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A diversity of applications all consider data arising from the comparison of two objects to each
other. For example we might be interesting in the outcome of a sporting event between two
teams, how well a student can answer a battery of test questions, or even consumer preferences
between two products.

In this chapter we’ll discuss general strategies for modeling pairwise comparisons, the infer-
ential degeneracies that are inherent to these models, and productive strategies for managing
those degeneracies. Per tradition these concepts will all be demonstrated in a series of instruc-
tional analyses.

1 Modeling Pairwise Comparisons

Given the rich variety of pairwise comparisons that arise in practical applications we will need
a reasonably generic vocabulary to describe the common modeling techniques.

To that end consider a collection of I items, any pair of which can be compared to each other
according to some criterion. Items can refer to anything from individual living creatures to



individual inanimate objects, collections of those individuals, and more. Comparative criterion
include the personal judgement of an individual and the scoring of a direct competition.

In many applications every pair of items defines a valid comparison. Some applications, how-
ever, partition the items into two groups and allow comparisons between only an item from
one group with an item from the other group; specifically we cannot compare items within
each group to each other. For example in a sporting event we might model the points scored
by one team as a comparison between that team’s offense and their opponent’s defense, but
no other outcomes directly compare the opposing teams’ offensives or defenses to each other.
I will refer to these restricted pairings as bipartite comparisons.

A comparison between two abstract items will not always result in a quantitative outcome. Just
think of all of the poets and songwriters who have struggled to express their feelings about
contrasting concepts! To facilitate mathematical modeling we have to restrict consideration
to comparative criteria that are quantifiable. In this chapter I will assume a convention where
quantitative comparisons yield larger numerical values if the first item in the pair ¢; is superior
to the second item i, according to the stated criterion.

More formally we will consider only pairwise comparisons that yield a point in some ordered
space, with the superiority of item ¢; over item %, manifesting as larger values in that space.
For example comparisons might be quantified by binary values, integers, or even real numbers.
Critically these outputs depend on the arrangement of the items; swapping the roles of item i,
and item i, will in general result in outcomes on the opposite side of the space. For example
if ¢, is superior to i,, and comparisons return larger values, then ¢, will be inferior to 7; and
comparisons will return smaller values.

Our general strategy for consistently modeling pairwise comparisons with ordered outputs will
proceed in two stages.

First we equip each item with a real-valued quality parameter, o, € R, that quantifies how
much each item contributes to a particular comparison. A useful convention when working
with bipartite comparisons is to denote the quality parameters of each group with a separate
variable name, for example ; and ;. To even further distinguish the two types of items we
can also use separate indices, for example o, and j3; or a; and f;.

Next we need to ensure that when comparing item ¢, to item i, the larger «; is relative to

a; the more the comparison outcome y, , will tend towards larger values. Equivalently the
2 1°%2

larger «;, is relative to «; the more y, ; should tend towards smaller values.

One way to guarantee this behavior is to model the comparison outcome y; ; with an appro-
priate location family of probability density functions,

p(:’Jiliz | TR ?),

and then replace the location parameter p; ; with the output of a monotonically-increasing
function of the difference in quality parameters,

Hi i, = f(ail - ai2)~



The larger «; is relative to «; the larger the difference between them will be, the larger the
output of the function f will be, and the more the comparison outcomes will concentrate on
larger values as desired.

2 Coupling Outcome Location and ltem Qualities

The general construction of pairwise comparison models presented in Section 1 allows for
a variety of sophisticated behaviors. Perhaps the most important of these is the functional
relationship that couples the location of the outcome model to the difference of item qualities,

iy = f(ai1 - ai2)~

Often it is more productive to build up the function f as a composition of multiple component
functions,

Mgy = frowo f1(0%'1 - 0‘1’2),
with each moderating the coupling in different ways.

In this section we’ll discuss a few functional behaviors that are particularly useful for many
pairwise comparison applications.

2.1 Constraining Functions

By construction item qualities are real-valued, and so too are their differences. If the location
configuration of the outcome model is not real-valued then we cannot directly relate it to
those real-valued differences. In particular if the location configuration is constrained then it
will not be immediately compatible to the item differences. Instead we need to introduce an
intermediate function to corral any inconsistent values.

First, however, consider a pairwise comparison that results in a real-valued outcome. In this
case we might consider a normal outcome model
normal(y; ;, | #i,i,,0)-

Because the location p; ; is unconstrained we can directly relate it to the item differences
with an identify function,

Hiiy, = Id(ail - 041‘2) =0 Q.
Here the quality of the first item «; directly translates the location of the outcome model
upwards while the quality of the second item «; translates the location downwards.

Now consider a pairwise comparison that yields non-negative, integer-valued outcomes y; ; €
N. Here we might reach for a Poisson outcome model,

POiSSOD<yi1i2 | )‘iliz ),



with a positive location configuration A, ; . In order to relate the unconstrained item quality
differences to a valid location configuration we need a monotonic function that squeezes an
entire real line into a positive real line,

f:R—R".

One possibility is the exponential function,

iy — eXP(az‘l - 051‘2)

= exp(ay, ) exp(—a;,)

1
= eXP(%l)m-

)

In this case the item quality differences don’t translate the location configuration but rather
scale it multiplicatively.

Similarly when working with binary outcomes y; ; € {0,1} we can always assume a Bernoulli
model
Bernoulli(y; ;. | p; ;,)-

We can then use a logistic function
logistic : R — [0, 1]
to map item quality differences into unit-interval-valued probability configurations,
p;q, = logistic(a; —a;).

That said the logistic function is not the only possibility here. For example we could use the
error function or really the cumulative distribution function for any probability distribution
defined on a real line.

2.2 Baseline-Inducing Functions

In many applications it is useful to have item qualities modify a common baseline behavior.
One way to achieve this is with a translation function that centers differences in item qualities
around a baseline value,

tyloy, —ay ) =n+a; —a.
For example we can model real-valued comparison outcomes with the same normal model that
we considered above

normal(yi1i2 | Mi1i2>0)



but with the location configuration

M iy = tn(ail - 0%'2)

:17—1—0%1 — Q.

Here n models the baseline location which can be translated up or down by the qualities of
the items being compared.

2.3 Discrimination-Inducing Functions

Another useful feature of a pairwise comparison model is the ability to moderate exactly
how much the location configuration is coupled to the item quality differences. One way to
accomplish this is with a scaling function,

57<041;1 - 0‘1’2) =7 (ail - ai2)~

Large, positive values of v enhance the coupling while smaller values suppress it. As v ap-
proaches zero the location configuration becomes completely uncoupled to the item qualities.
Because of this behavior v is known as a discrimination variable.

Negative values of v invert the relationship between the item quality differences and the loca-
tion configuration so that, for example, a; > «; results in smaller outcomes that suggest the
superiority of item ¢, over item ;. This behavior can be useful when the nominal comparison
criterion might actually be reversed.

That said negative values of v also allow for some redundancy in the resulting pairwise com-
parison model. Flipping the sign of the discrimination and item qualities at the same time
results in the same output,

v (ail - aiQ) = (=) (<_ai1) - <_ai2)>a

and hence the same model for the comparison outcomes. This redundancy then manifests as
degenerate likelihood functions.

Beyond cases where the nominal comparison criterion is suspect the best practice is to constrain
the sign of a discrimination parameter to positive values. This eliminates the sign redundancy
and any resulting inferential degeneracies.

All of this said, a homogeneous discrimination model is not all that useful in practice. Scaling
the differences in item qualities is most useful when the discrimination varies across different
circumstances, with outcomes more strongly informed by the item qualities for some observa-
tions but more weakly informed by the item qualities for others. Exactly how v should vary
will depend on the details of a particular application; we’ll see some examples in Section 6.4
and Section 6.5.



2.4 Combining Functional Behaviors

As useful as these individual functional behaviors are on their own they can become especially
useful when combined together.

To demonstrate let’s reconsider pairwise comparisons that yield non-negative, integer-valued
outcomes. Once again we’ll appeal to a Poisson model for the outcomes

Poisson(ym2 | )\ilig )v

but now we’ll allow for more sophisticated functional relationships between the location con-
figuration A; ; and the item difficulties.

For example if we compose a translation function with an exponential function then the latter
will define a baseline while the latter will ensure positive location configurations,

A . = exp otn(ozi1 - aiz)

=exp(n+a; —a; )

= exp(n) - exp(ail) ' exp(—o%)
1

eXP(%Q) .

1172

= exp(n) - exp(a;, ) -

In this case exp(n) defines a baseline location that is multiplicatively perturbed by the quality
parameters of the items being compared.

We might even compose a scaling function, a translation function, and an exponential function
together at the same time,

Aiyi, = expot,os (o —ay )
= exp Otn(V ) (O‘il - 0%'2))
=exp(n+v- (o, —a;))

=exp () exp (v (o, —a;))-

112

As before exp(n) defines a baseline location, but now the multiplicative perturbations defined
by the item quality parameters are moderated by ~. In particular as v — 0 the output of any
pairwise comparison shrinks towards the baseline behavior regardless of the qualities of the
items being compared.

3 Notable Pairwise Comparisons Models

While pairwise comparison modeling is broadly applicable there are two applications that
dominate the statistics literature, both of which consider only the special case of binary out-
comes. In this case section we’ll review these applications in the context of the more general
techniques.



3.1 Bradley-Terry Model

One common pairwise comparison arises in competitions, with a game between two players
or teams resulting in an unambiguous winner and loser. We can model these competitions as
pairwise comparisons with the binary outcome y; ; = 1 denoting a win for the ¢, th competitor
and y; ;, = 0 a win for the i,th competitor. The items then model the competitors while the
item qualities model their skills.

Wrapping the difference in item qualities in a logistic functions gives the pairwise comparison
model
Bernoulli(y; s, | p;,s,)

with

1
1+ exp(—(a;, —a; )
_ 1
1+ exp(—a; ) exp(a;,)
exp(ozil)

B exp(—a; ) +exp(a; )

This model is commonly known as the Bradley-Terry model (Bradley and Terry (1952)),
although historically it has been independently derived multiple times from multiple different
perspectives (Hamilton, Tawn, and Firth (2023)).

One nice feature of this model is the symmetry between the competitors. If we swap the order
of the competitors then the probability that the i5th competitor wins is

Piyi, = logis‘cic(ai2 — ail)
- 1
1+ exp(—(ay, — ;)
exp(—(ay, —a;,)
1+ exp(—(o;, — ;)
1+ exp(—(a;, —a; ) —1
1+ exp(—(a;, — ;)

_ Ldexp(—(oy, —ay,) 1
1+exp(—(a;, —a;))  1+exp(—(a;, —ay )
=1- piliz'

Consequently modeling a win for either team will always yield the same inferences for their
relative skills.



This model is also the basis for the Elo rating system (Elo (1967)) first developed to rank
competitive chess players but since applied to all kinds of repeated competitions. The original
Elo rating system used this pairwise comparison model to derive iterative updates to the
competitor skills based on the initial skills and the outcome of a competition.

One limitation of considering only the winner of a competition is that the resulting analysis
is largely insensitive to the details of competition itself. In particular any analysis using this
model will be able to predict the winner of future competitions only so well.

In practice we can often use more general pairwise comparison models to capture these dynam-
ics and inform more versatile predictions. For example in some competitions we can model the
scores of two competitors, with item qualities capturing for their distinct offensive and defen-
sive skills. In many cases we can even model the outcome of individual plays and then integrate
these components models together into a detailed model of how a competition progresses.

When analyzing a baseball game, for instance, we could model only the winner or we could
model the scores of each team. We could even go deeper and model the constituent com-
petitions between individual batters and pitchers, balls in play and team defenses, and so
on.

3.2 Item Response Theory

Another common pairwise comparison arises in standardized testing, also known as item
response theory (Baker (2001)). These applications consider bipartite comparisons, with
one item in each comparison representing a question on a test and the other representing a
student attempting to answer that question. The item qualities then model the difficulty of
the question and the test-taking ability of the student, respectively, while the binary outcome
quantifies whether a not the student correctly answers the question.

The key difference between item response theory models and Bradley-Terry models is the
asymmetry in the items. A Bradley-Terry model allows for comparisons between any two
competitors, but an item response theory model considers only comparisons between one
question and one student.

The simplest item response theory model takes the same form as the Bradley-Terry model
with
Bernoulli(y,; | p;;)

and

pji = logistic(a; — B;),
where ¢ indexes each question and j indexes each student. Historically this model is also known
as the Rasch model (Rasch (1960)). In more contemporary literature it is often referred to as
a 1PL model, with the “L” referring to the logistic mapping between item quality differences
and outcome probabilities and the “1P” referring to the one parameter used to model the
behavior of each question.



Adding a discrimination parameter for each question,
P = IOgiStiC<% ) (04]‘ - 51‘))7
allows the model to account for poorly designed questions that might be less sensitive to

student abilities. This is also known as a 2PL model given the two parameters needed to
model each question.

Lastly a 3PL model for each question introduces lower bounds to the correct answer probabil-
ities,

Py = A+ (=) IOgiStiC(%' : (aj - @))
As we saw in the mixture modeling chapter this mixture of Bernoulli probability configurations
can also be interpreted as a mixture of separate Bernoulli models,

p(y;) = A; Bernoulli(y;; | 1)
+ (1 = A;) Bernoulli(y; | logistic(vy; - (a; — 5;)))-

In other words the 3PL model implies that students have some fixed probability of guessing
each answer correctly, independent of their test-taking abilities.

4 Managing Inferential Degeneracies

Unfortunately pairwise comparison models aren’t as well-posed as we might initially have
hoped. By construction observed outcomes inform only the differences between item qualities
and not their definite values. Because of this the item qualities cannot be inferred inde-
pendently of each other and, in a very real sense, they cannot be meaningfully interpreted
independently of each other.

In other words pairwise comparison models are inherently redundant, and this redundancy
complicates practical implementations.

4.1 The Fundamental Redundancy of Item Qualities

Pairwise comparison models are inherently non-identified, with any common translation to the
item qualities yielding the same location configurations,

ti (g + oy +C0) = f((a;, +C) — (a;, +())
= flay, —a;, + (=)
=f (ail - 0%'2)
= :U’ili2(ai1)ai2>'
Consequently every likelihood function realized from one of these models will be invariant to

translations of the item qualities. This invariance in turn traces out non-compact inferential
degeneracies that frustrate computation (Figure 1b).

10
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p(aimaiz) p(?jiliz | ,f(ai17ai2)) p(ailvaiz ‘ .77i1i2)

Qi ‘ Qi Qi /

Qi Qi Qi

(a) (b) (c)

Figure 1: The item qualities in a naive pairwise comparison model are non-identified, result-
ing in (b) likelihood functions with non-compact degeneracies. (a) An informative
prior model suppresses extreme qualities, resulting in a (c) much better behaved
posterior distribution. Note, however, that a residual degeneracy remains within the
containment of the prior model.

4.2 Informative Prior Modeling

Within a Bayesian analysis we can use an informative prior model to at least tame these non-
compact degeneracies and contain the corresponding posterior distributions away from infinity
(Figure 1). While inferential degeneracies can still persist within the breadth of a prior model
and hinder computational efficiency this containment at least makes accurate computational
possible.

Because we cannot interpret the item qualities independently of each other any prior model
over the o, will be somewhat arbitrary. What really determines a whether a prior model is
useful or not is how consistent the induced behavior for the differences in item qualities, and
ultimately the corresponding outcome behaviors, is with the available domain expertise.

For example the independent component prior model over the item qualities,

1
p(alv ,Oé[) = HDOI"HI&I(O% | Oa 5@')7
i=1

implies a pushforward prior model for any item quality difference,

p(a; — a; ) = normal (0%1 —ay, |0,4/87 + 8222> .

If this pushforward behavior is consistent with our domain expertise then the initial prior
model will be satisfactory.

11



That said many distinct prior models will in general share the same pushforward behavior. In
particular any independent component prior model of the form

I
plag,..,ay) = Hnormal(ai | m,s;)
i=1

implies the same pushforward behavior,

p(a; — o, ) = normal (ail —a,; |0, /s?1 + 8222) .

Consequently any value of m defines an equally viable prior model.

4.3 Anchoring Item Qualities

A more effective approach than prior containment is to remove a degree of freedom from the
pairwise comparison model and eliminate the underlying redundancy entirely.

4.3.1 Single Anchor

For example consider picking an arbitrary item and then subtracting the distinguished item
quality from all of the item qualities,

51' =Q; — Q.
After this transformation the item quality differences are unchanged,
Mi1i2(5¢175¢2) = Mili2<ai1 — Oy, 0y, — ;)

= f((ail —ay) — (0% —a;))

=f (0%'1 - 0%'2>

= Mg iy (ailv aiQ)’
but the distinguished item quality is now anchored to zero,

5’&" - Oé,,;/ - OZ,L'/ - 0

Because 6,, is now fixed we have to infer only the I — 1 remaining quality parameters.

The 6, can be interpreted as the item qualities relative to the quality of the anchored item,
with 6, > 0 implying that the ith item is superior to the anchored item and ¢, < 0 implying
that the ith item is inferior to the anchored item. This interpretation also facilitates prior
modeling, allowing us to reason about the relative item qualities directly instead of having to
analyze indirect pushforward behavior.

12



4.3.2 Multiple Anchors

All of this said, a single anchor isn’t always enough. Recall that once we fix the quality of
the +’th item to zero the residual quality parameters are interpreted relative to the quality of
that anchored item. This immediately identifies the ¢, for any item that is directly compared
to the ¢’th item. These identified parameters in turn identify any remaining items that are
directly compared to them, and so on. Any items which are not at least indirectly compared
to the anchored item, however, remain invariant to translations!

We can formalize the connectivity of the comparisons, and hence how many item qualities we
need to anchor, with a little bit of graph theory (Clark and Holton (1991)). Any collection of
observed pairwise comparisons defines a graph, with each item defining a node and the number
of pairwise comparisons between any two items defining a weighted, undirected edge between
the corresponding nodes (Figure 2).

19

Figure 2: Any collection of pairwise comparisons defines an undirected graph, with the items
being compared defining nodes and the comparisons themselves defining edges be-
tween the nodes.

Two items have been directly compared if there is an edge between their nodes; two items
have been indirectly compared if their nodes can be connected by a path of edges. More
formally these interacting items form the connected subgraphs, or components, of the full
graph (Figure 3).

From an inferential perspective the behavior of items in one connected component are inde-
pendent of the behavior of items in any other connected component. In other words the item

13



Full Graph First Connected Component Second Connected Component

(a) (b) ()

Figure 3: When some nodes are isolated from the others (a) a graph decomposes into (b, ¢)
multiple connected components. In a graph defined by pairwise comparisons the
item qualities in any one component are independent of the item qualities in any
other component.

qualities are only locally interpretable within the encompassing connected component. We
cannot learn the relationship between two items that have no connection to each other!

For example while we can learn the relative test-taking abilities of students who taken the
same test we cannot learn the relative test-taking abilities of students who have taken com-
pletely different tests. Similarly when analyzing historical competition data we can learn how
skilled more modern competitors are to older competitors only if we have enough intermediate
competitions to bridge them together.

Mathematically anchoring the quality parameter of an item eliminates the redundancy only
of the item qualities within the same component. The redundancy of item qualities in other
components remains. To completely eliminate the redundancy of a pairwise component model
and avoid the subsequent inferential degeneracies we have to anchor one item quality in each
connected component.

Fortunately the translation of a collection of items into a graph and computation of the result-
ing connected components is relatively straightforward to implement in practice (Cormen et
al. (2022)). We'll review a demonstration in Section 6.2.

That said we have to be careful with what inferences we construct from a pairwise comparison
model with more than one anchored item quality. For example if we anchor the quality of
items 7" and ¢” in two different connected components then we will have both

57:/ - OZ,L'/ _Oéi/ — O

and
61'” = Qn — CQynr = 0,

14



and consequently
(S,L-/ _51'” :O—OZO

Naively this might be interpreted as the quality of the two anchored items being identical,
even thought those relative quantities are actually incomparable with each other.

In theory we could obstruct ill-defined comparisons by anchoring the items in the second
connected component to a different value,

52-/ = Oéi/ — Oy = 0
6i’/ = O — (ai// — QZ)) = (}5
Unfortunately this just reintroduces the initial degeneracy: ¢ is completely uninformed by the

observed data and we would have to rely on whatever domain expertise has been encoded in
the prior model to inform its posterior behavior.

