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Background

* Adapting image-text foundation models remains challenging due to group robustness: low average test error
but incur high risk on certain groups.

* Two trends: efficient fine-tuning, and no access to training group labels.

* For the first trend, we train linear probes. For the second trend, we follow the common failure-based
debiasing, which first identifies minority groups by training a biased classifier. Then, a debiased model 1s
trained using the inferred group labels.

* Two contributions: (1) Failure-based debiasing hinges on the biased model that overfits on spurious
features. We enhance bias by projecting out the class proxies from the input features, using the remaining
information for bias discovery. (2) We predict pseudo group labels and applies a group prior offset to correct
for imbalance. We prove the loss minimizes the balanced group error without heavy hyperparameter tuning.

Setup: A classification problem with instance x € X € R% and labels y € Y = [K]. Data point (X, y) has an
attribute a(x) € A but is inaccessible in training. g € G is the combination of a and y: g = (a, y) with total
G| = |A|X|Y| groups. Given a VLM like CLIP, we compute Z = [Z;, ..., Zx]" € RK*? whose rows are the
text embeddings of the K class names: z; 1s derived from a prompt like “"a photo of a [CLASS]”.
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Goal: Learn a function f that minimizes the Balanced Group Error (BGE): — 2. /¢ Ex g[y # argmax f(x),,]

[ y'ey
Algorithm: Project-Probe-Aggregate (PPA)
Step 1: Project out class proxies. Let I1 € R%*% be the projection operator onto the null space of Z:
N=1-z%2zzH1z.
The biased model is f;, (x) = W, IIx. To account for class imbalance, we apply the loss adjustment loss to

learn W,,. Denote T = |mq, ..., T | the class priors, we have

_ exp(fp(0+Inm),
Xley exp(fp(X)+Inm) /-

fla(Wbi X, y) = —1

Step 2: Probe with group target. We identify minority groups that f;, misclassifies:
a(x) = 1[y # argmax f;, ()],
y'ey
where 1][-] 1s the indicator function. Each training sample is augmented as (X, y, @), with the group label g =

(v, @). Our PPA uses hy(x) = Wyx: X — RIGl to predict pseudo group labels. Let B denote the group priors
and T > 0 (hyperparameter), we propose group logit adjustment loss to achieve BGE:

R exp(hg(x)+7Inf) 4
Lo1a(Wa, X, g) = —1 : :

n = .
¥ re; €xP(ha(0+7InB)

Step 3: Aggregate weights. The final debiased classifier aggregates the weights belonging to each class:

fa(x),= wy X, where wy, = ), Wq g

9geG(Y)
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Experimental Results

Table 2. Evaluation of methods for improving group robustness of CLIP models across the Waterbirds, CelebA, and MetaShift
benchmarks. Best worst-group accuracy (WGA) of the methods without group labels are in bold.

CLIP ResNet-50 CLIP ViT-L/14

Table 6. Main component analysis. We present the worst group

Group labels Waterbirds CelebA MetaShift Waterbirds CelebA MetaShift accuracies using CLIP ResNet-50. “Proj.” and “GLA” stands
in train sets? Method WGA  Avg WGA Avg WGA Avg WGA Avg WGA Avg WGA Avg for the projection operation in Eq. (6) and group logit adjustment
GroupDRO [32] 75.1 838 841 895 832 873 908 964 883 912 939 974 loss in Eq. (9), respectively. “GT” means we use the ground-truth
v S-CS [44] 775 832 752 804 812 898 8.1 957 861 893 923 971 group labels for training debiased models.
S-CL [44] 752 860 756 804 815 888 899 960 87.8 905 93.1 969
DFR [17] 732 838 80.0 928 831 883 897 978 856 90.8 923 97.0 Proj, GLA GT | Waterbirds CelebA MetaShift
Zero-Shot (ZS) [31] 542 924 550 88.0 862 954 265 882 270 859 932 96.2
Group Prompt ZS [31] 464 91.7 534 735 846 952 254 858 669 831 939 96.7 (a) 7.9 11.9 75.4
ERM [37] 79 935 119 947 754 944 659 976 283 947 846 96.7 b v 54.4 29.4 86.2
WiSE-FT [41] 498 910 856 886 862 954 659 976 80.0 874 939 972 (c) v 81.6 70.0 89.2
Orth-Cali [3] 740 787 822 844 862 948 688 845 76.1 862 927 96.2 (d) v v 84.3 91.1 90.8
AFR [30] 484 893 534 943 769 868 734 882 70.0 852 903 97.1
X JTT [21] 617 906 602 799 785 894 836 973 756 933 912 942 () v Y 86.8 91.5 91.3
CnC [49] 612 871 639 903 783 871 845 975 792 893 922 947
CA [48] 83.7 894 900 907 779 855 869 962 846 904 913 934
CFR [47] 769 776 7377 81.1 815 895 882 968 84.8 878 937 955
PPA (ours) 843 883 911 921 908 947 872 946 904 91.0 948 96.8

Theoretical Justification

Removal of Class Proxies Amplifies Model Bias

Let ¢ denote the core features which are stable for predict target y and s be a spurious feature which 1s
correlated with y in the training data, but the correlation fails during testing. n observed features are stacked as

C =][cq,...,c ] € R¥*%and s = [sq, ..., 5,] '€ RV,

Projected model: Project C to obtain C = CII, then
regress on projected features C and spurious features.
y=Ca+vy's+¢&,

Full model: regression on the core and spurious
feature.
y=Ca+ys+eg,

where a, @&, y and y'are weights. € and €' are noise terms. Denote C,= C(I — II). Let y, = C,a denote the
contribution of the projected-out core features. Define M = — CT(CC")~1C, r, = My, andrg = Ms.

Proposition 1. The weight of the spurious feature after projection is
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Projecting out core features can make the model more susceptible to spurious feature: y' > y. Because the

spurious feature s is naturally positively correlated with y, in the space of M, i.e., rd Iy > 0 (Step 1).

Group Classification and Aggregation Mitigate Spurious Correlation

Proposition 2. Let G(y) denote the set of groups with class label y, i.e., G(y) ={g = (y',a) € Gly' = y}. Let
B denote the group priors, i.e., B, = P(g). The prediction:

> (a0~ Inp),

geg(y)

argmax f*(X), = argmax
yEY yEY

1s Bayes optimal for minimizing the balanced group error.

Guided by the proposition, we enforce group prior offset while learning the group classifier h;(x) which is our
group adjustment loss 41, (Step 2). Since hy 1s linear, summing over the output-space 1s equivalent to

aggregating 1n weight-space, eliminating the overhead of group inference (Step 3).



