
Prof. Dr. Marco Hutter

Master Thesis

Supervised by: Author:
Marko Bjelonic, Lorenz Wellhausen Ajaykumar Unagar
David Hoeller, Joonho Lee

Global Path Planning in a
Digital-Twin

Spring Term 2024

Intellectual Property Agreement

The student acted under the supervision of Prof. Hutter and contributed to research
of his group. Research results of students outside the scope of an employment con-
tract with ETH Zurich belong to the students themselves. The results of the student
within the present thesis shall be exploited by ETH Zurich, possibly together with
results of other contributors in the same field. To facilitate and to enable a common
exploitation of all combined research results, the student hereby assigns his rights
to the research results to ETH Zurich. In exchange, the student shall be treated
like an employee of ETH Zurich with respect to any income generated due to the
research results.
This agreement regulates the rights to the created research results.

1. Intellectual Property Rights

1. The student assigns his/her rights to the research results, including inventions
and works protected by copyright, but not including his moral rights (“Urhe-
berpersönlichkeitsrechte”), to ETH Zurich. Herewith, he cedes, in particular,
all rights for commercial exploitations of research results to ETH Zurich. He is
doing this voluntarily and with full awareness, in order to facilitate the com-
mercial exploitation of the created Research Results. The student’s moral
rights (“Urheberpersönlichkeitsrechte”) shall not be affected by this assign-
ment.

2. In exchange, the student will be compensated by ETH Zurich in the case
of income through the commercial exploitation of research results. Compen-
sation will be made as if the student was an employee of ETH Zurich and
according to the guidelines “Richtlinien für die wirtschaftliche Verwertung
von Forschungsergebnissen der ETH Zürich”.

3. The student agrees to keep all research results confidential. This obligation
to confidentiality shall persist until he or she is informed by ETH Zurich that
the intellectual property rights to the research results have been protected
through patent applications or other adequate measures or that no protection
is sought, but not longer than 12 months after the collaborator has signed this
agreement.

4. If a patent application is filed for an invention based on the research results,
the student will duly provide all necessary signatures. He/she also agrees to be
available whenever his aid is necessary in the course of the patent application
process, e.g. to respond to questions of patent examiners or the like.

2. Settlement of Disagreements

Should disagreements arise out between the parties, the parties will make an effort
to settle them between them in good faith. In case of failure of these agreements,
Swiss Law shall be applied and the Courts of Zurich shall have exclusive jurisdiction.

Place and date Signature

https://rechtssammlung.sp.ethz.ch/Dokumente/440.4.pdf?Web=1
https://rechtssammlung.sp.ethz.ch/Dokumente/440.4.pdf?Web=1

Contents

Acknowledgements v

Abstract vii

Symbols ix

1 Introduction 1
1.1 Main Contributions . 2
1.2 Thesis Organization . 3

2 Related Work 5
2.1 Topological Maps . 5
2.2 RL based navigation . 6
2.3 Learning Navigation Costs . 6
2.4 Navigation graphs using a Digital-Twin 7

3 Navigation Graphs in Simulation 9
3.1 Motivation . 9
3.2 Methodology . 9

3.2.1 Sampling . 9
3.2.2 Node Connectivity . 11
3.2.3 Cost Estimate . 11
3.2.4 Shortest Path Search . 11

3.3 Results . 12
3.3.1 Navigation Graphs . 12
3.3.2 Planned Paths . 13
3.3.3 Run-times . 14

4 Navigation Costs from Point Cloud 15
4.1 Motivation . 15
4.2 Methodology . 15

4.2.1 Training Data Generation . 15
4.2.2 Network Architecture and Training 16

4.3 Results . 17
4.3.1 Navigation Graph . 17
4.3.2 Planned Paths . 18
4.3.3 Real-time Global Path-Replanning 18
4.3.4 Run-times . 19

5 Conclusion and Directions 21
5.1 Conclusion . 21
5.2 Future Directions . 21

ii

Bibliography 26

A Topological Map 27

B Extras 29
B.1 Meshing Errors . 29
B.2 Useful Mesh Processing . 29
B.3 Videos . 30

Acknowledgements

To Prof. Marco Hutter – thanks for allowing me to carry out this thesis with the
RSL lab and providing infrastructure for the research.