Perhaps the safest approach is to simply analyze the pairwise comparisons in each connected
components separately from each other. When analyzing a single connected component at a
time we will only ever need to anchor one item. Moreover inferences and predictions for all
possible pairwise comparisons within each analysis will always be well-defined. The limitation
with this approach, however, is that the full data set will no longer able to inform any shared
behaviors, such as common baselines or discriminations.

Regardless of the approach we take we are ultimately responsible for avoiding ill-defined infer-
ences or predictions for any comparison of items in different connected components.

4.4 Coupling Function Redundancies

Every function that couples the item quality differences to the outcome location will suffer
the fundamental redundancy of the item qualities. Some coupling functions, however, can
introduce new redundancies and inferential degeneracies with them.

Consider, for example, the translation function
tn(ail - az‘Q) =n+o; —o.
Mathematically the baseline suffers from an additive redundancy with the item quality differ-

ences,

*aiZ):nJFail*aiz
=n+0+a; —a;
=n+C—CHo; —aoy,
=M+ + (o, —a, — ()

— tn+<<ai1 - aiz — C)

15



When items appear are both side of the comparisons, however, there’s no way to factor that
offset ( into the individual item qualities. In this case the baseline 7 is identified by the
observed behavior common to all comparisons.

With bi-partite comparisons, however, we can factor any offset ¢ into either of the contrasting
item qualities

ty(a; —B;) = tyyc(a; — B; = C)
= tn+c<(az‘ — () — 5j>
= tn+c(ai - (ﬁj +0)).
Because we can absorb the offset into either group of item qualities we cannot eliminate this

redundancy by anchoring one type of item alone. Instead we have to anchor both types of
items.

When the observed comparisons define a single connected component we need to set a distin-
guished a;, and a distinguished (3 to zero at the same time. More generally we need to fix
one of each type of item quality within each connected component.

For example if we’re modeling points scored in the games of a sports league as

p(y”> — POiSSOH(yij | exp(n + CY’L{)ffense o a;iefense))
then we would need to anchor one team’s offensive skill to zero and one team’s defensive skill
to zero so that the remaining skills are defined relative to the anchored skills. In general we
can anchor the offensive and defensive skills of the same team or even different teams. Either
way we can then interpret the baseline 1 as modeling the score in a, possibly hypothetical,
game between the anchored offense and the anchored defense.

Similarly a scaling function

16



Because scaling the item qualities does not obstruct translations,

o —ao; (o +¢) — (o, =)

p p

)

anchoring the item qualities will not eliminate this scale redundancy. Any proportional increase
in the discrimination parameter v can be compensated by a proportional decrease in the item
qualities and vice versa.

An informative prior model on the item qualities and discrimination parameters does limit
the scope of this redundancy, and hence the resulting inferential degeneracies. That said
constraints on the qualities and discriminations can interact in subtle ways that complicate
principled prior modeling. By far the most effective strategy is to eliminate the redundancy
entirely.

If the discrimination is homogeneous across all comparisons then we can always fix v to one
without any loss of generality. On the other hand if the discrimination is heterogeneous, with
a separate vy, for each distinct context, then fixing one of the 7,, will eliminate the redundancy
in the pairwise comparison model. Specifically if we set

T =1

then the remaining discrimination parameters end up quantifying scaling relative to the an-
chored context,

Ry = —.
k
%

4.5 Trouble With Dominating Items

Depending on the structure of the observational space pairwise comparison models can also
suffer from some more circumstantial inferential degeneracies.

Consider for example comparison outcomes that are bounded above,

yi1i2 < Ymax-

If the observed comparisons to one particular item i’ always saturate that maximum value,

Yiriy, = Ymaxo

then the observations will not be able to determine just how much better that dominating
item is from the others.

The saturated observations will be able to lower bound the definite or relative quality of the
dominating item, but they will be indifferent to the remaining, arbitrarily large values. This
then results in a non-compact degeneracy extending out towards positively-infinite values.

17



Similarly if the observed comparisons are bounded below,

Yiyiy = Ymin

and the observed comparisons to one dominating item always saturate that minimum value,
Yiri,, = Ymin>

then the data will not be able to differentiate between arbitrarily large but negative values of
the definite quality a;, or even the relative quality ¢,,. In this case the likelihood function will
exhibit a non-compact degeneracy that extends out towards negatively-infinite values.

For both cases a reasonably informative prior model will be able contain these inferential
degeneracies and prevent them from propagating to the posterior distribution. An even better
strategy is to design more informative comparisons that can inform just how much better every
item is from its peers.

For example in the context of sporting events analyzing score differentials is always more
informative than analyzing winners. Similarly in the context of standardized testing one
might be able to learn more from how long it takes students to reach the right answer than
one can from whether or not the students report the right answer eventually.

5 Ranking ltems

Because item qualities can be meaningfully interpreted only relative to one other they inform
only a limited range of behaviors. One particularly useful behavior that they can inform are
rankings of the items being compared.

Formally any configuration of item qualities,

) aI) € AI7

(Qgy ey e

implies one of I! possible rankings,
(71 eees Ty, 7p) € R,
where the items are ordered by their relative qualities,
a, <.oo<a, <<

In fact this relationship defines a bijective function from the space of item qualities to the
space of the possible orderings of the I items,

o: Al - R.
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Theoretically pushing forward a posterior distribution over the item qualities 7w along this
function will define a posterior distribution o,7 that quantifies the consistent item rankings.
The challenge in practice, however, is that the space of ranking R is difficult to navigate. In
particular it is not immediately clear how we might be able to construct summaries of o, 7
that are straightforward to communicate.

For example we might be interested in point summaries that quantify the centrality of the
rank posterior distribution in some way. Because the space of rankings is discrete each rank
will in general be allocated non-zero probability, allowing us to consider a modal ranking,

r* = argmax o, w({r}).
reR

Unfortunately even if a unique mode exists actually finding it is typically intractable. In general
we will not be able to compute the atomic allocations o, 7({r}) in closed form and estimation
of all of these probabilities quickly becomes expensive. Consequently exhaustively searching
through all 1! atomic allocations is almost always be too expensive. Moreover without gradient
information we have no way to guide a more efficient search of the ranking space.

In analogy to the construction of posterior mean summaries we might instead consider a
ranking distance function d : R x R — R" and then define a point summary that minimizes
the expected distance,

pr = argmin £, . [d(-,7)].
reR
Conveniently there are a variety of useful distance functions on R that we could use to inform
such point summaries, and in theory we can estimate the necessary expectation values with
Markov chain Monte Carlo. The minimization over all possible candidate rankings r € R,
however, suffers from the same problems as above.

Because of these computational issues we usually need to appeal to more heuristic summaries
in practice. For instance we can always rank the items by the posterior expectation values of
their individual qualities,

E o, ] <..<E.a,.]<..<E;|a

"] ' )
When considering only two items at a time we can can also consult the posterior probability

that one skill surpasses the other,

m({a;, >a; }).
One nice feature of this pairwise inferential comparison is that it accounts for any coupled
uncertainties between the two item qualities.

These binary inferential comparisons can also be used to construct another heuristic ranking.
The posterior probability that the quality of each item is larger than the quality of all other
items,

py =7m({ay > ajand ... anda, > a;and ... and oy > ag}),
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can be used to assign a top rank,
r; = argmax p;.
iel
At this point we can compute the posterior probability that the quality of each remaining item
is larger than the quality of all of the other remaining items and assign the second-highest rank
based on the largest of these probabilities. We can then fill out all of the remaining rankings
by iterating this procedure until only one item is left to occupy the lowest rank.

The main limitations with this approach is that it requires estimating so many probability
allocations that we can exhaust the available computational resources, especially if there are
a lot of items. The computation is even more demanding if we want to ensure robust rankings
that are not corrupted by computational artifacts. This requires that the Markov chain Monte
Carlo error for each posterior probability estimate is smaller than any of the differences between
it and the other posterior probability estimates. Implementing robust rankings in practice
requires not only carefully monitor the error of all of the posterior probability estimates but
also potentially running additional or longer Markov chains to reduce any errors as needed.

6 Demonstrations

With the foundations laid let’s investigate the implementation of pairwise comparison mod-
els and their inferential behaviors with a series of increasingly more sophisticated example
analyses.

6.1 Setup

First and foremost we have to set up or local R environment.

par(family="serif", las=1, bty="1",
cex.axis=1, cex.lab=1, cex.main=1,

xaxs="i", yaxs="i", mar = c(5, 5, 3, 5))

library(rstan)

rstan_options(auto_write = TRUE) # Cache compiled Stan programs
options(mc.cores = parallel::detectCores()) # Parallelize chains
parallel:::setDefaultClusterOptions(setup_strategy = "sequential")

library(colormap)

util <- new.env()
source('mcmc_analysis_tools_rstan.R', local=util)
source('mcmc_visualization tools.R', local=util)
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6.2 Graph Analysis Utilities

Next we’ll need some utilities for analyzing the graphs defined by a collection of pairwise
comparisons. There are a variety of dedicated graph analysis packages available in R, but here
T’ll code up basic implementations of the specific tools that we’ll need.

Firstly we’ll need a function that builds up a weighted adjacency matrix from a list of
pairwise comparisons. The (i, i5)-th element of a weighted adjacency matrix is the number of
comparisons between item ¢; and item 5. In particular if the (i,,i5)-th element is zero then
the two items have not been directly compared.

build_adj_matrix <- function(N_items, N_comparisons, idx1l, idx2) {
if (min(idx1) < 1 | max(idx1) > N_items) {
stop("Out of bounds idxl values.")
}
if (min(idx2) < 1 | max(idx2) > N_items) {
stop("Out of bounds idx2 values.")
}

adj <- matrix(0, nrow=N_items, ncol=N_items)

# Compute directed edges
for (n in 1:N_comparisons) {

adjlidx1[n], idx2[n]] <- adjlidx1[n], idx2[n]] + 1
}

# Compute symmetric, undirected edges
for (pl in 1:(N_items - 1)) {
for (p2 in (pl + 1):N_items) {
N1 <- adj[pl, p2]
N2 <- adj[p2, pil]
adj[pl, p2] <- N1 + N2
adj[p2, pl] <- N1 + N2

(adj)

Adjacency matrices are extremely useful for implementing many graph theory operations in
practice. For example we can use a weighed adjacency matrix to visualize the comparison
graph, with circles representing each node and lines representing the edges. Here the color
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of the lines visualizes the weight of each edge, equivalently how many comparisons have been
made between any two items.

plot_undir_graph <- function(adj) {
if (!is.matrix(adj)) {
stop("Input adj is not a matrix.")
+
if (nrow(adj) != ncol(adj)) {
stop("Input adj is not a square matrix.")

3

nom_colors <- c("#DCBCBC", "#C79999", "#B97C7C", "#A25050")
edge_colors <- colormap(colormap=nom_colors, nshades=100)

I <- nrow(adj)

delta <- 2 *x pi / I

thetas <- (0:(I - 1)) * delta + pi / 2
R <-1

xs <- R * cos(thetas)
ys <- R * sin(thetas)

plot(0, type='n', axes=FALSE, ann=FALSE,
xlim=c(-1.1 * R, +1.1 * R), ylim=c(-1.1 * R, +1.1 % R))

cthetas <- seq(0, 2 * pi + 0.05, 0.05)
cxs <- R * cos(cthetas)
cys <- R * sin(cthetas)
lines(cxs, cys, lwd=3, col="#DDDDDD")

max_adj <- max(adj)
for (i1 in 1:(I - 1)) {
for (i2 in (i1 + 1):I) {
cidx <- floor(100 * (adjlil, i2] / max_adj))
lines(xs[c(il, i2)], yslc(il, i2)], 1lwd=3, col=edge_colors[cidx])
}
+

points(xs, ys, pch=16, cex=1.75, col="white")
points(xs, ys, pch=16, cex=1.25, col=util$c_dark)

We can also use an adjacency graph to decompose an initial graph into connected compo-
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nents.

Given an initial node we first find all of the nodes that are at least indirectly related by pairwise
comparisons with a recursive, breadth-first search.

breadth_first_search <- function(n, adj, local _nodes=c()) {
local _nodes <- c(local_nodes, n)
neighbors <- which(adj[n,] > 0)
for (nn in neighbors) {
if (!(nn %in% local_nodes))
local_nodes <- union(local_nodes,
Recall(nn, adj, local_nodes))
}
(local_nodes)

}

Repeating this search until we’ve exhausted all of the nodes identifies the connected compo-
nents.

compute_connected_components <- function(adj) {
if (!is.matrix(adj)) {
stop("Input adj is not a matrix.")
}
if (nrow(adj) != ncol(adj)) {
stop("Input adj is not a square matrix.")

}

all_nodes <- 1:nrow(adj)
remaining nodes <- all_nodes
components <- list()

for (n in all _nodes) {
if (n %in% remaining nodes) {
subgraph <- breadth_first_search(n, adj)
remaining_nodes <- setdiff(remaining nodes, subgraph)
components [[length(components) + 1]] <- subgraph
}
+

(components)

For example let’s say that we have a graph defined by 8 items and 8 comparisons.
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C <- 8
iteml <- c(1, 2, 3, 4, 4, 4, 5, 7)
item2 <- c(2, 3, 1, 5, 6, 8, 6, 8)

These comparisons define a weighted adjacency matrix.

adj <- build_adj_matrix(K, C, iteml, item2)

The weighted adjacency matrix then informs a visualization of the graph.
par (mfrow=c(1, 1), mar=c(0, 0, 0, 0))

plot_undir_graph(adj)

In this case the graph decomposes into two components.

components <- compute_connected_components(adj)
components
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[[1]1]
(11 123

[[2]1]
[1] 45687

One way to visualize this decomposition is to visualize each connected component individu-

ally.

par (mfrow=c(1, 2), mar=c(0, 0, 2, 0))
for (c in seq_along(components)) {
component_adj <- adj
for (k in 1:K) {
if (! (k %in% components[[cl]))
component_adj[k,] <- rep(0, K)
}
plot_undir_graph(component_adj)
title(paste("Component", c))

}
Component 1 Component 2
[ o
o o o [
o o0 o
o [ [ [
° (
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6.3 Modeling Binary Comparisons

With toolbox prepared let’s move onto our first example. Here we’ll emphasize inferential
degeneracies with a model of binary comparisons. To provide some basic context let’s say that
these binary comparisons are the outcomes of games between two players and we’re interesting
in inferring the relative skills of each player.

6.3.1 Simulate data

To start we’ll need to some data to analyze, including which players are matched up in each
game and the eventual winner. For this example we’ll simulate the games in two steps, us-
ing playerl_probs to sample the first player and pair_probs to conditionally sample their
opponent. Note the zeroes in pair_probs prevent some player matchups from occurring at
all.

N_players <- 7
N_games <- 4000

playerl_probs <- c(0.2, 0.16, 0.19, 0.11, 0.12, 0.13, 0.09)

pair_probs <- c(0.0, 0.4, 0.0, 0.0, 0.5, 0.0, 0.0,
0.5, 0.0, 0.0, 0.0, 0.2, 0.6, 0.0,
0.0, 0.0, 0.0, 0.6, 0.0, 0.0, 0.5,
0.0, 0.0, 0.7, 0.0, 0.0, 0.0, 0.5,
0.5, 0.3, 0.0, 0.0, 0.0, 0.4, 0.0,
0.0, 0.3, 0.0, 0.0, 0.3, 0.0, 0.0,
0.0, 0.0, 0.3, 0.4, 0.0, 0.0, 0.0)

pair_probs <- matrix(pair_probs, nrow=N_players)

simu <- stan(file="stan_programs/simu_bradley_terry.stan",
algorithm="Fixed_param", seed=8438338,
data=1list("N_players" = N_players,

"N_games" = N_games,
"playerl_probs" = playerl_probs,
"pair_probs" = pair_probs),

warmup=0, iter=1, chains=1, refresh=0)

data <- list("N_players" = N_players,
"N_games" = N_games,
"playerl_idx" = extract(simu)$playerl_idx[1,],
"player2_idx" = extract(simu)$player2_idx[1,],
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"y" = extract(simuw)$y[1,])

alpha_true <- extract(simu)$alphal1,]

6.3.2 Explore Data

Now we can explore the simulated data.

Counting the number of games that include each player we can see that not every player
participates in the same number of games. Consequently we should be able to more precisely
learn the relative skills of the more active players.

game_counts <- sapply(l:data$N_players,
function(i) sum(data$playerl_idx == i |
data$player2_idx == i ) )
par (mfrow=c(1, 1), mar=c(5, 5, 1, 1))
barplot(game_counts,

space=0, col=util$c_dark_teal, border="white",
xlab="Player", ylab="Number of Games")
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To investigate the interaction between the players we can visualize the matchups as a graph.

adj <- build_adj _matrix(data$N_players, data$N_games,
data$playerl_idx, data$player2_idx)

par (mfrow=c(1, 1), mar=c(0, 0, 0, 0))

plot_undir_graph(adj)

Interestingly the players decompose into two isolated groups, with no games matching up
players across the groups.

components <- compute_connected_components(adj)
components

[[1]1]
[1] 1 256

[[2]]
(11 347
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par (mfrow=c(1, 2), mar=c(0, 0, 2, 0))

for (c in seq_along(components)) {
component_adj <- adj
for (i in 1:data$N_players) {
if (!'(i %in’ components[[c]]))
component_adj[i,] <- rep(0, data$N_players)
}
plot_undir_graph(component_adj)
title(paste("Connected Subgraph", c))
}

Connected Subgraph 1~ Connected Subgraph 2

Given the variation in the number of games played it’s no surprise that there is also hetero-
geneity in the total number of wins and losses for each player.

win_counts <- sapply(l:data$N_players,

function(i) sum(( data$playerl_idx == i &
data$y == ) |
( data$player2_idx == i &
data$y == ) )
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loss_counts <- sapply(l:data$N_players,
function(i) sum(( data$playerl_idx == i &

data$y == ) |
( data$player2_idx == 1i &
data$y == ) ) )

par (mfrow=c(1, 2), mar=c(5, 5, 1, 1))

barplot(win_counts,
space=0, col=util$c_dark_teal, border="white",
xlab="Player", ylab="Number of Wins", ylim=c(0, 800))

barplot(loss_counts,
space=0, col=util$c_dark_teal, border="white",
xlab="Player", ylab="Number of Losses", ylim=c(0, 800))
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The proportion of games won should be particularly sensitive to the individual player skills.
par (mfrow=c(1, 1), mar=c(5, 5, 1, 1))

barplot(win_counts / game_counts,
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space=0, col=util$c_dark_teal, border="white",
xlab="Player", ylab="Win Frequency")
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Indeed these empirical win frequencies make for a useful summary statistic.

6.3.3 Attempt 1

Given the binary outcomes we’ll follow the Bradley-Terry construction, with a Bernoulli
model,
Bernoulh(yilz‘Z | piliQ)’

and logistic relationship between the probability that player ¢; defeats player i, and the cor-
responding difference in skills,

i, = logistic(a; —a; ).

To investigate any inferential degeneracies as directly as possible let’s start with an improper,
flat prior density function so that our Markov chains are effectively exploring the contours of
the realized likelihood function.
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fit <- stan(file="stan_programs/bradley_terryl.stan",
data=data, seed=8438338,
warmup=1000, iter=2024, refresh=0)

Unfortunately the diagnostics are very unhappy.

diagnostics <- util$extract_hmc_diagnostics(fit)
util$check_all_hmc_diagnostics(diagnostics)

Chain 1: 485 of 1024 transitions (47.36328125%,) saturated the maximum treedepth of 10.
Chain 2: 439 of 1024 transitions (42.87109375%) saturated the maximum treedepth of 10.
Chain 3: 562 of 1024 transitions (54.8828125%) saturated the maximum treedepth of 10.

Chain 4: 497 of 1024 transitions (48.53515625%,) saturated the maximum treedepth of 10.

Numerical trajectories that saturate the maximum treedepth have
terminated prematurely. Increasing max_depth above 10 should result in
more expensive, but more efficient, Hamiltonian transitions.

samples <- util$extract_expectand_vals(fit)

base_samples <- util$filter_expectands(samples,
c('alpha'),
check_arrays=TRUE)

util$check_all_expectand_diagnostics(base_samples)

alphal1]:

Split hat{R} (4.600) exceeds 1.1.

