]', Pi);

// Log Jacobian correction
real logJ = O;
for (k in 1: (X - 1)) {
if (c[k] >= 0)
logJ += -c[k] - 2 * log(1l + exp(-c[k]));
else
logJ += +c[k] - 2 * log(1l + exp(+cl[k]));

return dirichlet_lpdf(p | alpha) + logJ;
+
3
data {
int<lower=1> N_ratings;
array [N_ratings] int<lower=1, upper=5> ratings;

int<lower=1> N_customers;
array[N_ratings] int<lower=1, upper=N_customers> customer_idxs;

int<lower=1> N_movies;
array[N_ratings] int<lower=1, upper=N_movies> movie_idxs;

parameters {
// Baseline movie affinities population model
vector [N_movies] gammaO_ncp;
real<lower=0> tau_gammaO;

// Individual customer affinity population model

array[N_customers] vector[N_movies] delta_gamma_ncp;
vector<lower=0>[N_movies] tau_delta_gamma;
cholesky_factor_corr[N_movies] L_delta_gamma;

array[N_customers] ordered[4] cut_po%%ts; // Customer rating cut points
simplex[5] mu_q; // Rating simplex population location

real<lower=0> tau_q; // Rating simplex population scale

transformed parameters {



	Setup
	Data Exploration
	Homogeneous Customer Model
	Independent, Heterogeneous Customer Model
	Hierarchical Customer Model
	Hierarchical Customer Model With Heterogeneous Affinities
	Computational Considerations
	Conclusion
	Acknowledgements
	License
	Original Computing Environment