To Marko, Lorenz, David, and Joonho – These were fun 6 months. The current
state of the thesis would not have been possible without our interesting discussions.
Thanks for continuously guiding me and giving me autonomy in pursuing my own
ideas.

To Mom, Dad, Sahil, and Ankita – Thanks for handling all my tantrums in these 6
months of the thesis.

To Philipp, Athina, Carla, Daniel – Thanks for the fun lunch breaks :) They were
very much needed for going through each day.

To Philipp, Nikolaos, Romeo – You guys are the best. I continuously look up to
you for the motivation and to strive for the best in my work.

v

Abstract

The global path planning problem focuses on finding a safe and short path for the
robot to traverse between two places in the world. A Digital-Twin of the real-world
represents most of the information required for path planning. In this thesis we
present methods that use the Digital-Twin of the environment as a prior and build
navigation graphs. These navigation graphs are used for real-time path planning
during robots’ autonomous operation. First, we show a simulation based approach
that builds a navigation graph on a large triangular mesh of an environment. We
also show planned paths of more than 100m in length, spanning indoor and out-
door terrains, and passing through multiple floors. Second, we propose a deep
learning-based navigation cost predictor from the point-cloud data. This trained
cost predictor can be used to build the navigation graphs an order of magnitude
faster than the simulation-based approach. We also demonstrate that how our
point-cloud-based navigation cost predictor helps in real-time global re-planning to
handle large static map changes.

vii

Symbols

Symbols

ψ yaw angle

α, β weights

f, g functions

Acronyms and Abbreviations

ETH Eidgenössische Technische Hochschule

CAD Computer Assisted Design

DEM Digital Elevation Model

DNN Deep Neural Network

CNN Convolution Neural Network

DGCNN Dynamic Graph Convolution Neural Network

RL Reinforcement Learning

PRM Probabilistic Roadmap

RRT Rapidly-exploring Random Tree

SLAM Simultaneoud Localization And Mapping

VIN Value Iteration Network

IRL Inverse Reinforcement Learning

IL Imitation Learning

GPU Graphics Processing Unit

MAE Mean Absolute Error

ix

Chapter 1

Introduction

B

A

Figure 1.1: Global Path Planning

Global path planning is the problem of esti-
mating a safe path for the robot to traverse
between two points in its operational world.
This is a crucial problem in autonomous de-
ployments of the robots in applications such
as last-mile delivery, search-and-rescue, or in-
spection of large industrial facilities. Solv-
ing global path planning problem allows us
to expand the autonomous capabilities of the
robots such that they require minimal human
intervention during the operation. Global
path planning becomes very crucial for highly
functional autonomous robots, such as Any-
mal [1], which can traverse through difficult
terrains like vegetation, stairs, or slippery slopes [2]. For such robots, a well defined
path allows us to exploit their true capabilities and finishing the operation in a
minimum amount of time.

To solve the global path planning problem the robot needs access to a representation
of its operational world. Past research in this direction used various environment
representations, that are either explicit such as topological graph [3, 4, 5, 6], obstacle
map [7, 8, 9], height-maps [10, 11, 12, 13, 14], or implicit, such as images of expert
path following [15, 16, 17], exploration experience in an environment [18, 19, 20,
21]. However, most of these representations do not scale to the large-scale 3D
environments, which can have multi-floor structures and span to indoor as well as
outdoor areas. Also, converting a real-world environment in any such representation
results in information loss, and paths planned using such representations can be
sub-optimal. On the other hand, a digital-twin of the environment can accurately
represent its terrain characteristics. Furthermore, such twins can be extended with
varied levels of richness such as visual, semantic, or topological, with a minimal
information loss. Digital-Twin can be represented by various 3D data structures
like point cloud, triangular mesh, or digital elevation model (DEM).