Chain 1: hat{ESS} (8.697) is smaller than desired (100).

Chain 2: hat{ESS} (5.632) is smaller than desired (100).
Chain 3: hat{ESS} (8.079) is smaller than desired (100).
Chain 4: hat{ESS} (4.521) is smaller than desired (100).

alphal2]:

Split hat{R} (4.600) exceeds 1.1.

Chain 1: hat{ESS} (8.697) is smaller than desired (100).

Chain 2: hat{ESS} (5.632) is smaller than desired (100).
Chain 3: hat{ESS} (8.079) is smaller than desired (100).
Chain 4: hat{ESS} (4.521) is smaller than desired (100).
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alphal3]:
Split hat{R} (3.996) exceeds 1.1.

Chain 1: hat{ESS} (5.616) is smaller than desired (100).
Chain 2: hat{ESS} (6.316) is smaller than desired (100).
Chain 3: hat{ESS} (10.696) is smaller than desired (100).
Chain 4: hat{ESS} (13.759) is smaller than desired (100).

alphal4]:
Split hat{R} (3.996) exceeds 1.1.
Chain 1: hat{ESS} (5.616) is smaller than desired (100).
Chain 2: hat{ESS} (6.316) is smaller than desired (100).
Chain 3: hat{ESS} (10.696) is smaller than desired (100).
Chain 4: hat{ESS} (13.759) is smaller than desired (100).

alpha[5]:

Split hat{R} (4.600) exceeds 1.1.

Chain 1: hat{ESS} (8.697) is smaller than desired (100).

Chain 2: hat{ESS} (5.632) is smaller than desired (100).
Chain 3: hat{ESS} (8.078) is smaller than desired (100).
Chain 4: hat{ESS} (4.521) is smaller than desired (100).

alphal6]:

Split hat{R} (4.600) exceeds 1.1.

Chain 1: hat{ESS} (8.694) is smaller than desired (100).

Chain 2: hat{ESS} (5.632) is smaller than desired (100).
Chain 3: hat{ESS} (8.078) is smaller than desired (100).
Chain 4: hat{ESS} (4.520) is smaller than desired (100).

alphal7]:
Split hat{R} (3.996) exceeds 1.1.

Chain 1: hat{ESS} (5.616) is smaller than desired (100).
Chain 2: hat{ESS} (6.316) is smaller than desired (100).
Chain 3: hat{ESS} (10.695) is smaller than desired (100).
Chain 4: hat{ESS} (13.758) is smaller than desired (100).

Split Rhat larger than 1.1 suggests that at least one of the Markov
chains has not reached an equilibrium.

Small empirical effective sample sizes result in imprecise Markov chain
Monte Carlo estimators.
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Together the treedepth saturation and low ESSs suggest that the likelihood function is concen-
trating into a long, narrow geometry. Indeed when we look through pairs plots of the player
skills we see some of them exhibiting translation invariance.

names <- sapply(l:data$N_players, function(i) pasteO('alphal', i, ']'))
util$plot_div_pairs(names, names, samples, diagnostics)
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The behaviors become more consistent if we compare the skills of players only within the same
connected components. All of these pairs plots show the same degenerate geometry.

names <- sapply(components[[1]], function(i) pasteO('alphal', i, ']1'))
util$plot_div_pairs(names, names, samples, diagnostics)
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names <- sapply(components[[2]], function(i) pasteO('alphal', i, ']1"'))
util$plot_div_pairs(names, names, samples, diagnostics)
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Interestingly the skills of players between the two connected subgroups appear to be largely
uncorrelated. Instead the players skills incoherently meandering around the consistent val-
ues.

namesl <- sapply(components[[1]], function(i) pasteO('alphal', i, ']1'))
names2 <- sapply(components[[2]], function(i) pasteO('alphal', i, ']1'))
util$plot_div_pairs(namesl, names2, samples, diagnostics)
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The fact that all of the cross-component pairs plots exhibit identical meandering patterns is
somewhat disconcerting. Something has to be coupling all of these behaviors together.

Recall that the observed game outcomes inform each player’s skill relative to their historical
opponents. Nothing, however, informs how the two connected components should behave rela-
tive to each other. A player who has won all of their matches but played only poor opponents
isn’t likely to fare well against new competition. Similarly a player who has lost all of their
matches against elite opponents can perform surprisingly well against weaker competition.
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Consequently the average skills of the two connected components effectively random walk
around each other.

var_repl <- list('alpha'=array(sapply(components[[1]],
function(i)

pasteO("alphal", i, "1"))))
mean_valsl <- util$eval_expectand_pushforward(samples,

function(alpha)
mean(alpha),
var_repl)

var_repl <- list('alpha'=array(sapply(components[[2]],

function(i)

pasteO("alphal", i, "1"))))
mean_vals2 <- util$eval_expectand_pushforward(samples,

function(alpha)
mean (alpha),
var_repl)
util$plot_pairs_by_chain(mean_valsl, 'meanl’',

mean_vals2, 'mean2')
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Another way to understand these inferential degeneracies is that the observed game outcomes
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inform the differences in the player skills but not the sums. For this initial model the explored
skill sums are limited only by the finite length of the Markov chains.

par (mfrow=c(1, 2), mar=c(5, 5, 1, 1))

var_repl <- list('alpha'=array(sapply(components[[1]],
function(i)
pasteO("alphal[", i, "1"))))
sum_vals <- util$eval_expectand_pushforward(samples,
function(alpha) sum(alpha),
var_repl)
util$plot_expectand_pushforward(sum_vals, 20, flim=c(-4000, 4000),
display_name="sum(alpha)",
main="Connected Component 1")

var_repl <- list('alpha'=array(sapply(components[[2]],
function(i)
pasteO("alphal", i, "1"))))
sum_vals <- util$eval_expectand_pushforward(samples,
function(alpha) sum(alpha),
var_repl)
util$plot_expectand_pushforward(sum_vals, 20, flim=c(-4000, 4000),
display_name="sum(alpha)",
main="Connected Component 2")

39



Connected Compon Connected Compon

Estimated Bin
Probabilities / Bin Width
Estimated Bin
Probabilities / Bin Width

17 1 1
-4000 0 4000 -4000 0 4000

sum(alpha) sum(alpha)

On the other hand the skill differences within each connected component are consistent with
the behavior of the simulation data generating process.

par (mfrow=c(2, 3), mar=c(5, 5, 3, 1))

N <- length(components[[1]])
for (i1 in 1:(N - 1)) {
for (i2 in (i1 + 1):N) {
idx1 <- components[[1]][i1]
idx2 <- components[[1]][i2]
namel <- pasteO('alphal', idx1l, ']")
name2 <- pasteO('alphal', idx2, ']')
diff_vals <- util$eval_expectand_pushforward(samples,
function(al, a2) al - a2,
list('al'=namel,
'a2'=name2))
util$plot_expectand_pushforward(diff_vals,
25, flim=c(-0.75, 0.5),
baseline=alpha_true[idx1] -
alpha_true[idx2],
baseline col=util$c_dark_teal,
display_name=paste(namel, '-',
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name?2))

mtext ("Connected Component 1", line=-2, outer=TRUE)
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par (mfrow=c(1, 3), mar=c(5, 5, 3, 1))

N <- length(components[[2]])
for (i1 in 1:(N - 1)) {
for (i2 in (i1 + 1):N) {
idx1l <- components[[2]] [i1]
idx2 <- components[[2]][i2]
namel <- pasteO('alphal', idx1l, ']")
name2 <- pasteO('alphal', idx2, ']')
diff_vals <- util$eval_expectand_pushforward(samples,
function(al, a2)
al - a2,
list('al'=namel,
'a2'=name2))
util$plot_expectand_pushforward(diff_vals,
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25, flim=c(-0.75, 0.5),

baseline=alpha_true[idx1] -
alpha_true[idx2],

baseline_col=util$c_dark_teal,

display_name=paste(namel, '-',
name?2) )

mtext ("Connected Component 2", line=-2, outer=TRUE)
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6.3.4 Attempt 2

We should be able to tame the degenerate geometry of the realized likelihood function with
a proper prior model. Let’s start by considering a diffuse, but well-defined, prior model that
contains the magnitude of the player skills below 10. Keep in mind that inputs of £10 to a
logistic function correspond to pretty extreme output probabilities!
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fit <- stan(file="stan_programs/bradley_terry2.stan",
data=data, seed=8438338,
warmup=1000, iter=2024, refresh=0)

FEven with this conservative prior model the diagnostics are much better behaved than they
were before.

diagnostics <- util$extract_hmc_diagnostics(fit)

util$check_all_hmc_diagnostics(diagnostics)

All Hamiltonian Monte Carlo diagnostics are consistent with reliable
Markov chain Monte Carlo.

samples <- util$extract_expectand_vals(fit)

base_samples <- util$filter_expectands(samples,
c('alpha'),
check_arrays=TRUE)

util$check_all_expectand_diagnostics(base_samples)

A1l expectands checked appear to be behaving well enough for reliable
Markov chain Monte Carlo estimation.

That said the posterior exploration requires long, and consequently expensive, Hamiltonian
trajectories.

par (mfrow=c(1, 1), mar=c(5, 5, 1, 1))

util$plot_num_leapfrogs(diagnostics)

43



|

HJIUMUUMJM [{]TTTATIIP M.,.____,;..J

B B S B E—
100 200 300 400 50C

Numerical Trajectory Length

The costly exploration, however, does yield good retrodictive performance. In particular the
behavior of the posterior predictive and observed empirical win frequencies are consistent with
each other.

par (mfrow=c(1, 1), mar=c(5, 5, 1, 1))

names <- sapply(l:data$N_players,
function(i) pasteO('win_freq_pred[', i, ']'))
util$plot_disc_pushforward_quantiles(samples, names,
baseline_values=win_counts /
game_counts,
xlab="Player",
ylab="Win Frequency")
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Marginally the posterior inferences for each player skill aren’t that much more informative
than the prior model.

par (mfrow=c(2, 4), mar=c(5, 5, 1, 1))

for (i in 1:data$N_players) {
name <- pasteO('alphal', i, ']1")
util$plot_expectand_pushforward(samples[[name]],
25, flim=c(-10, 10),
baseline=alpha_true[i],
baseline_col=util$c_dark_teal,
display_name=name)
xs <- seq(-10, 10, 0.25)
ys <- dnorm(xs, 0, 10 / 2.32)
lines(xs, ys, lwd=2, col=util$c_light_teal)
}
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It’s not that we’re not learning anything; the game outcomes just don’t pin down the absolute
value of the player skills.

par (mfrow=c(2, 4), mar=c(5, 5, 1, 1))

for (i in 1:(data$N_players - 1)) {
for (j in (i + 1):data$N_players) {
namel <- pasteO('alphal', i, ']")
name2 <- pasteO('alphal', j, '1")
plot(c(samples[[namel]]), c(samples[[name2]]),
cex=1, pch=16, col=util$c_dark,
xlab=namel, xlim=c(-10, 10),
ylab=name2, ylim=c(-10, 10))
lines(10 * cos(seq(0, 2 * pi, 2 * pi / 250)),
10 * sin(seq(0, 2 * pi, 2 *x pi / 250)),
col=util$c_dark_teal)
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In particular the sum of the player skills within each connected component are informed entirely
by the prior model.

par (mfrow=c(1, 2), mar=c(5, 5, 1, 1))

var_repl <- list('alpha'=array(sapply(components[[1]],
function(i)
pasteO("alphal[", i, "1"))))
sum_vals <- util$eval_expectand_pushforward(samples,
function(alpha) sum(alpha),
var_repl)
util$plot_expectand_pushforward(sum_vals, 20, flim=c(-40, 40),
display_name="sum(alpha)",
main="Connected Component 1")

xs <- seq(-40, 40, 0.5)
ys <- dnorm(xs, 0, sqrt(length(components[[1]])) * 10 / 2.32)
lines(xs, ys, lwd=2, col=util$c_light_teal)

var_repl <- list('alpha'=array(sapply(components[[2]],

function(i)
pasteO("alphal", i, "1"))))
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sum_vals <- util$eval_expectand_pushforward(samples,
function(alpha) sum(alpha),
var_repl)
util$plot_expectand_pushforward(sum_vals, 20, flim=c(-40, 40),
display_name="sum(alpha)",
main="Connected Component 2")

xs <- seq(-40, 40, 0.5)
ys <- dnorm(xs, 0, sqrt(length(components[[2]])) * 10 / 2.32)
lines(xs, ys, lwd=2, col=util$c_light_teal)
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The observations instead inform only relative performance, and hence the differences in the
player skills.

par (mfrow=c(2, 3), mar=c(5, 5, 3, 1))

N <- length(components[[1]])
for (i1 in 1:(N - 1)) {
for (i2 in (i1 + 1):N) {
idx1l <- components[[1]][il]
idx2 <- components[[1]][i2]
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namel <- pasteO('alphal', idx1l, ']')
name2 <- pasteO('alphal', idx2, ']')
diff_vals <- util$eval_expectand_pushforward(samples,
function(al, a2)
al - a2,
list('al'=namel,
'a2'=name2))
util$plot_expectand_pushforward(diff_vals,
25, flim=c(-0.75, 0.5),
baseline=alpha_true[idx1] -
alpha_true[idx2],
baseline_col=util$c_dark_teal,
display_name=paste(namel, '-',
name?2))

mtext ("Connected Component 1", line=-2, outer=TRUE)
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par (mfrow=c(1, 3), mar=c(5, 5, 3, 1))

N <- length(components[[2]])
for (i1 in 1:(N - 1)) {
for (i2 in (i1 + 1):N) {
idx1 <- components[[2]][i1]
idx2 <- components[[2]][i2]
namel <- pasteO('alphal', idx1, ']')
name2 <- pasteO('alphal', idx2, ']')
diff_vals <- util$eval_expectand_pushforward(samples,
function(al, a2)
al - a2,
list('al'=namel,
'a2'=name?2))
util$plot_expectand_pushforward(diff_vals,
25, flim=c(-0.75, 0.5),
baseline=alpha_true[idx1] -
alpha_true[idx2],

baseline_col=util$c_dark_teal,

display_name=paste(namel, R
name2))

mtext ("Connected Component 2", line=-2, outer=TRUE)
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6.3.5 Attempt 3

Although the previous model was by no means a disaster we should be able to achieve faster
computation with a more informative prior model. We don’t even have to be all that precise
with our domain expertise elicitation.

For example let’s say that our domain expertise is inconsistent with win probabilities below
1/3 and above 2/3,

(]

Lo
3 ~ 1119
In the context of our model this implies that

&
w-

! . . (2
logit <§> < logit(p; ;) =  logit (§>
1 2
log 2 7] & @n—ap < log . 2
1 2
log (3) X 1 R log (?)
3 3
1
log <§) SR RS log (2)
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We can achieve this containment in the differences by containing the individual player skills
to

QA

20

)

QA

—log?2 +log 2

1 1
——log2 % .~ +=log2.
5 0g2 3 az,w-+2 og
Fbr(xnmextthetﬂueshokl%log2 is about 0.35, almost two orders of magnitude smaller than
the more conservative threshold that we used in the previous model!

fit <- stan(file="stan_programs/bradley_terry3.stan",
data=data, seed=8438338,
warmup=1000, iter=2024, refresh=0)

A stronger prior containment should only make the posterior geometry more well-behaved,
and unsurprisingly the computational diagnostics remain clean.

diagnostics <- util$extract_hmc_diagnostics(fit)

util$check_all_hmc_diagnostics(diagnostics)

All Hamiltonian Monte Carlo diagnostics are consistent with reliable
Markov chain Monte Carlo.

samples <- util$extract_expectand_vals(fit)

base_samples <- util$filter_expectands(samples,
c('alpha'),
check_arrays=TRUE)

util$summarize_expectand_diagnostics(base_samples)

All expectands checked appear to be behaving well enough for reliable
Markov chain Monte Carlo estimation.

Moreover the improved geometry requires almost an order of magnitude fewer model evalua-
tions to inform each Markov transition.

par (mfrow=c(1, 1), mar=c(5, 5, 1, 1))

util$plot_num_leapfrogs(diagnostics)
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Similarly no problems have snuck into the posterior retrodictive checks.
par (mfrow=c(1, 1), mar=c(5, 5, 1, 1))

names <- sapply(1l:data$N_players,
function(i) pasteO('win_freq_pred[', i, ']1'))
util$plot_disc_pushforward_quantiles(samples, names,
baseline values=win_counts /
game_counts,
xlab="Player",
ylab="Win Frequency")
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While the individual player skills are still poorly informed by the observed data, the stronger
prior model corrals them into a smaller neighborhood.

par (mfrow=c(2, 4), mar=c(5, 5, 1, 1))

for (i in 1:data$N_players) {
name <- pasteO('alphal', i, ']1")
util$plot_expectand_pushforward(samples[[name]],
25, flim=c(-0.7, 0.7),
baseline=alpha_true[i],
baseline_col=util$c_dark_teal,
display_name=name)
xs <- seq(-1.25, 1.25, 0.01)
ys <- dnorm(xs, 0, log(sqrt(2)) / 2.32)
lines(xs, ys, lwd=2, col=util$c_light_teal)
}
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par (mfrow=c(2, 4), mar=c(5, 5, 1, 1))

for (i in 1:(data$N_players - 1)) {
for (j in (i + 1):data$N_players) {
namel <- pasteO('alphal', i, ']")
name2 <- pasteO('alphal', j, 'l1")
plot(c(samples[[name1]]), c(samples[[name2]]),
cex=1, pch=16, col=util$c_dark,
xlab=namel, xlim=c(-0.7, 0.7),
ylab=name2, ylim=c(-0.7, 0.7))
lines(log(sqrt(2)) * cos(seq(0, 2 * pi, 2 * pi / 250)),
log(sqrt(2)) * sin(seq(0, 2 * pi, 2 * pi / 250)),
col=util$c_dark_teal)
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Because the inferential degeneracy persists within the containment of the prior model the
observed data does not provide any additional information about the sum of the player skills
within each cohort.

par (mfrow=c(1, 2), mar=c(5, 5, 1, 1))

var_repl <- list('alpha'=array(sapply(components[[1]],
function(i)
pasteO("alphal", i, "1"))))
sum_vals <- util$eval_expectand_pushforward(samples,
function(alpha) sum(alpha),
var_repl)
util$plot_expectand_pushforward(sum_vals, 20, flim=c(-2, 2),
display_name="sum(alpha)",
main="Connected Component 1")

xs <- seq(-2, 2, 0.01)
ys <- dnorm(xs, 0, sqrt(length(components[[1]])) * log(sqrt(2)) / 2.32)
lines(xs, ys, lwd=2, col=util$c_light_teal)

var_repl <- list('alpha'=array(sapply(components[[2]],
function(i)
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pasteO("alpha[", i, "]1"))))
sum_vals <- util$eval_expectand_pushforward(samples,
function(alpha) sum(alpha),
var_repl)
util$plot_expectand_pushforward(sum_vals, 20, flim=c(-2, 2),
display_name="sum(alpha)",
main="Connected Component 2")

xs <- seq(-2, 2, 0.01)
ys <- dnorm(xs, 0, sqrt(length(components[[2]])) * log(sqrt(2)) / 2.32)
lines(xs, ys, lwd=2, col=util$c_light_teal)

Connected Compon Connected Compon

H

H \

Estimated Bin
Probabilities / Bin Width
Estimated Bin
Probabilities / Bin Width

-2 0 2 -2 0 2
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Instead the observations inform only the differences between the player skills in each cohort.
par (mfrow=c(2, 3), mar=c(5, 5, 3, 1))

N <- length(components[[1]])
for (i1 in 1:(N - 1)) {
for (i2 in (i1 + 1):N) {
idx1l <- components[[1]][il]
idx2 <- components[[1]][i2]
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namel <- pasteO('alphal', idx1l, ']')
name2 <- pasteO('alphal', idx2, ']')
diff_vals <- util$eval_expectand_pushforward(samples,
function(al, a2)
al - a2,
list('al'=namel,
'a2'=name2))
util$plot_expectand_pushforward(diff_vals,
25, flim=c(-0.75, 0.5),
baseline=alpha_true[idx1] -
alpha_true[idx2],
baseline_col=util$c_dark_teal,
display_name=paste(namel, '-',
name?2))

mtext ("Connected Component 1", line=-2, outer=TRUE)
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par (mfrow=c(1, 3), mar=c(5, 5, 3, 1))

N <- length(components[[2]])
for (i1 in 1:(N - 1)) {
for (i2 in (i1 + 1):N) {
idx1 <- components[[2]][i1]
idx2 <- components[[2]][i2]
namel <- pasteO('alphal', idx1, ']')
name2 <- pasteO('alphal', idx2, ']')
diff_vals <- util$eval_expectand_pushforward(samples,
function(al, a2)
al - a2,
list('al'=namel,
'a2'=name?2))
util$plot_expectand_pushforward(diff_vals,
25, flim=c(-0.75, 0.5),
baseline=alpha_true[idx1] -
alpha_true[idx2],

baseline_col=util$c_dark_teal,

display_name=paste(namel, R
name2))

mtext ("Connected Component 2", line=-2, outer=TRUE)
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6.3.6 Attempt 4

Because we took the time to thoroughly investigate the inferential degeneracies of pairwise
comparison models in Section 4 we have more effective tools at our disposal than just the prior
model.

Let’s go back to the more diffuse prior model that we introduced in Section 6.3.4 but anchor
one of the player skills to zero to eliminate some of the redundancy in the model. Note
that we have to be careful to update the prior model to accommodate the now relative skill
parameters.

fit <- stan(file="stan_programs/bradley_terry4.stan",

data=data, seed=8438338,
warmup=1000, iter=2024, refresh=0)

None of the diagnostics indicate incomplete posterior exploration.

diagnostics <- util$extract_hmc_diagnostics(fit)
util$check_all_hmc_diagnostics(diagnostics)
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A1l Hamiltonian Monte Carlo diagnostics are consistent with reliable
Markov chain Monte Carlo.

samples <- util$extract_expectand_vals(fit)

base_samples <- util$filter_expectands(samples,
c('delta_free'),
check_arrays=TRUE)

util$summarize_expectand_diagnostics(base_samples)

A1l expectands checked appear to be behaving well enough for reliable
Markov chain Monte Carlo estimation.

That said we’re back to needing hundreds of model evaluations to inform each Markov transi-
tion.

par (mfrow=c(1, 1), mar=c(5, 5, 1, 1))

util$plot_num_leapfrogs(diagnostics)
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The posterior retrodictive performance remains high.
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par (mfrow=c(1, 1), mar=c(5, 5, 1, 1))

names <- sapply(l:data$N_players,
function(i) pasteO('win_freq_pred[', i, ']'))
util$plot_disc_pushforward_quantiles(samples, names,
baseline_values=win_counts /
game_counts,
xlab="Player",
ylab="Win Frequency")

0.60 —

0.55

0.50 —

Win Frequency

0.45 —

0.40

Player

With the anchor in place posterior inferences for some of the relative player skills are now
being informed by the observed data! That said some of the relative player skills are still
being informed mostly by the prior model.

par (mfrow=c(2, 4), mar=c(5, 5, 1, 1))
plot_lim <- rep(0, data$N_players)
plot_lim[components[[1]]] <- 0.75

plot_lim[components[[2]]] <- 20

for (i in 1:data$N_players) {
name <- pasteO('deltal', i, ']"')
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util$plot_expectand_pushforward(samples[[name]],
35,
flim=c(-plot_lim[i], +plot_lim[i]),
baseline=alpha_truel[i] -
alpha_true[1],
baseline col=util$c_dark_teal,
display_name=name)
if (4> 1) {
xs <- seq(-plot_lim[i], +plot_lim[i], 0.01)
ys <- dnorm(xs, 0, sqrt(2) * 10 / 2.32)
lines(xs, ys, lwd=2, col=util$c_light_teal)
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par (mfrow=c(2, 4), mar=c(5, 5, 1, 1))

for (i in 1:(data$N_players - 1)) {
for (j in (4 + 1):data$N_players) {
namel <- pasteO('deltal', i, ']1"')
name2 <- pasteO('deltal', j, ']1")
plot(c(samples[[namel]]), c(samples[[name2]]),
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delta[2]

delta[6]

cex=1, pch=16, col=util$c_dark,
xlab=namel, xlim=c(-15, 15),
ylab=name2, ylim=c(-15, 15))
lines(sqrt(2) * 10 * cos(seq(0, 2 * pi, 2 * pi / 250)),
sqrt(2) * 10 * sin(seq(0, 2 * pi, 2 * pi / 250)),
col=util$c_dark_teal)
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What distinguishes the relative player skills that are now being informed by the observed data
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and those that aren’t? The former are in the same connected component as the anchor player
while the latter are not. Setting a player skill to zero identifies the relative behavior of players
only in that same connected component!

We can verify this by looking at the sum of relative player skills in the two components.
Because the first component includes the anchor player the sum of the relative player skills
ends up being informed by the observed data. On the other hand the sum of relative player
skills in the other component is informed mostly by the prior model.

par (mfrow=c(1, 2), mar=c(5, 5, 1, 1))

var_repl <- list('delta'=array(sapply(components[[1]],
function(i)
pasteO("deltal", i, "1"))))
sum_vals <- util$eval_expectand_pushforward(samples,
function(delta) sum(delta),
var_repl)
util$plot_expectand_pushforward(sum_vals, 100, flim=c(-40, 40),
display_name="sum(delta)",
main="Connected Component 1")

xs <- seq(-40, 40, 0.01)
ys <- dnorm(xs, 0, sqrt(length(components[[1]])) * sqrt(2) * 10 / 2.32)
lines(xs, ys, lwd=2, col=util$c_light_teal)

var_repl <- list('delta'=array(sapply(components[[2]],
function(i)
pasteO("deltal", i, "1"))))
sum_vals <- util$eval_expectand_pushforward(samples,
function(delta) sum(delta),
var_repl)
util$plot_expectand_pushforward(sum_vals, 20, flim=c(-40, 40),
display_name="sum(delta)",
main="Connected Component 2")

xs <- seq(-40, 40, 0.01)

ys <- dnorm(xs, 0, sqrt(length(components[[2]])) * sqrt(2) * 10 / 2.32)
lines(xs, ys, lwd=2, col=util$c_light_teal)
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Regardless the differences in player skills within each component remain well-informed by the
observed data.

par (mfrow=c(2, 3), mar=c(5, 5, 3, 1))

N <- length(components[[1]])
for (i1 in 1:(N - 1)) {
for (i2 in (i1 + 1):N) {
idx1 <- components[[1]][i1]
idx2 <- components[[1]][i2]
namel <- pasteO('deltal', idx1, '1"')
name2 <- pasteO('deltal', idx2, ']')
diff_vals <- util$eval_expectand_pushforward(samples,
function(al, a2)
al - a2,
list('al'=namel,
'a2'=name2))
util$plot_expectand_pushforward(diff_vals,
25, flim=c(-0.75, 0.5),
baseline=alpha_true[idx1] -
alpha_true[idx2],
baseline_col=util$c_dark_teal,
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display_name=paste(namel, '-',
name2))

mtext ("Connected Component 1", line=-2, outer=TRUE)
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par (mfrow=c(1, 3), mar=c(5, 5, 3, 1))

N <- length(components[[2]])
for (i1 in 1:(N - 1)) {
for (i2 in (i1 + 1):N) {
idx1 <- components[[2]][i1]
idx2 <- components[[2]] [i2]
namel <- pasteO('deltal', idx1l, ']")
name2 <- pasteO('deltal', idx2, ']")
diff_vals <- util$eval_expectand_pushforward(samples,
function(al, a2)
al - a2,
list('al'=namel,
'a2'=name2) )
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util$plot_expectand_pushforward(diff_vals,
25, flim=c(-0.75, 0.5),
baseline=alpha_true[idx1] -
alpha_true[idx2],
baseline_col=util$c_dark_teal,

display_name=paste(namel, '-',
name?2))

mtext ("Connected Component 2", line=-2, outer=TRUE)

Connected Component 2

Estimated Bin
Probabilities / Bin Width
Estimated Bin
Probabilities / Bin Width
Estimated Bin
Probabilities / Bin Width

L LI
-0.6 0.0 -0.6 0.0 -0.6 0.0

delta[3] - delta[4 delta[3] - delta[7 delta[4] - delta[7

6.3.7 Attempt 5
We could avoid this residual degeneracy by splitting the data for each connected component
and then analyzing each subset separately. Alternatively we can eliminate it by anchoring the

skill of any one player in each component.

data$N_anchors <- 2
data$anchor_idx <- c(components[[1]][1], components[[2]][1])
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Zipping together the anchored player skills and the free player skills requires a little bit of care
but otherwise the Stan program is largely unchanged.

fit <- stan(file="stan_programs/bradley_terry5.stan",

data=data, seed=8438338,
warmup=1000, iter=2024, refresh=0)

No computational diagnostic warnings have arisen.
diagnostics <- util$extract_hmc_diagnostics(fit)

util$check_all_hmc_diagnostics(diagnostics)

A1l Hamiltonian Monte Carlo diagnostics are consistent with reliable
Markov chain Monte Carlo.

samples <- util$extract_expectand_vals(fit)

base_samples <- util$filter_expectands(samples,
c('delta_free'),
check_arrays=TRUE)

util$summarize_expectand_diagnostics(base_samples)

A1l expectands checked appear to be behaving well enough for reliable
Markov chain Monte Carlo estimation.

With a second anchor the computational costs have decreased even beyond what was needed
for the informative prior model.

par (mfrow=c(1, 1), mar=c(5, 5, 1, 1))

util$plot_num_leapfrogs(diagnostics)
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There are no compromises, however, to the retrodictive performance.
par (mfrow=c(1, 1), mar=c(5, 5, 1, 1))

names <- sapply(l:data$N_players,
function(i) pasteO('win_freq_pred[', i, ']1'))
util$plot_disc_pushforward_quantiles(samples, names,
baseline values=win_counts /
game_counts,
xlab="Player",
ylab="Win Frequency")
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Now the posterior inferences for all of the relative player skills are being dominated by the
observed data. Note that in order to compare the inferred player skills to the simulation player
skills we need to account for both anchors.

delta_true <- rep(NA, data$N_players)
for (i in 1:data$N_players) {
delta_true[i] <- ifelse(i %in), components[[1]],
alpha_true[i] -
alpha_true[data$anchor_idx[1]],
alpha_true[i] -
alpha_true[data$anchor_idx[2]])

par (mfrow=c(2, 4), mar=c(5, 5, 1, 1))

for (i in 1:data$N_players) {

name <- pasteO('deltal', i, ']1")

util$plot_expectand_pushforward(samples[[name]],
35, flim=c(-0.7, +0.7),
baseline=delta_truel[i],
baseline_col=util$c_dark_teal,
display_name=name)

if ('(i %in’ data$anchor_idx)) {
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xs <- seq(-0.7, 0.7, 0.01)
ys <- dnorm(xs, 0, sqrt(2) = 10 / 2.32)
lines(xs, ys, lwd=2, col=util$c_light_teal)
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par (mfrow=c(2, 4), mar=c(5, 5, 1, 1))

for (i in 1:(data$N_players - 1)) {
for (j in (i + 1):data$N_players) {
namel <- pasteO('deltal', i, ']")
name2 <- pasteO('deltal', j, ']")
plot(c(samples[[namel]]), c(samples[[name2]]),
cex=1, pch=16, col=util$c_dark,
xlab=namel, xlim=c(-15, 15),
ylab=name2, ylim=c(-15, 15))
lines(sqrt(2) * 10 * cos(seq(0, 2 * pi, 2 * pi / 250)),
sqrt(2) * 10 * sin(seq(0, 2 * pi, 2 * pi / 250)),
col=util$c_dark_teal)
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This includes the sum of the relative player skills in each component as well.

par (mfrow=c(1, 2), mar=c(5, 5, 1, 1))

var_repl <- list('delta'=array(sapply(components[[1]],
function(i)
pasteO("deltal", i, "1"))))
sum_vals <- util$eval_expectand_pushforward(samples,
function(delta) sum(delta),
var_repl)
util$plot_expectand_pushforward(sum_vals, 30, flim=c(-1, 3),
display_name="sum(delta)",
main="Connected Component 1")

xs <- seq(-3, 3, 0.01)
ys <- dnorm(xs, 0, sqrt(length(components[[1]])) * sqrt(2) * 10 / 2.32)
lines(xs, ys, lwd=2, col=util$c_light_teal)

var_repl <- list('delta'=array(sapply(components[[2]],
function(i)
pasteO("deltal", i, "1"))))
sum_vals <- util$eval_expectand_pushforward(samples,
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function(delta) sum(delta),
var_repl)
util$plot_expectand_pushforward(sum_vals, 30, flim=c(-1, 3),
display_name="sum(delta)",
main="Connected Component 2")

xs <- seq(-3, 3, 0.01)

ys <- dnorm(xs, 0, sqrt(length(components[[2]])) * sqrt(2) * 10 / 2.32)
lines(xs, ys, lwd=2, col=util$c_light_teal)
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At the same time the constraints on the difference in player skills within each connected com-
ponent remains the same. Now that we’ve anchored the skills in more than one connected
component we have to take care to not mistakenly compare players from different components
to each other.

par (mfrow=c(2, 3), mar=c(5, 5, 3, 1))
N <- length(components[[1]])
for (i1 in 1:(N - 1)) {

for (i2 in (i1 + 1):N) {
idx1 <- components[[1]] [i1]

78



idx2 <- components[[1]] [i2]
namel <- pasteO('deltal', idx1l, ']")
name2 <- pasteO('deltal', idx2, 'l1')
diff_vals <- util$eval_expectand_pushforward(samples,
function(al, a2)
al - a2,
list('al'=namel,
'a2'=name2))
util$plot_expectand_pushforward(diff_vals,
25, flim=c(-0.75, 0.5),
baseline=alpha_true[idx1] -
alpha_true[idx2],
baseline_col=util$c_dark_teal,
display_name=paste(namel, '-',
name?2))

mtext ("Connected Component 1", line=-2, outer=TRUE)
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par (mfrow=c(1, 3), mar=c(5, 5, 3, 1))

N <- length(components[[2]])
for (i1 in 1: (N - 1)) {
for (i2 in (i1 + 1):N) {
idx1 <- components[[2]][i1]
idx2 <- components[[2]][i2]
namel <- pasteO('deltal', idx1, ']')
name2 <- pasteO('deltal', idx2, ']1")
diff_vals <- util$eval_expectand_pushforward(samples,
function(al, a2)
al - a2,
list('al'=namel,
'a2'=name2) )
util$plot_expectand_pushforward(diff_vals,
25, flim=c(-0.75, 0.5),
baseline=alpha_true[idx1] -
alpha_true[idx2],

baseline_col=util$c_dark_teal,

display_name=paste(namel, R
name2))

mtext ("Connected Component 2", line=-2, outer=TRUE)
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Ultimately all of these attempts but the first yielded solid inferences for the differences in
player skills, which inform not only retrodictive game outcomes but also predictions for new
game outcomes. The benefit a stronger prior model or anchored player skills is a substantial
reduction in computational cost. Between the two approaches the advantage of anchoring is
that is requires only some careful programming, which we can always implement, and not
abundant domain expertise, which is not always available, especially when trying to compare
items from disconnected groups.

6.4 Modeling Item Responses

Having built up some experience with the modeling of binary pairwise comparisons let’s now
consider an item response theory application. In particular we will attempt to analyze data
collected from two cohorts of 250 students who have each taken standardized tests consisting
of 100 questions.

Critically these two tests were not identical. Only 50 of the questions were shared between
the two tests, with the 50 remaining questions in each test unique to that test. In other words
the two tests spanned 150 total questions: 50 specific to the first test, 50 specific to the second
test, and 50 shared between the two.
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6.4.1 Explore Data
The testing data consists of responses for each student/question pair.

data <- read_rdump('data/irt.data.R')

The 50 questions that are overlap in the two tests are answered more than the 100 questions
that are unique to one of the tests.

q_n_answers <- sapply(l:data$N_questions,
function (i)
length(data$y[data$question_idx == i]))
table(q_n_answers)

g_n_answers
250 500
100 50

All of the students, however, answer the same number of questions.

s_n_answers <- sapply(l:data$N_students,
function(j)
length(data$y[data$student_idx == j1))
table(s_n_answers)

S_n_answers
100
500

We can visualize the entire test configuration by plotting the observed student/question pairs.
This clearly demonstrates the overlapping questions between the tests, and hence the two
student cohorts.

xs <- seq(l, data$N_students, 1)
ys <- seq(1, data$N_questions, 1)
zs <- matrix(0, nrow=data$N_students, ncol=data$N_questions)

for (a in 1:data$N_answers) {

zs[data$student_idx[a], data$question_idx[a]] <- 1
}
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par (mfrow=c(1, 1), mar = c(5, 5, 1, 1))

image(xs, ys, zs, col=c("white", util$c_light_teal),
xlab="Student", ylab="Question")

text(0.25 * 500, 50, "Test One", col="white")
text(0.75 * 500, 100, "Test Two", col="white")
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We can also visualize the answers for each of those pairs. Here grey indicates an unobserved
pair, white an observed incorrect answer, and teal an observed correct answer.

zs <- matrix(-1, nrow=data$N_students, ncol=data$N_questions)
for (a in 1:data$N_answers) {

zs[data$student_idx[a], data$question_idx[a]] <- data$ylal
}

par (mfrow=c(1, 1), mar = c(5, 5, 1, 1))

image(xs, ys, zs, col=c("#DDDDDD", "white", util$c_dark_teal),
xlab="Student", ylab="Question")
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The empirical frequency of correct answers, equivalently the empirical accuracy, varies pretty
strongly across both questions and students. This suggests that some questions are more
difficult than others while some students are better at taking tests than others.

mean_q <- sapply(l:data$N_questions,
function(i) mean(data$y[data$question_idx == i]))

mean_s <- sapply(1l:data$N_student,
function(j) mean(data$yl[data$student_idx == j1))

par (mfrow=c(3, 1), mar=c(5, 5, 3, 1))

barplot (mean_q[1:50], space=0, col=util$c_dark_teal, border="white",
main="Unique To Test One",
xlab="Question", ylab="Empirical Accuracy", ylim=c(0, 1))

barplot (mean_q[51:100], space=0, col=util$c_dark_teal, border="white",
main="Shared Across Tests",
xlab="Question", ylab="Empirical Accuracy", ylim=c(0, 1))

barplot(mean_q[101:150], space=0, col=util$c_dark_teal, border="white",

main="Unique To Test Two",
xlab="Question", ylab="Empirical Accuracy", ylim=c(0, 1))
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par (mfrow=c(2, 1), mar=c(5, 5, 3, 1))

barplot(mean_s[1:250], space=0, col=util$c_dark_teal, border="white",
main="Cohort One",
xlab="Student", ylab="Empirical Accuracy", ylim=c(0, 1))

barplot(mean_s[251:500], space=0, col=util$c_dark_teal, border="white",

main="Cohort Two",
xlab="Student", ylab="Empirical Accuracy", ylim=c(0, 1))
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Because there are so many questions and students a histogram of these stratified empirical
accuracies can offer a more digestible summary.

par (mfrow=c(2, 1), mar=c(5, 5, 1, 1))

util$plot_line_hist(mean_q, 0.2, 1.1, 0.1,
xlab="Empirical Accuracy By Question")

util$plot_line_hist(mean_s, 0.2, 1.1, 0.05,
xlab="Empirical Accuracy By Student")
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The variance of the responses also varies across questions and students. Note that we can see
the discretization of the empirical variances due to the binary values of the answers.

var_q <- sapply(l:data$N_questions,
function(i) var(data$yl[data$question_idx == i]))

var_s <- sapply(l:data$N_student,
function(j) var(data$yldata$student_idx == jl))

par (mfrow=c(2, 1), mar=c(5, 5, 1, 1))

util$plot_line_hist(var_q, O, 0.3, 0.025,
xlab="Empirical Accuracy By Question")

util$plot_line_hist(var_s, 0, 0.3, 0.01,
xlab="Empirical Accuracy By Student")

87



Counts

Counts

If all of these questions were of the same difficulty then we would be able to at least approxi-
mately rank the test-taking ability of the students based on how many questions they answered
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correctly.

empirical_ordering <- sort(mean_s, index.return=TRUE)$ix

empirical_ranks <- sapply(l:data$N_students,

function(j) which(empirical_ordering == j))

par (mfrow=c(1, 1), mar=c(5, 5, 1, 1))

plot(l:data$N_students, empirical_ranks,

pch=16, col=util$c_dark_teal,
xlab="Student", ylab="Empirical Rank")
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When the question difficulties are not uniform, however, these empirical rankings can be
extremely misleading.