In this thesis, we explore an application of the digital-twin for building the navi-
gation graphs for the large-scale environments that allow robots to plan a global
path between any two points in the real world. This approach has shown promise in
the previous works. In PRM-RL [22] authors combine reinforcement learning-based
local-planner with a sampling-based global planner (PRM) to build a navigation
graph in a digital twin. Also, in RL-RRT [23] authors trained a reachability esti-
mator using RL policy in a simulation, and applied RRT planner in a digital-twin
using a trained reachability estimator to bias the tree growth towards promising

1

Chapter 1. Introduction 2

Acquire a
Digital
Twin

Mesh

Point Cloud

Planning Handle Map Changes

Figure 1.2: Overview

regions. In both these approaches, the authors used a simplified 2D building plan
as a digital twin. However, with the new LiDAR sensor technologies, creating de-
tailed digital twins of the environments is becoming faster and cheaper. In some
cases these digital twins can even be built autonomously by the robots [24]. With
a digital-twin stored as a point cloud or a mesh, it can represent varied 3D multi-
floor and overhanging structures along with outdoor and indoor terrains. Since
the targeted robot platforms for this thesis are legged robots such as Anymal, the
rich terrain information represented by a mesh or a point cloud allows us to find
near-optimal paths.
Hence, in this thesis, we present a method to do global path planning in the real
world using its mesh or point cloud as an input. However, these 3D models can
be large in size and they can not be stored as a whole on the Anymal platform.
We alleviate this problem by pre-building the navigation graphs using PRM global
planner in a digital twin. To establish connectivity between two nodes in a PRM
planner, we propose a different method for mesh and point-cloud-based digital twins.
First, for the triangular mesh-based digital twin, we estimate the locomotion costs
between two nodes through simulations. With a given controller for the anymal, we
propose a GPU-aided PRM building algorithm that relies on NVIDIA’s Isaac Gym
simulator [25] and builds navigation graphs for large and diverse environments with
indoor and outdoor terrains. While, for the point cloud as a digital-twin, we train a
deep neural network that predicts the locomotion cost connecting two nodes using
a point cloud as an input. Here, we estimate the navigation costs for multiple edges
in parallel by exploiting batch-processing on GPU.
These pre-built navigation graphs can be stored in the robots’ memory. While
operating in the real world we use a graph search method to find a path between any
two points within a second. However, the real-world environment is dynamic and
there can be large map changes that can completely block some paths. To handle
such adverse situations, we propose a real-time navigation graph update that relies
on the point cloud acquired by Anymal’s LiDAR sensors to find alternative paths.

1.1 Main Contributions

We present overview of the thesis in Fig. 1.2. Overall, the main contribution for
this thesis are:

1. A controller aware fast navigation graph building on a triangular-mesh with
a GPU aided simulation

3 1.2. Thesis Organization

2. A neural network-based cost predictor to estimate locomotion costs between
two points using point-cloud as an input

3. Real-time global replanning using point cloud acquired using robots LiDAR
sensor to handle large map changes

4. Demonstrating the planning capabilities of the pre-built navigation graphs in
the real-world digital twin environments spanning multiple floors. We also
demonstrate the effectiveness of our real-time global replanning algorithm to
find alternative paths in the events of paths planned using navigation graphs
are blocked

1.2 Thesis Organization

Thesis is organized in the following way

• Chapter 2: We discuss the past research in the direction of global path-
planning in robotics. We convey the limitations of some of these methods and
motivate the need for new method development for our digital-twin-based
planning.

• Chapter 3: In this chapter, we discuss navigation graph generation by sim-
ulating the Anymal robots on the triangular mesh in the Isaac Gym simulator.
We show path planning results in a simulated construction environment and
on the triangular of the HPH Building in ETH Hoenggerberg campus.