Here let’s define a true ranking from the true test-taking aptitude of each student and compare
it to the empirical ranking.

truth <- read_rdump('data/irt.truth.R')

true_ordering <- sort(truth$alpha_true, index.return=TRUE)$ix
true_ranks <- sapply(l:data$N_students,
function(j) which(true_ordering == j))

There is some weak correlation between the empirical ranking and the true ranking, but overall
the empirical ranking poorly estimates the true ranking.

par (mfrow=c(1, 2), mar=c(5, 5, 1, 1))
plot(true_ranks, empirical_ranks, pch=16, col=util$c_dark_teal,
xlab="True Rank", ylab="Empirical Rank")

lines(c(0, 500), c(0, 500), lwd=2, 1ty=2, col="#DDDDDD")

plot(true_ranks, empirical_ranks - true_ranks,
pch=16, col=util$c_dark_teal,
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xlab="True Rank", ylab="Empirical Rank - True Rank",
ylim=c(-300, 300))
abline(h=0, 1lwd=2, 1lty=2, col="#DDDDDD")
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The limitation of the empirical ranking becomes especially clear if we look at the rank dif-
ferences across the two student cohorts. The empirical accuracies appear to be substantially
overstated the test-taking ability of the students in the first cohort while underestimate those
in the second cohort.

par (mfrow=c(1, 1), mar=c(5, 5, 1, 1))

plot(l:data$N_students, empirical_ranks - true_ranks,
pch=16, col=util$c_dark_teal,
xlab="Student", ylab="Empirical Rank - True Rank",
ylim=c(-300, 300))

abline(h=0, lwd=2, 1lty=2, col="#DDDDDD")
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In order to inform a more faithful ranking of the students’ test-taking abilities we will need to
model not only the student behavior but also the question behavior.

6.4.2 Attempt 1

Let’s begin with a 1PL/Rasch model.

To minimize the chances of any inferential degeneracies we’ll anchor the first student ability
to zero. In this case the remaining «; can be interpreted as the student abilities relative to the
first student, and the question difficulties 3, can be interpreted as the negative logit probability
of that first student answering each question correctly.

fit <- stan(file="stan_programs/irtl.stan",

data=data, seed=8438338,
warmup=1000, iter=2024, refresh=0)

A few stray ESS warnings.

diagnostics <- util$extract_hmc_diagnostics(fit)
util$check_all_hmc_diagnostics(diagnostics)
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A1l Hamiltonian Monte Carlo diagnostics are consistent with reliable
Markov chain Monte Carlo.

samples <- util$extract_expectand_vals(fit)
base_samples <- util$filter_expectands(samples,
c('beta', 'alpha_free'),
check_arrays=TRUE)
util$summarize_expectand_diagnostics(base_samples)

The expectands beta[56], beta[58] triggered diagnostic warnings.
The expectands beta[56], beta[58] triggered hat{ESS} warnings.

Small empirical effective sample sizes result in imprecise Markov chain
Monte Carlo estimators.

That said the empirical effective sample sizes of concern are right below the warning threshold.
Across all four Markov chains we should have collected enough information to accurately
estimate posterior expectation values.

base_samples <- util$filter_expectands(samples,
c('betal[56]', 'betal[58]'))
util$check_all_expectand_diagnostics(base_samples)

betal[56]:
Chain 1: hat{ESS} (90.610) is smaller than desired (100).

betal[58]:
Chain 1: hat{ESS} (88.748) is smaller than desired (100).

Small empirical effective sample sizes result in imprecise Markov chain
Monte Carlo estimators.

To probe the adequacy of our model let’s consult the histograms of stratified empirical means
and variances that we considered in Section 6.4.1. The retrodictive behavior is consistent for
the question-wise behaviors, but not for the student-wise behaviors. In particular the posterior
predictive student-wise behaviors exhibit more variation than the observed behaviors.
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par (mfrow=c(2, 2), mar=c(5, 5, 1, 1))

util$plot_hist_quantiles(samples, 'mean_g_pred', 0.2, 1.1, 0.1,
baseline_values=mean_q,
xlab="Question-wise Empirical Accuracy")

util$plot_hist_quantiles(samples, 'mean_s_pred', 0.2, 1.1, 0.05,
baseline_values=mean_s,
xlab="Student-wise Empirical Accuracy")

Warning in check_bin_containment(bin_min, bin_max, collapsed_values,
"predictive value"): 3 predictive values (0.0%) fell below the binning.

util$plot_hist_quantiles(samples, 'var_q pred', 0, 0.3, 0.025,
baseline_values=var_q,
xlab="Question-wise Response Variances")

util$plot_hist_quantiles(samples, 'var_s_pred', 0, 0.3, 0.01,
baseline_values=var_s,
xlab="Student-wise Response Variances")
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6.4.3 Attempt 2

Our first model’s ability to recover the question-wise behaviors but not the student-wise be-
haviors suggests that something is moderating the student-wise behaviors. Specifically the
over-dispersion exhibited by the posterior predictive distribution indicates that the correct
answer probabilities for each student should be closer to 0.5.

One phenomenon that can cause this exact behavior are questions that don’t probe the student
abilities as much as we might have hoped. In this case student behavior would resemble random
guessing more often, pulling the student-wise probabilities closer to 0.5.

For example we might consider expanding our model into a 2PL model with
logitpj; =; - (aj —B;)
:%"%‘_%"@'-
The question difficulties in the 1PL model can contort themselves to mimic the second term,

B = B2,

but the student abilities in the 1PL cannot match the question-wise moderation of the first
term.

To prevent as many inferential degeneracies as possible we will fix the discrimination of the
first question to 1 so that v, > 0 implies a question that is more sensitive to student abilities
than the first question while v, < 0 implies a question that is less sensitive to student abilities
than the first question.

fit <- stan(file="stan_programs/irt2.stan",

data=data, seed=8438338,
warmup=1000, iter=2024, refresh=0)

Pleasantly there are diagnostic warnings.

diagnostics <- util$extract_hmc_diagnostics(fit)
util$check_all_hmc_diagnostics(diagnostics)

A1l Hamiltonian Monte Carlo diagnostics are consistent with reliable
Markov chain Monte Carlo.
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samples <- util$extract_expectand_vals(fit)
base_samples <- util$filter_expectands(samples,
c('gamma_free',
'beta’,
'alpha_free'),
check_arrays=TRUE)
util$summarize_expectand_diagnostics(base_samples)

A1l expectands checked appear to be behaving well enough for reliable
Markov chain Monte Carlo estimation.

Moreover the retrodictive behavior is now consistent for the both the question-wise behaviors
and the student-wise behaviors.

par (mfrow=c(2, 2), mar=c(5, 5, 1, 1))

util$plot_hist_quantiles(samples, 'mean_q_pred', 0.2, 1.1, 0.1,
baseline_values=mean_q,
xlab="Question-wise Empirical Accuracy")

util$plot_hist_quantiles(samples, 'mean_s_pred', 0.2, 1.1, 0.05,
baseline_values=mean_s,
xlab="Student-wise Empirical Accuracy")

util$plot_hist_quantiles(samples, 'var_q_pred', 0, 0.3, 0.025,
baseline_values=var_q,
xlab="Question-wise Response Variances")

util$plot_hist_quantiles(samples, 'var_s_pred', 0, 0.3, 0.01,

baseline_values=var_s,
xlab="Student-wise Response Variances")
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Comfortable in the adequacy of our model we can progress to the analysis of our posterior
inferences.

The inferred question discriminations are certainly heterogeneous, but there is no obvious pat-
tern to that variation. On the other hand the inferred question difficulties shift systematically
across the tests. In particular the questions unique to the first test tend to be the least difficult
while those unique to the second test tend to be the most difficult.

par (mfrow=c(2, 1), mar=c(5, 5, 1, 1))

names <- sapply(l:data$N_questions,
function(i) pasteO('gammal', i, ']'))
util$plot_disc_pushforward_quantiles(samples, names,
xlab="Question",
ylab="Discrimination")
abline(v=50.5, 1ty=2, col="#DDDDDD")
abline(v=100.5, 1ty=2, col="#DDDDDD")

names <- sapply(l:data$N_questions,
function(i) pasteO('betal', i, '1'))
util$plot_disc_pushforward_quantiles(samples, names,
xlab="Question",
ylab="Difficulty")
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abline(v=50.5, lty=2, col="#DDDDDD")
abline(v=100.5, 1ty=2, col="#DDDDDD")
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Without more domain expertise we can only speculate about what could cause this behavior.
For example if the two tests were given at different times then the questions unique to the
first test might have been discarded as too easy but then replaced with questions that were
too hard for the second test.

We also see a systematic shift in the student test-taking abilities across the two cohorts. The
students who took the second test appear to be on average better at taking tests than the
students who took the first test.

par (mfrow=c(1, 1), mar=c(5, 5, 1, 1))
names <- sapply(l:data$N_students, function(j) pasteO('alphal', j, '1'))
util$plot_disc_pushforward_quantiles(samples, names,

xlab="Student", ylab="Ability")
abline(v=250.5, 1lty=2, col="#DDDDDD")
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These inferences help to explain why the empirical accuracies are so misleading. Although
the students taking the first test were less skilled they were given easier questions. On the
other hand the students taking the second test were more skilled but had to contend with
more difficult questions. The varying skills and difficulties largely compensate for each other,
resulting in relatively uniform empirical performance across both both student cohorts.

Consequently a student ranking informed by the posterior distribution should be closer to the
true ranking than the one informed by the empirical accuracies that we considered above. Here
we’ll consider a ranking informed by the marginal posterior mean of each student skill.

expected_ability <- function(j) {
util$ensemble_mcmc_est(samples[[pasteO('alphal', j, ']1')11)[1]
}

expected_abilities <- sapply(l:data$N_students,
function(j) expected_ability(j))

post_mean_ordering <- sort(expected_abilities, index.return=TRUE)$ix

post_mean_ranks <- sapply(l:data$N_students,
function(j) which(post_mean_ordering == j))

Indeed we see much stronger correlation between the true rank and a posterior mean rank
than between the true rank and the naive empirical rank.
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par (mfrow=c(1, 2), mar=c(5, 5, 1, 1))

plot(true_ranks, empirical_ranks, pch=16, col=util$c_dark_teal,
xlab="True Rank", ylab="Empirical Rank")
lines(c(0, 500), c(0, 500), lwd=2, 1lty=2, col="#DDDDDD")

plot(true_ranks, post_mean_ranks, pch=16, col=util$c_dark,
xlab="True Rank", ylab="Posterior Mean Rank")
lines(c(0, 500), c(0, 500), lwd=2, 1lty=2, col="#DDDDDD")

500 500
400 — ~x 400
G
E p
& 300 — o 300
S =
= S
e 200 — [ 200 at
. 3
a
100 100
100 400 100 400
True Rank True Rank

par (mfrow=c(1l, 2), mar=c(5, 5, 1, 1))

plot(true_ranks, empirical_ranks - true_ranks,
pch=16, col=util$c_dark_teal,
xlab="True Rank", ylab="Empirical Rank - True Rank",
ylim=c(-300, 300))

abline(h=0, lwd=2, 1lty=2, col="#DDDDDD")

plot(true_ranks, post_mean_ranks - true_ranks,

pch=16, col=util$c_dark,
xlab="True Rank", ylab="Posterior Mean Rank - True Rank",
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ylim=c(-300, 300))
abline(h=0, lwd=2, lty=2, col="#DDDDDD")
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Unlike the empirical ranking the posterior mean ranking behaves reasonably well across the
two student cohorts!

par (mfrow=c(1, 2), mar=c(5, 5, 1, 1))

plot(l:data$N_students, empirical_ranks - true_ranks,
pch=16, col=util$c_dark_teal,
xlab="Student", ylab="Empirical Rank - True Rank",
ylim=c(-300, 300))

abline(h=0, lwd=2, 1lty=2, col="#DDDDDD")

plot(l:data$N_students, post_mean_ranks - true_ranks,
pch=16, col=util$c_dark,
xlab="Student", ylab="Posterior Mean Rank - True Rank",
ylim=c(-300, 300))

abline(h=0, lwd=2, 1lty=2, col="#DDDDDD")

100



300 300

200 200
100 100

-100

Empirical Rank — True Rank
o

-200

Posterior Mean Rank — True Rank

-300
100 400 100 400

Student Student

6.4.4 Attempt 3

The ability to infer systematic shifts in student ability under heterogeneous testing circum-
stances is particularly useful for learning about the impact of pedagogical interventions. For
example let’s say that the two student cohorts in our data set are actually part of a designed
experiment, with the first cohort receiving standard instruction and the second receiving some
modified instruction that might influence their ability to answer test questions correctly.

If we don’t have any additional information about the students within each cohort then we can
model their abilities hierarchically and then quantify the impact of the modified instruction
by the difference in those population behaviors.

In this case we can effectively identify the student abilities by fixing the location of the location
configuration of the first cohort’s population to zero instead of anchoring any single ability.
We will still, however, need to anchor one of the question discrimination parameters.

To ensure as nice a posterior geometry as possible we’ll start with a monolithic non-centered

parameterization of the student abilities within each cohort.

fit <- stan(file="stan_programs/irt3.stan",
data=data, seed=8438338,
warmup=1000, iter=2024, refresh=0)
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Beyond warning about some heavy-tailed behavior the diagnostics indicate some sporadic
auto-correlations issues but nothing too problematic.

diagnostics <- util$extract_hmc_diagnostics(fit)
util$check_all_hmc_diagnostics(diagnostics)

A1l Hamiltonian Monte Carlo diagnostics are consistent with reliable
Markov chain Monte Carlo.

samples <- util$extract_expectand_vals(fit)
base_samples <- util$filter_expectands(samples,
c('gamma_free',
'beta’,
'alpha_tilde',
'delta_mu',
'taul', 'tau2'),
check_arrays=TRUE)
util$check_all_expectand_diagnostics(base_samples)

betal[3]:
Chain 4: Left tail hat{xi} (0.254) exceeds 0.25.

betal[11]:
Chain 1: Left tail hat{xi} (0.495) exceeds 0.25.
Chain 2: Left tail hat{xi} (0.535) exceeds 0.25.
Chain 3: Both left and right tail hat{xil}s (0.333, 0.314) exceed 0.25.
Chain 4: Left tail hat{xi} (0.443) exceeds 0.25.
betal[24]:
Chain 1: Left tail hat{xi} (0.398) exceeds 0.25.
Chain 2: Both left and right tail hat{xi}s (0.291, 0.553) exceed 0.25.
Chain 3: Right tail hat{xi} (0.389) exceeds 0.25.
Chain 4: Both left and right tail hat{xi}s (0.423, 0.369) exceed 0.25.
Chain 3: hat{ESS} (78.135) is smaller than desired (100).
betal42]:
Chain 1: Left tail hat{xi} (0.325) exceeds 0.25.
Chain 2: Left tail hat{xi} (0.381) exceeds 0.25.
Chain 3: Left tail hat{xi} (0.320) exceeds 0.25.
Chain 4: Left tail hat{xi} (0.358) exceeds 0.25.
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betal[44]:

Chain 1: Right tail hat{xi} (0.605) exceeds 0.25.
Chain 2: Both left and right tail hat{xi}s (0.514, 0.288) exceed 0.25.
Chain 3: Right tail hat{xi} (0.473) exceeds 0.25.
Chain 4: Both left and right tail hat{xil}s (0.428, 0.389) exceed 0.25.
Chain 1: hat{ESS} (92.255) is smaller than desired (100).

betal47]:

Chain 1: Left tail hat{xi} (0.302) exceeds 0.25.
Chain 2: Left tail hat{xi} (0.287) exceeds 0.25.
Chain 4: Left tail hat{xi} (0.255) exceeds 0.25.

betal[106] :
Chain 2: Left tail hat{xi} (0.481) exceeds 0.25.
Chain 4: Left tail hat{xi} (0.472) exceeds 0.25.

betal[112]:
Chain 1: Left tail hat{xi} (0.389) exceeds 0.25.
Chain 2: Left tail hat{xi} (0.350) exceeds 0.25.
Chain 4: Left tail hat{xi} (0.303) exceeds 0.25.

betal[115]:
Chain 3: Left tail hat{xi} (0.507) exceeds 0.25.
Chain 3: hat{ESS} (49.282) is smaller than desired (100).

beta[118]:

Chain 2: Left tail hat{xi} (0.348) exceeds 0.25.

Chain 3: Left tail hat{xi} (0.355) exceeds 0.25.

Chain 4: Left tail hat{xi} (0.524) exceeds 0.25.

Chain 4: hat{ESS} (94.273) is smaller than desired (100).
betal[124]:

Chain 1: Left tail hat{xi} (0.267) exceeds 0.25.

Chain 2: Left tail hat{xi} (0.275) exceeds 0.25.

Chain 4: Left tail hat{xi} (0.360) exceeds 0.25.

betal[125]:
Chain 2: Left tail hat{xi} (0.255) exceeds 0.25.

betal[132]:
Chain 2: Left tail hat{xi} (0.251) exceeds 0.25.

betal[134]:
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Chain 1: Left tail hat{xi} (0.257) exceeds 0.25.

beta[135]:
Chain 3: Left tail hat{xi} (0.275) exceeds 0.25.

betal[137]:
Chain 1: Left tail hat{xi} (0.423) exceeds 0.25.
Chain 2: Left tail hat{xi} (0.397) exceeds 0.25.
Chain 3: Left tail hat{xi} (0.399) exceeds 0.25.
Chain 4: Left tail hat{xi} (0.424) exceeds 0.25.

betal[139]:
Chain 2: Left tail hat{xi} (0.282) exceeds 0.25.

betal[140]:

Chain 2: Left tail hat{xi} (0.288) exceeds 0.25.

Chain 3: Left tail hat{xi} (0.285) exceeds 0.25.

Chain 4: Left tail hat{xi} (0.299) exceeds 0.25.
betal[148]:

Chain 4: Left tail hat{xi} (0.362) exceeds 0.25.

Chain 4: hat{ESS} (89.583) is smaller than desired (100).

delta_mu:
Chain 2: hat{ESS} (73.522) is smaller than desired (100).

taul:
Chain 2: hat{ESS} (75.766) is smaller than desired (100).
Large tail hat{xil}s suggest that the expectand might not be

sufficiently integrable.

Small empirical effective sample sizes result in imprecise Markov chain
Monte Carlo estimators.

Overall the addition of the cohort hierarchies does not seem to have compromised the retrod-
ictive performance.

par (mfrow=c(2, 2), mar=c(5, 5, 1, 1))

util$plot_hist_quantiles(samples, 'mean_q_pred', 0.2, 1.1, 0.1,
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baseline_values=mean_gq,
xlab="Question-wise Empirical Accuracy")

util$plot_hist_quantiles(samples, 'mean_s_pred', 0.2, 1.1, 0.05,
baseline_values=mean_s,
xlab="Student-wise Empirical Accuracy")

util$plot_hist_quantiles(samples, 'var_q_pred', 0, 0.3, 0.025,
baseline_values=var_q,
xlab="Question-wise Response Variances")

util$plot_hist_quantiles(samples, 'var_s_pred', 0, 0.3, 0.01,
baseline_values=var_s,
xlab="Student-wise Response Variances")

a a
c c
> >
o o
O O
02 06 1.0
Question—-wise Empirical A
60 — = 80 -
50 — 50
0 (%) —
£ 40+ =
20 J
T 20
[ i B B 0 1T
0.00 0.15 0.30 0.00
Question—-wise Response \ Student-wise Response V

With an adequate model we can see examine our posterior inferences to see just how impactful
the modified instruction is. The posterior behavior for delta_mu concentrates on large values
suggesting quite a strong effect.

par (mfrow=c(1, 1), mar=c(5, 5, 1, 1))

title="Cohort Ability Location Difference"
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util$plot_expectand_pushforward(samples[['delta_mu'l],
50, flim=c(-0.1, 1),
display_name=title)
abline(v=0, lwd=2, 1lty=3, col="#DDDDDD")
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In fact there is vanishingly little posterior probability over any negative effects at all.
p_est <- util$implicit_subset_prob(samples,
function(x) x > 0,
list('x' = 'delta mu'))
format_string <- pasteO("Posterior probability that delta_mu > 0 ",

"= %3f +/_ %.Sf.")
cat(sprintf (format_string, p_est[1], 2 * p_est[2]))

Posterior probability that delta_mu > O = 1.000 +/- 0.000.

6.5 Modeling a Gaming League

For our final example we’ll analyze the outcome of games in an organized league.
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Each game consists of two teams competing to score points, with the winner of each game
determined by the team with the most points. If the two teams have the same score at the
end of the game then the game ends in a tie. The games are not played at neutral locations;
instead an away team travels to the venue of the opposing home team.

The league itself is comprised of ten teams. During the season each team plays each other
in a repeated round robin format, with every possible matchup taking place exactly 8 times.
In total the season consists of 360 total games, with 5 games played per week across 72 total
weeks.

6.5.1 Explore data
Before attempting our first model let’s take a look at the available data.

data <- read_rdump('data/season.data.R')

The repeated round robin format ensures a balanced schedule, with every team playing each
other team the same number of times.

par (mfrow=c(1, 1), mar=c(0, 0, 0, 0))
adj <- build_adj_matrix(data$N_teams, data$N_games,

data$home_idx, data$away_idx)
plot_undir_graph(adj)
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In particular there are no disconnected components in the resulting connectivity graph.

compute_connected_components (adj)

[[1]1]
(1] 1+ 2 3 4 5 6 7 8 910

While the schedule is uniform the team performance is not. Some teams consistently score
more points than others, and some teams exhibit more variation in the scoring than others.

par (mfrow=c(5, 2), mar=c(5, 5, 1, 1))

for (t in 1:data$N_teams) {
y_team <- c(data$y_home[data$home_idx == t],
data$y_away[data$away_idx == t])
util$plot_line_hist(y_team, O, 160, 10,
xlab="Score", main=paste("Team", t))
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Overall the home teams appear to score more points than the away teams.
par (mfrow=c(1, 1), mar=c(5, 5, 1, 1))
util$plot_line_hists(data$y_home, data$y_away,

0, 160, 5, xlab="Score")

text (85, 40, "Home", col="black")
text (43, 67, "Away", col=util$c_dark_teal)
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This results in an empirical distribution of score differentials that is slightly biased to positive
values. The score differential is a particularly useful summary of a game because it immediately
communicates the winner — positive values indicate a home team win, negative values an away
team win, and zero values a tie.

par (mfrow=c(1, 1), mar=c(5, 5, 1, 1))
util$plot_line_hist(data$y_home - data$y_away,

-70, 110, 10,
xlab="Home Score - Away Score")

Warning in check_bin_containment (bin_min, bin_max, values): 1 value (0.3%) fell
below the binning.

abline(v=0, 1lty=2, lwd=3, col="#DDDDDD")
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Another useful summary is the total score which captures for example whether offensive or

defensive play dictated each game.
par (mfrow=c(1, 1), mar=c(5, 5, 1, 1))
util$plot_line_hist(data$y_home + data$y_away,

60, 210, 10,
xlab="Home Score + Away Score")

Warning in check_bin_containment(bin_min, bin_max, values):

above the binning.

111

1 value (0.3%) fell



60 —

50

40 —

30

Counts

20

10

0 — T T T T T 1
60 80 100 140 180

Home Score + Away Score

6.5.2 Attempt 1

At this point is should come as no surprise that we’re going to reach for a pairwise compar-
ison modeling techniques to model these games. The key question, however, is exactly what
comparison we want to model.

We could model the outcome of each game, but that approach complicated by the presence of
ties and ignores a most of the available data. We can build a richer picture of each game by
instead modeling the score of each team, treating them as the outcome of a pairwise comparison
between that team’s offensive skill and their opponent’s defensive skill.

Because the scores are non-negative integers a natural place to start is a Poisson model,
Poisson(y,, ; 4, | Aijs,)-

To start let’s couple A, ; to the difference in offensive and defensive skills with an exponential
baseline function,

A :exp(a-i-ﬂ?lff— def)

12
off

11 dEf) :

=exp () exp (+ BM) exp (— in

Note that this is a bipartite pairwise comparison model — we can compare any team’s offense
to any team’s defense, but we cannot compare offensives or defences to each other,
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In order to ensure that each parameter can be informed by the observed game outcomes we
need to anchor one of the offensive skills and one of the defensive skills to zero,

5§)ff — /B’?ff _ B;ff
5?ef —_ 5gef _ 5;1/ef,

yielding the model

A = exp (a) exp ( + 5?1ff) €xXp ( - 5??)

i1tg
Here we will anchor the offensive and defensive skills of the first team to zero.

We can then interpret the baseline o as the average score if the anchored offensive played
the anchored defense. Because we anchored the offensive and defensive skills of the same
team this is a purely hypothetical matchup, but we can exclude unreasonable behaviors. For
demonstration purposes let’s say that our domain expertise is consistent with

25 Sexp(a) S 75

or equivalently
3.77—0.55 LT a £ 3.77+ 0.55.

The relative skill parameters 5% and §9f then determine if the other teams’ offense and de-
fense are better than those of the anchor team. Here we’ll take a pretty conservative prior
threshold

0.1 S exp (6774 5 7.4

7

or
_9 é 5;)ff/def é 9.

fit <- stan(file="stan_programs/seasonl.stan",
data=data, seed=8438338,
warmup=1000, iter=2024, refresh=0)

One of the Markov chains exhibits large auto-correlations in the baseline «, but the lack of
auto-correlation in the other Markov chains, let alone any other diagnostics warnings, suggests
that we should have be able to inform accurate Markov chain Monte Carlo estimators.

diagnostics <- util$extract_hmc_diagnostics(fit)
util$check_all_hmc_diagnostics(diagnostics)

A1l Hamiltonian Monte Carlo diagnostics are consistent with reliable
Markov chain Monte Carlo.
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samples <- util$extract_expectand_vals(fit)
base_samples <- util$filter_expectands(samples,
c('alpha',
'delta_off_free',
'delta_def free'),
check_arrays=TRUE)
util$check_all_expectand_diagnostics(base_samples)

alpha:
Chain 4: hat{ESS} (88.393) is smaller than desired (100).

Small empirical effective sample sizes result in imprecise Markov chain
Monte Carlo estimators.

Unfortunately the posterior retrodictive performance suggests that this model is not sophisti-
cated enough to capture the details of the observed data. Specifically both the observed home
scores and away scores exhibit a skewness, towards larger values in the first case and smaller
values in the second case, that the posterior predictive distribution cannot reproduce.

par (mfrow=c(1, 2), mar=c(5, 5, 1, 1))

util$plot_hist_quantiles(samples, 'y_home_pred', 0, 160, 5,
baseline_values=data$y_home,
xlab="Home Score")

util$plot_hist_quantiles(samples, 'y_away_pred', 0, 160, 5,

baseline_values=data$y_away,
xlab="Away Score")
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Even more strikingly the observed score differentials are biased towards much larger values
relative that the posterior predictive score differentials.

par (mfrow=c(1, 1), mar=c(5, 5, 1, 1))
util$plot_hist_quantiles(samples, 'y_diff_pred', -80, 120, 10,

baseline_values=data$y_home - data$y_away,
xlab="Home Score - Away Score")

Warning in check_bin_containment(bin_min, bin_max, collapsed_values,
"predictive value"): 283 predictive values (0.0%) fell below the binning.

Warning in check_bin_containment(bin_min, bin_max, baseline_values, "observed
value"): 1 observed value (0.3%) fell below the binning.
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That said the observed and posterior predictive total scores are consistent with each other.

par (mfrow=c(1, 1), mar=c(5, 5, 1, 1))
util$plot_hist_quantiles(samples, 'y_sum_pred', 50, 230, 10,

baseline_values=data$y_home + data$y_away,
xlab="Home Score + Away Score")

Warning in check_bin_containment (bin_min, bin_max, collapsed_values,
"predictive value"): 3 predictive values (0.0%) fell below the binning.
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Overall it looks like the data exhibits a home-field advantage that our model cannot accom-
modate.

6.5.3 Attempt 2

Fortunately a home-field advantage is straightforward to incorporate into our model by off-
setting the skill differences. Specifically for we expand our model for the home team score

to

A ;. =exp (a+n°T) exp (+ 51(')1&) exp (— 5;12ef>

112

and for the away team score to

A = exp (Oé — T]def) exp ( + 5;)2&) €xXp ( - 5?16f)

igis
The negative sign on 79 is somewhat arbitrary, but it ensures that for both scores a positive

71 corresponds to a home-field advantage.

Let’s say that our available domain expertise constrains the home-field advantage to relatively

small proportional changes,
0.78 < exp (n°f/deh) < 1.28

or
—0.25 5 n°f/del 5 10.25.
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fit <- stan(file="stan_programs/season2.stan",
data=data, seed=8438338,
warmup=1000, iter=2024, refresh=0)

Conveniently the diagnostics are now completely clean.

diagnostics <- util$extract_hmc_diagnostics(fit)
util$check_all_hmc_diagnostics(diagnostics)

A1l Hamiltonian Monte Carlo diagnostics are consistent with reliable
Markov chain Monte Carlo.

samples <- util$extract_expectand_vals(fit)
base_samples <- util$filter_expectands(samples,
c('alpha',
'eta_off',
'eta_def',
'delta_off free',
'delta_def free'),
check_arrays=TRUE)
util$check_all_expectand_diagnostics(base_samples)

All expectands checked appear to be behaving well enough for reliable
Markov chain Monte Carlo estimation.

Overall the posterior predictive performance has improved, but there’s still a noticeable dis-
agreement in the shape of the summary statistics.

For example while the observed and posterior predictive home scores now agree the separated
away scores still exhibit a skew towards smaller values that the posterior predictive distribution
does not match.

par (mfrow=c(1, 2), mar=c(5, 5, 1, 1))

util$plot_hist_quantiles(samples, 'y_home_pred', 0, 160, 5,
baseline_values=data$y_home,
xlab="Home Score")

util$plot_hist quantiles(samples, 'y_away_pred', 0, 160, 5,

baseline_values=data$y_away,
xlab="Away Score")
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The observed and posterior predictive score differentials now align, but the observed behaviors
are more over-dispersed than the posterior predictive behaviors.

par (mfrow=c(1, 1), mar=c(5, 5, 1, 1))
util$plot_hist_quantiles(samples, 'y_diff pred', -80, 120, 10,

baseline_values=data$y_home - data$y_away,
xlab="Home Score - Away Score")

Warning in check_bin_containment(bin_min, bin_max, collapsed_values,
"predictive value"): 2 predictive values (0.0%) fell below the binning.

Warning in check_bin_containment(bin_min, bin_max, baseline_values, "observed
value"): 1 observed value (0.3%) fell below the binning.
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We see a similar observed over-dispersion in the total scores, with a skew towards smaller
values in the peak and a heavier tail towards larger values than what we see in the posterior
predictive behavior.

par (mfrow=c(1, 1), mar=c(5, 5, 1, 1))
util$plot_hist_quantiles(samples, 'y_sum_pred', 50, 230, 10,

baseline_values=data$y_home + data$y_away,
xlab="Home Score + Away Score")

Warning in check_bin_containment (bin_min, bin_max, collapsed_values,
"predictive value"): 5 predictive values (0.0%) fell below the binning.
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Given these patterns of disagreement we might be tempted to consider a more flexible obser-
vational model, in particular expanding the Poisson model into a negative binomial model. If
we can identify and then model a more mechanistic source of the excess variation, however,
then we would be rewarded with more precise and generalizeable inferences. To that end let’s
see if we can find heterogeneity that manifests in the observed behaviors but not the posterior
predictive behaviors.

For example there might be variation in the team performances beyond what we have already
incorporated into the current model. Examining the observed and posterior predictive scores
for each team, however, doesn’t reveal any obvious discrepancy.

par (mfrow=c(2, 2), mar=c(5, 5, 3, 1))

for (t in 1:data$N_teams) {
team_scores_obs <- c(data$y_home[data$home_idx == t],
data$y_away[data$away_idx == t])

team_scores <- c(lapply(which(data$home_idx == t),
function(n)
samples[[pasteO('y_home_pred[', n, '1')]11),
lapply(which(data$away_idx == t),
function(n)
samples[[paste0('y_away_pred[', n, '1')11))
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names (team_scores) <- sapply(l:data$N_weeks,
function(n) pasteO('y[', n, ']1'))

util$plot_hist_quantiles(team_scores, 'y', 0, 160, 10,
baseline_values=team_scores_obs,

xlab="Score", main=paste("Team", t))
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Another possible source of heterogeneity is systematic trends across time. To investigate that
we can survey the behavior of the score differential summary statistic early in the season, in
the middle of the season, and towards the end of season.

par (mfrow=c(3, 1), mar=c(5, 5, 3, 1))

names <- lapply(1:120, function(n) pasteO('y_diff_pred[', n, ']1'))
filt_samples <- lapply(names, function(n) samples[[n]])

names (filt_samples) <- names

util$plot_hist_quantiles(filt_samples, 'y_diff pred', -80, 120, 10,

baseline_values=data$y_home[1:120] -
data$y_away[1:120],
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xlab="Home Score - Away Score",
main="First Third of Season")

Warning in check_bin_containment(bin_min, bin_max, collapsed_values,
"predictive value"): 1 predictive value (0.0%) fell below the binning.

Warning in check_bin_containment(bin_min, bin_max, baseline_values, "observed
value"): 1 observed value (0.8%) fell below the binning.

names <- lapply(121:240, function(n) pasteO('y_diff_pred[', n, ']'))
filt_samples <- lapply(names, function(n) samples[[n]])
names (filt_samples) <- names

util$plot_hist_quantiles(filt_samples, 'y_diff_pred', -80, 120, 10,
baseline_values=data$y_home[121:240] -
data$y_away[121:240],
xlab="Home Score - Away Score",
main="Middle Third of Season")

Warning in check_bin_containment(bin_min, bin_max, collapsed_values,
"predictive value"): 1 predictive value (0.0%) fell below the binning.

names <- lapply(241:360, function(n) pasteO('y_diff_pred[', n, ']'))
filt_samples <- lapply(names, function(n) samples[[n]])
names (filt_samples) <- names

util$plot_hist_quantiles(filt_samples, 'y_diff_pred', -80, 120, 10,
baseline_values=data$y_home[241:360] -
data$y_away[241:360],
xlab="Home Score - Away Score",
main="Final Third of Season")
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Here we see a clear discrepancy between the observed and posterior predictive behaviors. Be-
cause our model is static across time the posterior predictive behavior is the same for all three
time intervals, but the observed behavior gradually becomes less and less variable as the season
progresses.

6.5.4 Attempt 3

The main source of systematic game score variation in our model are the heterogeneous team
skills. One reason why we might see decreasing variation in game scores across time is a
weakening influence of those skills. For example after a long season of persistent games the
players on each time might become more and more fatigued, reducing their impact on the later
games.

We can incorporate this hypothesis into our model by adding a discrimination variable that
evolves with time,

= exp (a + n°" +7(t) - (5flff — 5?2ef))
=exp (a —ndt + (1) - ((X?f — (5?ff)).

i1i2

igis
Because we expect fatigue to only increase as the season progresses the outputs ~(¢) should
decay with time. Here let’s assume the functional form

t/1 k
() = ALk,
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Finally we’ll use a prior model that constrains «, to
0857 < 1.0
so that by the effective discrimination by the end of season is contained to

107597 = 1.

fit <- stan(file="stan_programs/season3.stan",
data=data, seed=8438338,
warmup=1000, iter=2024, refresh=0)

A few of the marginal auto-correlation are a bit low, but nothing that should compromise our
posterior computation.

diagnostics <- util$extract_hmc_diagnostics(fit)
util$check_all_hmc_diagnostics(diagnostics)

A1l Hamiltonian Monte Carlo diagnostics are consistent with reliable
Markov chain Monte Carlo.

samples <- util$extract_expectand_vals(fit)
base_samples <- util$filter_expectands(samples,
c('alpha',
'eta_off',
'eta_def',
'gammal',
'delta_off free',
'delta_def free'),
check_arrays=TRUE)
util$check_all_expectand_diagnostics(base_samples)

A1l expectands checked appear to be behaving well enough for reliable
Markov chain Monte Carlo estimation.

It looks like this model expansion has done the trick. Specifically the posterior predictive
behaviors now exhibit the same skewness as the observed behaviors.
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par (mfrow=c(1, 2), mar=c(5, 5, 1, 1))

util$plot_hist_quantiles(samples, 'y_home_pred', 0, 160, 5,
baseline_values=data$y_home,
xlab="Home Score")

Warning in check_bin_containment(bin_min, bin_max, collapsed_values,
"predictive value"): 63 predictive values (0.0%) fell above the binning.

util$plot_hist_quantiles(samples, 'y_away_pred', 0, 160, 5,
baseline_values=data$y_away,
xlab="Away Score")

Warning in check_bin_containment(bin_min, bin_max, collapsed_values,
"predictive value"): 1 predictive value (0.0%) fell above the binning.
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par (mfrow=c(2, 1), mar=c(5, 5, 1, 1))

util$plot_hist_quantiles(samples, 'y_diff_pred', -80, 120, 10,
baseline_values=data$y_home - data$y_away,
xlab="Home Score - Away Score")
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Warning in check_bin_containment(bin_min, bin_max, collapsed_values,
"predictive value"): 432 predictive values (0.0%) fell below the binning.

Warning in check_bin_containment(bin_min, bin_max, collapsed_values,
"predictive value"): 37 predictive values (0.0%) fell above the binning.

Warning in check_bin_containment(bin_min, bin_max, baseline_values, "observed
value"): 1 observed value (0.3%) fell below the binning.

util$plot_hist_quantiles(samples, 'y_sum_pred', 50, 230, 5,
baseline_values=data$y_home + data$y_away,
xlab="Home Score + Away Score")

Warning in check_bin_containment(bin_min, bin_max, collapsed_values,
"predictive value"): 115 predictive values (0.0%) fell above the binning.
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The retrodictive agreement also persists across the season.
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par (mfrow=c(3, 1), mar=c(5, 5, 3, 1))

names <- sapply(1:120, function(n) pasteO('y_diff_pred[', n, ']'))

filt_samples <- lapply(names, function(n) samples[[n]])

names (filt_samples) <- names

util$plot_hist_quantiles(filt_samples, 'y_diff_pred', -80, 120, 10,
baseline_values=data$y_home[1:120] -

data$y_away[1:120],

xlab="Home Score - Away Score",
main="First Third of Season")

Warning in check_bin_containment(bin_min, bin_max, collapsed_values,
"predictive value"): 431 predictive values (0.1%) fell below the binning.

Warning in check_bin_containment (bin_min, bin_max, collapsed_values,
"predictive value"): 36 predictive values (0.0%) fell above the binning.

Warning in check_bin_containment(bin_min, bin_max, baseline_values, "observed
value"): 1 observed value (0.8%) fell below the binning.

names <- lapply(121:240, function(n) pasteO('y_diff_pred[', n, ']1'))
filt_samples <- lapply(names, function(n) samples[[n]])
names (filt_samples) <- names

util$plot_hist_quantiles(filt_samples, 'y_diff_pred', -80, 120, 10,
baseline_values=data$y_home[121:240] -
data$y_away[121:240],
xlab="Home Score - Away Score",
main="Middle Third of Season")

Warning in check_bin_containment(bin_min, bin_max, collapsed_values,
"predictive value"): 1 predictive value (0.0%) fell below the binning.