• Chapter 4: In this chapter, we introduce our method to generate a naviga-
tion graph from the Point Cloud-based digital twins. We present the training
pipeline for our navigation cost predictor and show results on the point clouds
acquired using the SLAM method on simulated environments and the real-
life large-scale point cloud of HPH Building in ETH Hoenngerberg campus.
We also show how our trained network can be used for real-time global path-
replanning in case of large map changes.

• Chapter 5: We conclude our results and propose further direction to im-
prove upon our method.

Chapter 1. Introduction 4

Chapter 2

Related Work

To plan a path in an environment the robot needs to have an understanding of the
terrain and its own capabilities. Previously, the global path planning problem has
been tackled by building topological or semantic maps, using the RL-based method
to learn the goal-directed policy, using the pre-trained navigation cost predictors,
or pre-building the navigation graphs for a specific environment. In this chapter, we
discuss the research in global path planning from these perspectives and put forward
our method as a valid alternative for large-scale, multi-terrain environments.

2.1 Topological Maps

Topological maps are built by clustering semantic or metric information of the
environments. These higher-level maps allow robots to do efficient planning through
clustered regions of the map. In his seminal work, Sebastien Thrun [26] described
an approach in which the topological maps are extracted by finding critical lines
on the Voronoi diagram on 2D occupancy grids. Since then, building topological
graphs has become much autonomous [4, 5, 27] and semantically richer [28, 29]. In
[4] authors iteratively build convex free-space clusters from the point cloud acquired
by visual slam system and extract a topological map. While Gomez et al [5] build an
autonomous mapping pipeline that connects local 3D sub-maps of different regions
through a topological graph. In this, authors classify doors, hallways, and rooms
and use this information to connect different clusters of the topology. In their
recent work, Chaplot et al [27] explore a combination of real-time topological map
building and learned policy for goal-oriented path planning. Topological maps can
also store semantic information, which allows the robot to do intelligent decision-
making. In [28], authors used multi-modal place classification of different indoor
areas such as office, hallways, meeting room, etc. to build a semantic map of an
indoor environment. Similar to this authors in [29] builds semantic maps on top of
topological maps using Sum-Product Networks (SPNs).

While topological maps allow us to do efficient planning, they often have no infor-
mation of the underlying terrain. Furthermore, creating topological maps require
us to classify regions in free space vs occupied space, which is difficult for the legged
robots, since they can step over many obstacles. Most of the work in topological
mapping focuses on indoor environments, while we are interested in planning in
indoor, outdoor, or mixed environments. Topological maps for such environments
require much of the manual effort in parameter tuning and these parameters hardly
transfer to new environments. Also, since topological maps are built on either
metric or semantic information, resulting graphs are hardly aware of the robot’s
navigation capabilities.

5

Chapter 2. Related Work 6

2.2 RL based navigation

Another way to do path-planning is to directly learn a planning policy for global
navigation. If the robot has access to the environment representation and the
target goal position, it can use a higher-level navigation policy to decide its next
waypoint along the path. Such policy can be either trained using reinforcement
learning in simulation [30, 31, 18] or through memory augmented from the real-
world experience [17, 21, 19]. In [30] authors proposes an algorithm that aggregates
goal-directed long-range value function for any given state in the map through
the iterative aggregation of short-term rewards. Further, authors of [31] extend
this idea to relatively larger environments by applying network proposed in [30]
on multiple abstract level representation of the environment. Application of RL
in a large-scale environment has been shown in [18], where the authors proposed
a policy that learns higher level navigation actions on a city scale map through
RL in Google Maps simulation. However, such end-to-end RL navigation policies
struggle with sparse rewards and hardly scales to a large-scale realistic environment
for the robots. Another direction of work in RL-based navigation tries to combine
sub-goal graphs with the local navigation policies. In such a case, the environment
is represented by the organization of acquired experience in the form of sub-goals
for the navigation agents. For example, authors in [17] used a memory graph
obtained from the experience coupled with a trained waypoint retrieval network as
a topological memory, which was used to extract next waypoint for the goal-oriented
path planning. In another very similar approach [19], authors represent observations
in a replay buffer in form of a memory graph and use the goal-conditioned value
function to find the next waypoint on this graph. In [21], authors organized images
acquired during exploration of unknown environments in form of local subgoals and
used a next waypoint predictor network to find the next sub-goal for the visual-
based navigation agent.

Another form of RL-related work in planning involves inverse RL (IRL) or imitation
learning (IL) to learn adequate navigation cost function from the expert demon-
strations. During the planning phase, this learned cost function can be used by the
navigation agent to avoid risky areas and find a safe path to the goal. For example,
authors in [15] authors used boosted Maximum Margin Planning (MMP) algorithm,
to map the features to the navigation costs, where this mapping is learned via ex-
pert planning demonstrations. A very similar approach using functional gradient
technique [16] to plan a safe path for the Unmanned Ground Vehicles (UGVs) from
the satellite images. Authors in [32] presented a deep IRL method that maps the
LiDAR observations of the autonomous car to the cost function.

These methods allow an interesting use of learning algorithms for end-to-end nav-
igation. However, they are rather limited to small-scale environments or simple
planning environments such as open outdoor where planning problems might just
consist of avoiding some obstacles. For large-scale 3D environments with multi-DOF
robots like Anymal, these methods are not yet adequate.

2.3 Learning Navigation Costs

For long-range planning of legged robots through difficult terrain, we can use nav-
igation cost estimate combined with a sampling-based planner. Navigation costs
can be estimated through typical terrain characteristics such as slope, roughness,
and steps such as in [33]. In this paper authors combined this estimated navigation
costs with RRT* [34] planner for navigation through rough terrains. Navigation
costs can also be learned for specific robot types by machine learning, where su-
pervised data are generated through simulation. In [35], authors used CNN on

7 2.4. Navigation graphs using a Digital-Twin

height-map grids to learn the navigation costs of the respective grids. Learned mo-
tion costs allow planning of hybrid driving-stepping locomotion. Guzzi et al [14]
train a navigation cost predictor using the height-map data and the labels acquired
in a self-supervised fashion and use it in a sampling-based planner for the long-range
path planning problems. However, the sampling-based planner needs to evaluate
motion costs for each edge as they are sampled, which puts their applicability for
real-time path planning in question. Bowen et al [36] alleviate this problem in which
they introduce grid-based, GPU-aided, parallel roadmap construction method that
relies on the motion cost network trained in a simulation.
These methods have been applied to complex legged robots for global path-planning
through unstructured terrains. However, they rely on height-map for learning the
motion costs. However, the 3D environments that we are interested in are multi-
floor and span indoor as well as outdoor which can have a lot of overhanging struc-
tures. Such terrains can not be represented by heightmap, and more detailed data
structures such as point cloud or triangular mesh are needed for an accurate repre-
sentation.