Warning in check_bin_containment(bin_min, bin_max, collapsed_values,
"predictive value"): 1 predictive value (0.0%) fell above the binning.

names <- lapply(241:360, function(n) pasteO('y_diff_pred[', n, ']'))
filt_samples <- lapply(names, function(n) samples[[n]])
names (filt_samples) <- names
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util$plot_hist_quantiles(filt_samples, 'y_diff_pred', -80, 120, 10,
baseline_values=data$y_home[241:360] -
data$y_away[241:360],
xlab="Home Score - Away Score",
main="Final Third of Season")
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Because our model appears to be adequate, at least in the context of these particular retrodic-
tive checks, we can examine the resulting posterior inferences to see what we’ve learned about
the teams.

Firstly we have the baseline behavior which appears to be reasonably well-informed by the
observed games.

par (mfrow=c(1, 1), mar=c(5, 5, 1, 1))
util$plot_expectand_pushforward(samples[['alpha'l]l, 25,

baseline_col=util$c_dark_teal,
display_name="Baseline Log Score")
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Our inferences preclude negative home-field advantages in favor of moderately positive val-
ues.

par (mfrow=c(1, 2), mar=c(5, 5, 1, 1))

title <- "Offensive Home-Field Advantage"

util$plot_expectand_pushforward(samples[['eta_off']], 25,
baseline_col=util$c_dark_teal,
display_name=title)

title <- "Defensive Home-Field Advantage"

util$plot_expectand_pushforward(samples[['eta_def']], 25,
baseline_col=util$c_dark_teal,
display_name=title)
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The baseline discrimination is close to zero, but small enough that by the end of the season
the scores are substantially less sensitive to the team skills.

par (mfrow=c(1, 1), mar=c(5, 5, 1, 1))

util$plot_expectand_pushforward(samples[['gammaO']], 25,
baseline_col=util$c_dark_teal,
display_name="Discrimination Exponent")
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Speaking of team skills, the inferred offensive and defensive skills allow us to compare the
performance of each team to each other.

par (mfrow=c(2, 1), mar=c(5, 5, 1, 1))

names <- sapply(l:data$N_teams,
function(i) pasteO('delta_off[', i, ']'))
util$plot_disc_pushforward_quantiles(samples, names,
xlab="Team",
ylab="Relative Offensive Skill")

names <- sapply(l:data$N_teams,
function(i) pasteO('delta_def[', i, '1'))
util$plot_disc_pushforward_quantiles(samples, names,
xlab="Team",
ylab="Relative Defensive Skill")
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For example we can see that Team 5 features a strong offense but a mediocre defense. On the
other hand Team 7 enjoys the strongest defense but a subpar offensive. The offensive skill of
the anchor team is worse than that of all of the other teams, but their defensive skill is in the
middle of the pack.

6.5.5 Informing Betting Decisions

Another use of these posterior inferences is to predict the outcomes of games that have not yet
been played. Even more we can use those predictions to inform decisions about those future
games, such as how to best gamble on them.

Let’s say that immediately after the season ends a playoff beings with the four teams at the
top of the standings playing each other in the first round. Specifically the fourth place team
travels to play the first place team, and the third place team travels to play the second place
team.

wins <- rep(0, data$N_teams)
ties <- rep(0, data$N_teams)
losses <- rep(0, data$N_teams)

for (n in 1:data$N_games) {
if (data$y_home[n] > data$y_away[n]) {
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wins [data$home idx[n]] <- wins[data$home idx[n]] + 1
losses[data$away_idx[n]] <- losses[data$away_idx[n]] + 1

} else if (data$y_home[n] < data$y_away[n]) {
losses[data$home_idx[n]] <- losses[data$home_idx[n]] + 1
wins [data$away_idx[n]] <- wins[data$away_idx[n]] + 1

} else if (data$y_home[n] == data$y_away[n]) {
ties[data$home_idx[n]] <- ties[data$home_idx[n]] + 1
ties[data$away_idx[n]] <- ties[data$away_idx[n]] + 1

standings <- data.frame(l:data$N_teams, wins, losses, ties)
names (standings) <- c("Team", "Wins", "Losses", "Ties")

print(standings[rev(order(wins, ties)),], row.names=FALSE)

Team Wins Losses Ties

8 56 14 2
9 56 15 1
7 51 19 2
5 b1 20 1
2 38 34 0
6 34 36 2
4 20 50 2
10 19 53 0
1 16 54 2
3 13 59 0

At the top of the season standings we have

o First Place: Team 8,

e Second Place: Team 9,
e Third Place: Team 7,
¢ Fourth Place: Team 5.

Consequently the first round of the playoffs would consist of the two games

o Team 8 (Home) vs Team 5 (Away),
o Team 9 (Home) vs Team 7 (Away).

Many sporting events feature a variety of outcomes on which individuals can gamble, but here
we’ll focus on the score differentials.
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For example we might have an opportunity to bet on the outcome of the first game with Team
8 giving 21 points to Team 5. This means that we’re not betting on whether or not Team 8
defeats Team 5 but rather whether or not they beat Team 5 by more than 21 points.

More formally we might have an available gamble defined such that we can bet 110 units of
currency and then win back our bet plus 100 units if

Ys5 > Yss+21

but lose the 110 units if
Yss < Ys g+ 2L

Similarly we might be able to bet 110 units of currency and then win back our bet plus 100
units if
Yg5 < Y5 T 21

but again lose the 110 unit bet if
Ys,5 < Vs g 1 21

These available then define a decision making problem. We have three actions that we can
take — bet that the score differential of the first game will be larger than 21, bet that it will
be less than 21, and not bet at all — with associated utilities that depend on the unknown
game outcome. Reasoning about all of these possibilities is a bit easier if we organize all of
this information into a table (Table 1).

Table 1: Bets on the winner of a game define a decision making problem. Inferences about the
skills of the competing teams can be used to inform the best possible decisions.

Outcome y8,5 > y5,8 + 21 y8,5 < y5,8 + 21 y8,5 = y578 + 21
Action 1 4100 -110 -110

Action 2 -110 4100 -110

Action 3 0 0 0

Notice the asymmetry in what we have to bet verses what we might be able to win in each
bet. Moreover note that ties are excluded from either winning condition. The house, as they
say, always wins.

Once we have established the viable actions and their potential utilities we can use the evaluate

136



posterior predictive expected utilities,

Uy =1007({yg 5 > ys8 +21}) — 1107({ys 5 < ys5 5 +21})
=1007({ys 5 > 5.8 +21}) — 110 (1 — 7({yg 5 > y55 +21}))
Uy =—1107({ys s = ys5 +21}) + 100 ({yg 5 < y55 +21})

=1007({ys 5 <ys.s +21}) =110 (1 — 7({yg 5 < w5 +21}))

For the second game the available bets give 11 points to Team 5 (Table 2).

Table 2: The point spread for the second game define another decision making problem.

Outcome Yo7 > Y79+ 11 Yo7 <Yrog+11 Yo7 ="Y79+ 11
Action 1 +100 -110 -110

Action 2 -110 +100 -110

Action 3 0 0 0

All we have to do now is estimate the posterior predictive probability allocated to the various
game outcomes. Fortunately this is straightforward with Markov chain Monte Carlo.

data$N_playoff_games <- 2

data$playoff_home_idx <- c(8, 5)

data$playoff_away_idx <- c(9, 7)

data$playoff_week <- c(data$N_weeks + 1, data$N_weeks + 1)

fit <- stan(file="stan_programs/season3_playoff.stan",
data=data, seed=8438338,
warmup=1000, iter=2024, refresh=0)

Fortunately the diagnostics remain clean.

diagnostics <- util$extract_hmc_diagnostics(fit)
util$check_all_hmc_diagnostics(diagnostics)

A1l Hamiltonian Monte Carlo diagnostics are consistent with reliable
Markov chain Monte Carlo.
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samples <- util$extract_expectand_vals(fit)
base_samples <- util$filter_expectands(samples,
c('alpha',
'eta_off',
'eta_def',
'gammaO',
'delta_off free',
'delta_def free'),
check_arrays=TRUE)
util$check_all_expectand_diagnostics(base_samples)

All expectands checked appear to be behaving well enough for reliable
Markov chain Monte Carlo estimation.

Let’s start with the first game. First we estimate the posterior predictive probabilities.

gl_p_home_spread <-
util$implicit_subset_prob(samples,
function(yh, ya) yh > ya + 21,
list('yh' = 'y_home_playoff_pred[1]',
'ya' = 'y_away_playoff_pred[1]'))

gl_p_away_spread <-
util$implicit_subset_prob(samples,
function(yh, ya) yh < ya + 21,
list('yh' = 'y_home_playoff_pred[1]',
'yva' = 'y_away_playoff_pred[1]'))

Then we compute the expected utilities for each bet.

m3_gl_Ul <- gl _p_home_spread[1] * 100 +

(1 - g1_p_home_spread[1]) * (-110)
m3_gl U2 <- gl_p_away_spread[1] * 100 +

(1 - gl_p_away_spread[1]) * (-110)

Finally we can do the same for the second game.
g2_p_home_spread <-

util$implicit_subset_prob(samples,
function(yh, ya) yh > ya + 11,
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list('yh' = 'y_home_playoff_pred[2]',
'y_away_playoff_pred[2]'))

<
)
1]

g2_p_away_spread <-
util$implicit_subset_prob(samples,
function(yh, ya) yh < ya + 11,

list('yh' = 'y_home_playoff_ pred[2]',
'ya' = 'y_away_playoff_pred[2]'))
m3_g2_Ul <- g2_p_home_spread[1] * 100 +
(1 - g2_p_home_spread[1]) * (-110)
m3_g2_U2 <- g2_p_away_spread[1] * 100 +
(1 - g2_p_away_spread[1]) * (-110)

Putting everything together allows us to compare the potential winnings of the two bets, as
well as the third option to not bet and just enjoy the game risk-free.

expected_winnings <- data.frame(c(paste("Team 8 (Home) Defeats",
"Team 5 (Away) + 21"),
paste("Team 5 (Away) + 21 Defeats",
"Team 8 (Home) "),
paste("Team 9 (Home) Defeats",
"Team 7 (Away) + 11"),
paste("Team 7 (Away) + 11 Defeats",
"Team 9 (Home) ")),

c(m3_gl1_ U1, m3_gi U2,
m3_g2_Ul, m3_g2_U2))
names (expected_winnings) <- c("Bet", "Expected Winnings")

print (expected_winnings, row.names=FALSE, right=FALSE)

Bet Expected Winnings
Team 8 (Home) Defeats Team 5 (Away) + 21 -77.329164
Team 5 (Away) + 21 Defeats Team 8 (Home) 62.620648
Team 9 (Home) Defeats Team 7 (Away) + 11 -17.926448
Team 7 (Away) + 11 Defeats Team 9 (Home) -0.689294

Based on our inferences, which in turn are based on our modeling assumptions and the observed
data, the only profitable bet here is to take Team 5 and the points in the first playoff game.
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What if we had ignored retrodictive performance and stuck with our first model? Well we
can just calculate how the expected utilities would have been informed by those unreliable
inferences.

fit <- stan(file="stan_programs/seasonl_playoff.stan",
data=data, seed=8438338,
warmup=1000, iter=2024, refresh=0)

There are no computational concerns.

diagnostics <- util$extract_hmc_diagnostics(fit)
util$check_all_hmc_diagnostics(diagnostics)

All Hamiltonian Monte Carlo diagnostics are consistent with reliable
Markov chain Monte Carlo.

samples <- util$extract_expectand_vals(fit)
base_samples <- util$filter_expectands(samples,
c('alpha',
'delta_off free',
'delta_def free'),
check_arrays=TRUE)
util$check_all_expectand_diagnostics(base_samples)

All expectands checked appear to be behaving well enough for reliable
Markov chain Monte Carlo estimation.

The calculation of the expected utilities proceeds the same as before.

gl_p_home_spread <-
util$implicit_subset_prob(samples,
function(yh, ya) yh > ya + 21,
list('yh' = 'y_home_playoff_pred[1]',
ya' = 'y_away_playoff_pred[1]'))

gl_p_away_spread <-
util$implicit_subset_prob(samples,
function(yh, ya) yh < ya + 21,
list('yh' 'y_home_playoff_pred[1]',
'ya' = 'y_away_playoff_pred[1]'))
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ml_gl Ul <- gil_p_home_spread[1] * 100
(1 - gl_p_home_spread[1])
ml_gi U2 <- gl _p_away_spread[1] * 100
(1 - gl_p_away_spread[1])

(-110)

* + ¥ +

(-110)

g2_p_home_spread <-
util$implicit_subset_prob(samples,
function(yh, ya) yh > ya + 11,
list('yh' = 'y_home_playoff_pred[2]',
'ya' = 'y_away_playoff_pred[2]'))

g2_p_away_spread <-
util$implicit_subset_prob(samples,
function(yh, ya) yh < ya + 11,

list('yh' = 'y_home_playoff_pred[2]',
'ya' = 'y_away_playoff_pred[2]'))
ml_g2 Ul <- g2 p_home_spread[1] * 100 +
(1 - g2_p_home_spread[1]) * (-110)
ml_g2 U2 <- g2_p_away_spread[1] * 100 +
(1 - g2_p_away_spread[1]) * (-110)

Now we can directly compare the optimal decisions according to the two models.

expected_winnings <- data.frame(c(paste("Tm 8 (Home) Dfts",
"Tm 5 (Away) + 21"),
paste("Tm 5 (Away) + 21 Dfts",
"Tm 8 (Home) D)
paste("Tm 9 (Home) Dfts",
"Tm 7 (Away) + 11"),
paste("Tm 7 (Away) + 11 Dfts",
"Tm 9 (Home) ")),

c(ml_gl U1, ml_gi U2,
ml_g2 Ul, ml_g2 U2),
c(m3_gi_U1l, m3_gl U2,
m3_g2_Ul, m3_g2_U2))
names (expected_winnings) <- c("Bet",
"Expd Wngs (M1)",
"Expd Wngs (M3)")

print(expected_winnings, row.names=FALSE, right=FALSE)
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Bet Expd Wngs (M1) Expd Wngs (M3)

Tm 8 (Home) Dfts Tm 5 (Away) + 21 -105.90104 -77.329164
Tm 5 (Away) + 21 Dfts Tm 8 (Home) 94.92753 62.620648
Tm 9 (Home) Dfts Tm 7 (Away) + 11 -94.88692 -17.926448
Tm 7 (Away) + 11 Dfts Tm 9 (Home) 81.64673 -0.689294

The magnitude of the expected utilities from the first model are quite a bit larger that the
expected utilities from the third model. Moreover according to the first model both away bets
would be pretty strongly profitable. If we used this model we might have been tempted to
make a bad bet on the away team in game 2!

Bayesian decision theory is a powerful tool, but it is only as reliable as the posterior inferences
and the reliability of the posterior inferences is limited by the adequacy of the modeling
assumptions.

7 Conclusion

The ubiquity of pairwise comparisons in practical applications may not be immediately obvious,
but once we start looking for them they become difficult to miss. Even if a data generating
process doesn’t fully manifest as a pairwise comparison, parts of it might.

With the general modeling techniques presented in this chapter, however, we are equipped
to appropriately model pairwise comparisons whenever they might arise. That said these
techniques are very much only a stable foundation, and they can be extended and combined
with other techniques to develop even more sophisticated models.

For example instead of treating item qualities as individual parameters to infer we can often
derive them from other parts of a model, in particular as the output of some function of item
properties. In a sports application for instance we might be able to model the offensive skill
of a team as a combination of individual player skills. Similarly we might model the ability of
a student to correctly answer a test question as a function of their cumulative study efforts.

The basic pairwise comparison modeling strategy can also be generalized to model the com-
parison of multiple items at the same time. For example consider a comparison of multiple
items that results in a singular best item. We can use a multinomial distribution to model
this output,

p(yilwﬁK) = multinomial(yi“”’iK |pi1, ,piK)

and then couple the multinomial probabilities to item qualities with a softmax function,

(Di s 05, ) = softmax(a, ,...,q; )

_ ( exp(a; ) exp(a;, ) > |
Spaexples,) X, explay,)
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We can even iterate this approach to model observed rankings, using a multinomial distribution
informed by the item qualities to model the top ranked item, another multinomial over the
remaining items to model the second ranked item, and so on.
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Original Computing Environment

writeLines(readLines(file.path(Sys.getenv("HOME"), ".R/Makevars")))

CC=clang

CXXFLAGS=-03 -mtune=native -march=native -Wno-unused-variable -Wno-unused-function -Wno-macr
CXX=clang++ -arch x86_64 -ftemplate-depth-256
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CXX14FLAGS=-03 -mtune=native -march=native -Wno-unused-variable -Wno-unused-function -Wno-ma
CXX14=clang++ -arch x86_64 -ftemplate-depth-256

sessionInfo()

R version 4.3.2 (2023-10-31)
Platform: x86_64-apple-darwin20 (64-bit)
Running under: macOS Sonoma 14.4.1

Matrix products: default
BLAS:  /Library/Frameworks/R.framework/Versions/4.3-x86_64/Resources/lib/1ibRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.3-x86_64/Resources/lib/libRlapack.dylib;

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

time zone: America/New_York
tzcode source: internal

attached base packages:
[1] stats graphics grDevices utils datasets methods  base

other attached packages:
[1] colormap_0.1.4 rstan_2.32.6 StanHeaders_2.32.7

loaded via a namespace (and not attached):

[1] gtable_0.3.4 jsonlite_1.8.8 compiler_4.3.2 Rcpp_1.0.11

[5] stringr_1.5.1 parallel _4.3.2 gridExtra_2.3 scales_1.3.0

[9] yaml_2.3.8 fastmap_1.1.1 ggplot2_3.4.4 R6_2.5.1

[13] curl_5.2.0 knitr_1.45 tibble_3.2.1 munsell _0.5.0
[17] pillar_1.9.0 rlang 1.1.2 utf8 1.2.4 V8 4.4.1

[21] stringi_1.8.3 inline_0.3.19 xfun_0.41 RcppParallel 5.1.7
[25] cli_3.6.2 magrittr_2.0.3 digest_0.6.33 grid_4.3.2
[29] lifecycle_1.0.4 vctrs_0.6.5 evaluate_0.23 glue_1.6.2
[33] QuickJSR_1.0.8 codetools_0.2-19 stats4_4.3.2 pkgbuild_1.4.3
[37] fansi 1.0.6 colorspace_2.1-0  rmarkdown_2.25 matrixStats_1.2.0
[41] tools_4.3.2 loo_2.6.0 pkgconfig 2.0.3 htmltools_0.5.7
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Stan
Program 1 simu\_bradley\_terry.stan

data {
int<lower=1> N_players; // Number of players
int<lower=1> N_games; // Number of games

// Matchup probabilities
simplex[N_players] playerl_probs;
array[N_players] simplex[N_players] pair_probs;

generated quantities {
// Player skills
array[N_players] real alpha
= normal_rng(rep_vector(0, N_players), log(sqrt(2)) / 2.32);

// Game outcomes

array[N_games] int<lower=1, upper=N_players> playerl_idx;
array[N_games] int<lower=1, upper=N_players> player2_idx;
array[N_games] int<lower=0, upper=1> y;

for (n in 1:N_games) {
// Simulate first player
playerl_idx[n] = categorical_rng(playerl_probs);

// Simulate second player
player2_idx[n] = categorical_rng(pair_probs[playeri_idx[nl]);

// Simulate winner
y[n] = bernoulli_logit_rng( alphal[playerl_idx[n]]
- alphal[player2_idx[n]]);
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Stan
Program 2 bradley\_terryl.stan

data {
int<lower=1> N_players; // Number of players
int<lower=1> N_games; // Number of games

// Game outcomes

array[N_games] int<lower=1, upper=N_players> playerl_idx;
array[N_games] int<lower=1, upper=N_players> player2_idx;
array[N_games] int<lower=0, upper=1> y;

parameters {
vector [N_players] alpha; // Player skills

}

model {
// Implicit uniform prior demnsity function for the alpha components
// Observational model
y ~ bernoulli_logit(alphal[playerl_idx] - alphalplayer2_idx]);