2.4 Navigation graphs using a Digital-Twin

If we have access to the digital twin of the environment, we can build a navigation
graph beforehand that can be used by the robot while doing real-time planning. In
one such work [37], authors first assign either a trotting or a walking controller to
each point in a point cloud by thresholding the maximum curvature in its neighbor-
hood and its normal direction. Further, the authors reconstruct the meshes of this
annotated point cloud and assign a controller to each polygon by majority voting
procedure. With these navigation meshes, authors plan a path where the robot
chooses to either walk or trot within a particular polygon. This method is purely
based on the heuristic do not necessarily focus on the learning-based controller
which does not necessarily follow any particular gait patterns.
More detailed use of digital-twin was proposed by Faust et al [22], where they
construct a probabilistic roadmap of the environment in a simulation. For the
roadmap generation, first, they train a local obstacle-avoidance policy that does
not have access to the global map. Using this local policy to connect the nearby
nodes in PRM, authors generate a navigation graph that is aware of the robot’s
controller capabilities and scale to large environments as long as we have the digital
twin. Our approach was mainly inspired by this method because it allows us to
use digital-twin effectively. However, the authors have only tested in the planner
environments with the obstacle in between and without any terrain variability. Also,
the approach was only shown for the indoor environment using a 2D building plan
as a digital twin and requires to train a local navigation policy.
On the contrary, our approach differs from this in multiple ways. First, we do not
train a local obstacle avoidance policy. We take a pre-defined control policy and rely
on our PRM graph to avoid obstacles. Second, the environment we are focusing on
has varied terrains where the robot needs to make the decisions like, which terrains
are traversable and which are not instead of just avoiding obstacles. Furthermore,
we demonstrate our approach on large-scale digital twins spanning multiple floors
and with outdoor and indoor terrains. We also show a real-time global replanning
method by modifying the edge costs of the navigation graph in real-time using the
point cloud data acquired from robots’ LiDAR sensors.

Chapter 2. Related Work 8

Chapter 3

Navigation Graphs in
Simulation

3.1 Motivation

We are interested in building navigation graphs that allow the Anymal robot to
exploit its true capabilities. For example, as shown in Fig. 1.1, for most of the
wheeled robots, the smooth path via road (in orange) will be faster, but for anymal,
the path through vegetation (in blue) can be faster given that the controller is
able to walk on such terrains. To make such decisions efficiently while planning
a path between two points in the map, the robots need to have access to a pre-
built navigation graph. These navigation graphs can be built using a digital twin
of the environment. Specifically, with the triangular mesh of the terrain, we used
NVIDIA’s Isaac Gym [25] simulator to build navigation graphs. Isaac Gym allows
to replicate the real-world physical interaction between anymal and the terrain and
simulate thousands of anymal robots in parallel on a single GPU. Authors in [38]
already demonstrated these capabilities by training a walking policy for Anymal in
Isaac Gym within minutes and transferring it to the real-world terrains. In this
chapter, we demonstrate how parallel simulation capabilities of the Isaac Gym can
be used to build terrain and controller-aware navigation graphs for the Anymal.

3.2 Methodology

We use a variant of PRM to build navigation graphs. PRM has two main advan-
tages: First is that PRM can generate the roadmap offline. While doing plan-
ning we only need to do a shortest-path search via algorithms like Dijktras, A*,
Bellman-Ford, etc. This allows for efficient path-planning in real-time. Second,
while building PRM we can exploit the parallel simulation capabilities of the Isaac
Gym. For example, authors in [36] used parallel batched-edge predictions to build
a grid-based roadmap, while we use parallel robot simulations to build PRMs for
large-scale maps. The pseudo-code for our PRM variant is shown in Alg 1

There are three main steps involved in building PRM.

3.2.1 Sampling

Usually, the mesh has a highly uneven distribution of the triangles, as a result
of different meshing techniques. First, we apply mesh decimation in the Meshlab
software [39] to reduce the number of triangles in a mesh (Fig. 3.2). This results

9

Chapter 3. Navigation Graphs in Simulation 10

Mesh Simulation Path Planning

Trained
control
policy

Navigation
Graph

Figure 3.1: Simulation based navigation cost

Algorithm 1 Parallel PRM building in Simulation

Require: ninit, nfinal, πtrained, B
1: V ← Sample(ninit) . Sample ninit nodes initially
2: E ← Connect(V , V)
3: G← (V,E)
4: while V ≤ nfinal do
5: if E ≤ B then
6: V ← V ∪Sample(n) . Sample fixed number of new nodes
7: E ← E∪Connect(n, V)
8: else if E ≥ B then
9: ebatched ←Batch(B)

10: cbatched ←Simulate(ebatched, πtrained) . Simulate using fixed policy
11: G←Update(G(V,E), cbatched)
12: end if
13: end while

in more triangles for the difficult terrains such as stairs and fewer triangles for the
flat terrains like a floor. The centroids of these triangles act as a sampling pool.