}

generated quantities {
array[N_games] int<lower=0, upper=1> y_pred;
array[N_players] int<lower=0> win_counts_pred
= rep_array(0, N_players);
array[N_players] int<lower=0> loss_counts_pred
= rep_array(0, N_players);
array[N_players] real win_freq_pred;

for (n in 1:N_games) {
int idx1 = playerl_idx[n];
int idx2 = player2_idx[n];

y_pred[n] = bernoulli_logit_rng(alphalidx1l] - alphalidx2]);
if (y_pred[n]) {
win_counts_pred[idx1l] += 1;
loss_counts_pred[idx2] += 1;
} else {
win_counts_pred[idx2] += 1;
loss_counts_pred[idx1] += 1;
}
}
for (i in 1:N_players) { et
win_freq_pred[i] = (1.0 * win_counts_pred[i])
/ (win_counts_pred[i] + loss_counts_pred[i]);




Stan
Program 3 bradley\_terry2.stan

data {
int<lower=1> N_players; // Number of players
int<lower=1> N_games; // Number of games

// Game outcomes

array[N_games] int<lower=1, upper=N_players> playerl_idx;
array[N_games] int<lower=1, upper=N_players> player2_idx;
array[N_games] int<lower=0, upper=1> y;

parameters {
vector [N_players] alpha; // Player skills
}

model {
// Prior model
// -10 <~ alphali] <~ +10
alpha ~ normal(0, 10 / 2.32);

// Observational model
y ~ bernoulli_logit(alphal[playerl_idx] - alphalplayer2_idx]);
}

generated quantities {
array[N_games] int<lower=0, upper=1> y_pred;
array[N_players] int<lower=0> win_counts_pred
= rep_array(0, N_players);
array[N_players] int<lower=0> loss_counts_pred
= rep_array(0, N_players);
array[N_players] real win_freq_pred;

for (n in 1:N_games) {
int idxl = playerl_idx[n];
int idx2 = player2_idx[n];

y_pred[n] = bernoulli_logit_rng(alpha[idx1] - alphal[idx2]);
if (y_pred[n]) {

win_counts_pred[idx1] += 1;

loss_counts_pred[idx2] += 1;
} else {

win_counts_pred[idx2] += 1;

loss_counts_pred[idxl] += 1;
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win_freq_pred[i] = (1.0 * win_counts_pred[i])
/ (win_counts_pred[i] + loss_counts_pred[i]);



Stan
Program 4 bradley\_terry3.stan

data {
int<lower=1> N_players; // Number of players
int<lower=1> N_games; // Number of games

// Game outcomes

array[N_games] int<lower=1, upper=N_players> playerl_idx;
array[N_games] int<lower=1, upper=N_players> player2_idx;
array[N_games] int<lower=0, upper=1> y;

parameters {
vector [N_players] alpha; // Player skills

}
model {

// Prior model

// -log sqrt(2) <~ alphali] <~ +log sqrt(2)

alpha ~ normal(0, log(sqrt(2)) / 2.32);

// Observational model

y ~ bernoulli_logit(alphal[playerl_idx] - alphalplayer2_idx]);
}

generated quantities {
array[N_games] int<lower=0, upper=1> y_pred;
array[N_players] int<lower=0> win_counts_pred
= rep_array(0, N_players);
array[N_players] int<lower=0> loss_counts_pred
= rep_array(0, N_players);
array[N_players] real win_freq_pred;

for (n in 1:N_games) {
int idxl = playerl_idx[n];
int idx2 = player2_idx[n];

y_pred[n] = bernoulli_logit_rng(alpha[idx1] - alphal[idx2]);
if (y_pred[n]) {

win_counts_pred[idx1] += 1;

loss_counts_pred[idx2] += 1;
} else {

win_counts_pred[idx2] += 1;

loss_counts_pred[idxl] += 1;
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for (i in 1:N_players) {
win_freq_pred[i] = (1.0 * win_counts_pred[i])
/ (win_counts_pred[i] + loss_counts_pred[i]);



Stan
Program 5 bradley\_terry4.stan

data {
int<lower=1> N_players; // Number of players
int<lower=1> N_games; // Number of games

// Game outcomes

array[N_games] int<lower=1, upper=N_players> playerl_idx;
array[N_games] int<lower=1, upper=N_players> player2_idx;
array[N_games] int<lower=0, upper=1> y;

parameters {
vector [N_players - 1] delta_free; // Relative player skills
}

transformed parameters {
// Relative player skills with anchor skill
vector [N_players] delta = append_row([0]', delta_free);

}
model {
// Prior model
// -sqrt(2) * 10 <~ beta_freel[i] <~ + sqrt(2) * 10
delta_free ~ normal(0, sqrt(2) * 10 / 2.32);
// Observational model
y ~ bernoulli_logit(deltal[playerl_idx] - deltalplayer2_idx]);
}

generated quantities {
array[N_games] int<lower=0, upper=1> y_pred;
array [N_players] int<lower=0> win_counts_pred
= rep_array(0, N_players);
array[N_players] int<lower=0> loss_counts_pred
= rep_array(0, N_players);
array[N_players] real win_freq_pred;

for (n in 1:N_games) {
int idx1 = playerl_idx[n];
int idx2 = player2_idx[n];

y_pred[n] = bernoulli_logit_rng(deltalidx1l] - deltal[idx2]);
if (y_pred[n]) {
win_counts_pred[idx1] += 1;
loss_counts_pred[idx2] += 1;
} else {
win_counts_pred[idx2] += 1;
loss_counts_pred[idx1] += 1;
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Program 6 bradley\_terry5.stan

data {
int<lower=1> N_players; // Number of players
int<lower=1> N_games; // Number of games

// Game outcomes

array[N_games] int<lower=1, upper=N_players> playerl_idx;
array[N_games] int<lower=1, upper=N_players> player2_idx;
array[N_games] int<lower=0, upper=1> y;

// Anchor configuration
int<lower=0, upper=N_players - 1> N_anchors;
array[N_anchors] int<lower=1, upper=N_players> anchor_idx;

parameters {
// Relative player skills
vector [N_players - N_anchors] delta_free;

}

transformed parameters {
// Relative player skills with anchor skills
vector [N_players] delta = rep_vector(0, N_players);

{
array[N_anchors + 2] int boundary_idx
= append_array(append_array ({0}, anchor_idx), {N_players + 1});

for (n in 1:(N_anchors + 1)) {
int idx1 = boundary_idx[n] +1;
int idx2 = boundary_idx[n + 1] - 1
if (idx1 <= idx2) {
delta[idx1:idx2] = delta_free[(idxl - n + 1):(idx2 - n + 1)];
}

b

}
+
}

model {
// Prior model
// -sqrt(2) * 10 <~ beta_free[i] <~ + sqrt(2) * 10
delta_free ~ normal(0, sqrt(2) * 10 / 2.32);

// Observational model
y - bernoulli_logit(delta[playerl_i&é?’— deltal[player2_idx]);
}

generated quantities {
array[N_games] int<lower=0, upper=1> y_pred;
array[N_players] int<lower=0> win_counts_pred
= rep_array(0, N_players);
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Program 7 irtl.stan

data {
int<lower=1> N_questions; // Number of questions
int<lower=1> N_students; // Number of students
int<lower=1> N_answers; // Number of answers

// Testing configuration and outcomes

array[N_answers] int<lower=1, upper=N_questions> question_idx;
array[N_answers] int<lower=1, upper=N_students> student_idx;
array[N_answers] int<lower=0, upper=1> y;

parameters {
vector [N_questions] beta; // Question difficulties
vector [N_students - 1] alpha_free; // Relative student abilities
}

transformed parameters {
vector [N_students] alpha = append_row([0]', alpha_free);
}

model {
// Prior model
beta ~ normal(0, 3 / 2.32); // -3 <~ betal[i] <~ +3

alpha_free ~ normal(0, 3 / 2.32); // -3 <~ alphal[j] <~ +3

// Observational model
y ~ bernoulli_logit(alphal[student_idx] - betalquestion_idx]) ;
}

generated quantities {
array[N_questions] real mean_q_pred = rep_array(0, N_questions);
array[N_questions] real var_q_pred = rep_array(0, N_questions);
array[N_students] real mean_s_pred rep_array(0, N_students);
array[N_students] real var_s_pred rep_array(0, N_students);

{
array[N_questions] real N_answers_q = rep_array(0, N_questions);
array[N_students] real N_answers_s = rep_array(0, N_students);

for (n in 1:N_answers) {
int i = question_idx[n];
int j = student_idx[n];
real delta = O;
152

int y_pred = bernoulli_logit_rng(alphal[j] - betal[il);

N_answers_ql[i] += 1;

delta = y_pred - mean_q_pred[i];

mean_q_pred[i] += delta / N_answers_ql[il;
var_q_pred[i] += delta * (y_pred - mean_q_pred[i]);
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data {
int<lower=1> N_questions; // Number of questions
int<lower=1> N_students; // Number of students
int<lower=1> N_answers; // Number of answers

// Testing configuration and outcomes

array[N_answers] int<lower=1, upper=N_questions> question_idx;
array[N_answers] int<lower=1, upper=N_students> student_idx;
array[N_answers] int<lower=0, upper=1> y;

parameters {
// Relative question discriminations
vector<lower=0>[N_questions - 1] gamma_free;

vector [N_questions] beta; // Question difficulties
vector [N_students - 1] alpha_free; // Relative student abilities
+

transformed parameters {
vector [N_questions] gamma = append_row([1]', gamma_free);
vector [N_students] alpha = append_row([0]', alpha_free);
}

model {
// Prior model
gamma_free ~ normal(0, 10 / 2.57); // O <~ gamma[i] <~ +10
beta ~ normal(0, 3 / 2.32); // -3 <~ betal[i] <~ +3
alpha_free ~ normal(0, 3 / 2.32); // -3 <~ alphal[j] <~ +3

// 0Observational model
y ~ bernoulli_logit(  gamma[question_idx]
.* (alpha[student_idx] - betal[question_idx]) );

generated quantities {
array[N_questions] real mean_q_pred = rep_array(0, N_questions);
array[N_questions] real var_q_pred = rep_array(0, N_questions);
array[N_students] real mean_s_pred = rep_array(0, N_students);
array[N_students] real var_s_pred rep_array(0, N_students);

{
array[N_questions] real N_answers_q = rep_array(0, N_questions);
array[N_students] real N_answers_g = rep_array(0, N_students);

for (n in 1:N_answers) {
int i = question_idx[n];
int j = student_idx[n];
real delta = O;
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data {
int<lower=1> N_questions; // Number of questions
int<lower=1> N_students; // Number of students
int<lower=1> N_answers; // Number of answers

// Testing configuration and outcomes

array[N_answers] int<lower=1, upper=N_questions> question_idx;
array[N_answers] int<lower=1, upper=N_students> student_idx;
array[N_answers] int<lower=0, upper=1> y;

parameters {
// Relative question discriminations
vector<lower=0>[N_questions - 1] gamma_free;

vector [N_questions] beta; // Question difficulties

// Non-centered, relative student abilities
vector [N_students] alpha_tilde;

real delta_mu; // Difference in student cohort ability locations
real<lower=0> taul; // First student cohort ability variation
real<lower=0> tau2; // Second student cohort ability variation

transformed parameters {
vector [N_questions] gamma = append_row([1]', gamma_free);

vector [N_students] alpha;
alpha[1: (N_students / 2)]
= taul * alpha_tilde[1:(N_students / 2)];
alpha[(N_students / 2):N_students]
= delta_mu + tau2 * alpha_tilde[(N_students / 2):N_students];

model {
// Prior model
gamma_free ~ normal(0, 10 / 2.57);
beta ~ normal(0, 3 / 2.32);

alpha_tilde ~ normal(0, 1);
delta_mu ~ normal(0, 3 / 2.32);

taul ~ normal(0, 3 / 2.57);
tau2 ~ normal(0, 3 / 2.57);
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// Observational model
y ~ bernoulli_logit(  gammal[question_idx]
.* (alphal[student_idx] - betalquestion_idx]) );
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data {

int<lower=1> N_games; // Number of games

// Matchups

int<lower=1> N_teams;

array[N_games] int<lower=1, upper=N_teams> home_idx;
array[N_games] int<lower=1, upper=N_teams> away_idx;

int<lower=1> N_weeks; // Number of weeks

array [N_games]

// Game scores
array[N_games]
array [N_games]

parameters {
real alpha;
vector [N_teams
vector [N_teams

}

int<lower=1, upper=N_weeks> week;

int<lower=0> y_home;
int<lower=0> y_away;

// Baseline log score

- 1] delta_off_free; // Relative team offensive

skills

- 1] delta_def_free; // Relative team defensive skills

transformed parameters {
// Relative skills for all teams
vector [N_teams] delta_off = append_row([0]', delta_off_free);
vector [N_teams] delta_def = append_row([0]', delta_def_free);

}

model {
// Prior model

alpha ~ normal(3.77, 0.556 / 2.32); // 25 <~

// -2 <~ delta_off/delta_def <~ +2

delta_off free
delta_def_free

~ normal(0, 2 / 2.32);
~ normal(0, 2 / 2.32);

// Observational model

y_home ~ poisson_log( alpha
+ delta_off [home_idx] - delta_def [away_idx]);
y_away ~ poisson_log( alpha
+ delta_off [away_idx] - delta_def [home_idx]);

generated quantities {

array [N_games]
array[N_games]
array [N_games]
array[N_games]
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int<lower=0> y_home_pred;
int<lower=0> y_away_pred;
int y_diff_pred;

int<lower=0> y_sum_pred;

for (n in 1:N_games) {

exp(alpha) <~ 75
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Program 11 season2.stan

data {

int<lower=1> N_games; // Number of games

// Matchups

int<lower=1> N_

array [N_games]
array [N_games]

int<lower=1> N_

array [N_games]

// Game scores
array[N_games]
array [N_games]

parameters {
real alpha;
real eta_off;
real eta_def;
vector [N_teams
vector [N_teams

teams;
int<lower=1, upper=N_teams> home_idx;
int<lower=1, upper=N_teams> away_idx;

weeks; // Number of weeks
int<lower=1, upper=N_weeks> week;

int<lower=0> y_home;
int<lower=0> y_away;

// Baseline log score

// Offensive home-field advantage

// Defensive home-field advantage
- 1] delta_off_free; // Relative team offensive skills
- 1] delta_def_free; // Relative team defensive skills

transformed parameters {
// Relative skills for all teams
vector [N_teams] delta_off = append_row([0]', delta_off_free);
vector [N_teams] delta_def = append_row([0]', delta_def_free);

}

model {
// Prior model

alpha ~ normal(3.77, 0.55 / 2.32); // 25 <~ exp(alpha) <~ 75

// 0.78 <~ exp(eta_off/eta_def) <~ 1.28
eta_off ~ normal(0, 0.25 / 2.32);
eta_def ~ normal(0, 0.25 / 2.32);

// -2 <~ delta_

delta_off_free
delta_def free

off/delta_def <~ +2
~ normal(0, 2 / 2.32);
~ normal(0, 2 / 2.32);

// Observational model
y_home ~ poisson_log( alpha + eta_&ép

+ delta_off [home_idx] - delta_def [away_idx]);

y_away ~ poisson_log( alpha - eta_def

+ delta_off [away_idx] - delta_def [home_idx]);

generated quantities {



Stan
Program 12 season3.stan

data {
int<lower=1> N_games; // Number of games

// Matchups

int<lower=1> N_teams;

array[N_games] int<lower=1, upper=N_teams> home_idx;
array[N_games] int<lower=1, upper=N_teams> away_idx;

int<lower=1> N_weeks; // Number of weeks
array[N_games] int<lower=1, upper=N_weeks> week;

// Game scores
array[N_games] int<lower=0> y_home;
array[N_games] int<lower=0> y_away;

b

parameters {
real alpha; // Baseline log score
real eta_off; // Offensive home-field advantage
real eta_def; // Defensive home-field advantage
real<lower=0> gammaO; // Discrimination mantissa

vector [N_teams - 1] delta_off_free; // Relative team offensive skills
vector[N_teams - 1] delta_def_free; // Relative team defensive skills

transformed parameters {
// Relative skills for all teams
vector [N_teams] delta_off = append_row([0]', delta_off_free);
vector [N_teams] delta_def = append_row([0]', delta_def_free);
}

model {
// Prior model
alpha ~ normal(3.77, 0.55 / 2.32); // 25 <~ exp(alpha) <~ 75

// 0.78 <~ exp(eta_off/eta_def) <~ 1.28
eta_off ~ normal(0, 0.25 / 2.32);
eta_def ~ normal(0, 0.25 / 2.32);

gamma0 ~ normal(0.9, 0.1 / 2.57); // 0.8 <~ gamma0 <~ 1.0

// -2 <~ delta_off/delta_def <~ +2
delta_off free ~ normal(0, 2 / 2.32);

delta_def_free ~ normal(0, 2 / 2.32}?7

// Observational model
y_home ~ poisson_log( alpha + eta_off
+ to_vector(pow(gammal, week))
.*x ( delta_off[home_idx]
- delta_def [away_idx] ) );
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data {
int<lower=1> N_games; // Number of games

// Matchups

int<lower=1> N_teams;

array[N_games] int<lower=1, upper=N_teams> home_idx;
array[N_games] int<lower=1, upper=N_teams> away_idx;

int<lower=1> N_weeks; // Number of weeks
array[N_games] int<lower=1, upper=N_weeks> week;

// Game scores
array[N_games] int<lower=0> y_home;
array[N_games] int<lower=0> y_away;

// Playoff games

int<lower=1> N_playoff_games; // Number of playoff games
array[N_playoff_games] int<lower=1, upper=N_teams> playoff_home_idx;
array[N_playoff_games] int<lower=1, upper=N_teams> playoff_away_idx;
array[N_playoff_games] int playoff_week;

b

parameters {
real alpha; // Baseline log score
real eta_off; // Offensive home-field advantage
real eta_def; // Defensive home-field advantage
real<lower=0> gammaO; // Discrimination mantissa

vector [N_teams - 1] delta_off_free; // Relative team offensive skills
vector[N_teams - 1] delta_def_free; // Relative team defensive skills

transformed parameters {
// Relative skills for all teams
vector [N_teams] delta_off = append_row([0]', delta_off_free);
vector [N_teams] delta_def = append_row([0]', delta_def_free);
}

model {
// Prior model
alpha ~ normal(3.77, 0.55 / 2.32); // 25 <~ exp(alpha) <~ 75

// 0.78 <~ exp(eta_off/eta_def) <~ 1.28
eta_off ~ normal(0, 0.25 / 2.32); 158
eta_def ~ normal(0, 0.25 / 2.32);

gammaO ~ normal(0.9, 0.1 / 2.57); // 0.8 <~ gammaO <~ 1.0

// -2 <~ delta_off/delta_def <~ +2
delta_off free ~ normal(0, 2 / 2.32);
delta_def_free ~ normal(0, 2 / 2.32);
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data {
int<lower=1> N_games; // Number of games

// Matchups

int<lower=1> N_teams;

array[N_games] int<lower=1, upper=N_teams> home_idx;
array[N_games] int<lower=1, upper=N_teams> away_idx;

int<lower=1> N_weeks; // Number of weeks
array[N_games] int<lower=1, upper=N_weeks> week;

// Game scores
array[N_games] int<lower=0> y_home;
array[N_games] int<lower=0> y_away;

// Playoff games

int<lower=1> N_playoff_games; // Number of playoff games
array[N_playoff_games] int<lower=1, upper=N_teams> playoff_home_idx;
array[N_playoff_games] int<lower=1, upper=N_teams> playoff_away_idx;
array[N_playoff_games] int playoff_week;

parameters {
real alpha; // Baseline log score
vector [N_teams - 1] delta_off_free; // Relative team offensive skills
vector [N_teams - 1] delta_def_free; // Relative team defensive skills

}

transformed parameters {
// Relative skills for all teams
vector [N_teams] delta_off = append_row([0]', delta_off_free);
vector [N_teams] delta_def = append_row([0]', delta_def_free);
+

model {
// Prior model
alpha ~ normal(3.77, 0.55 / 2.32); // 25 <~ exp(alpha) <~ 75

// -2 <~ delta_off/delta_def <~ +2
delta_off free ~ normal(0, 2 / 2.32);
delta_def free ~ normal(0, 2 / 2.32);

// Observational model
y_home ~ poisson_log( alpha 158

+ delta_off [home_idx] - delta_def[away_idx]);
y_away ~ poisson_log( alpha

+ delta_off [away_idx] - delta_def [home_idx]);

generated quantities {
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