Sampling happens in two stages: First, we sample ninit nodes from the pool with
sampling probability proportional to the area of the triangle. After this, we update
the probabilities of all the nodes in the pool by node density within a fixed radius.
So, while sampling in the other stages (line 6 in Algo.1), we use these updated
probabilities to sample new nodes. The graph building process runs until a total
number of nodes in the graph reaches predefined nfinal.

As shown in Fig.3.2, the nodes in the sampling pool might lie on the vertical wall
and on the trees. While doing simulation these nodes can be automatically removed
since the robot will not be able to stand there. However, to reduce the simulation
burden we use rejection sampling to reject the nodes for which the normal of the
triangle is too far from the vertical direction.

Figure 3.2: Sampling nodes

11 3.2. Methodology

3.2.2 Node Connectivity

The second step for PRM is to establish connectivity between nearby nodes. In
PRM this is usually done by connecting all nodes within a certain radius. However,
the anymal robot has a specific footprint and it does not make sense to connect
nodes that are within its footprint. For this reason we define rmin and rmax and
connect nodes which are farther than rmin but within rmax radius.

3.2.3 Cost Estimate

Each edge in our variant of PRM has a cost associated with it. While planning robot
uses this cost within a graph search algorithm to find the shortest path between
two nodes. In our case, we monitor 4 different costs for each edge: success rate,
distance, time, and energy consumption.

Figure 3.3: Parallel Simulation

We model our graph G as a directed
roadmap. To estimate the cost for any di-
rected edge, we do s simulations of anymal
traversing that particular edge. For each
simulation, the robot starts from the start-
ing node with yaw orientation facing the tar-
get node and traverses along the edge us-
ing a P-control for the linear and angular
velocity commands (Fig.3.3). We also add
white noise to the initial pose and orienta-
tion of the anymal such that the cost estima-
tions are robust. Furthermore, anymal uses a
pre-trained controller which generates actua-
tion commands from velocity commands and
other observations. These actuation com-
mands are converted into torques using ei-
ther a PD-controller or a trained actuator
network.
The whole simulation process happens in Isaac Gym, which allows seamless integra-
tion between physical simulation of the robots and actuation commands prediction
using RL-trained policy [25]. To use parallel processing of the GPU in Isaac Gym,
we batch B number of edges (ebatched) and evaluate these costs in parallel by sim-
ulating the robots as described above (video: B.3). After s anymal simulation
for each edge, the four different cost metrics are averaged across iterations. After
batched cost estimates (cbatched), we add them into underlying graph G(V,E).

3.2.4 Shortest Path Search

Pre-built navigation graphs help anymal to plan a path while traversing the real
world. To do this, however, we need to assign a single cost to each edge. For the
purpose of this thesis, we focus on a cost which is a combination of traversal success
rate (i.e. safety) and the distance.

ce = α ∗ f(csafety) + β ∗ g(cdistance) (3.1)

where, f, g are real-valued functions and α, β are the relative weights.
To plan a path between any two positions, we first prune the whole graph based on
a certain safety threshold. We find the closest nodes on the navigation graph for
the requested positions in the real world and do the shortest path search using the
Bellman-ford algorithm on the pruned graph. Only if the path search is unsuccessful,
we further decrease the safety threshold for the pruning and redo the path search.

Chapter 3. Navigation Graphs in Simulation 12

Results (Dense navigation graphs)

30m x 30m
nodes= 3k, edges = 35k

100m x 100m
nodes = 10k, edges = 120k

0.0

0.5

1.0

14

Figure 3.4: Navigation graphs for construction office environment (top) and
ETH HPH building (bottom)

This two-stage method allows us to find a safer path always and in case of no safe
path is available, the user can be instructed about possible places where the robot
might fail.

3.3 Results

We show the results of simulation-based navigation graphs for indoor office con-
struction environment proposed in [40] as well as the real-world mesh acquired
of the HPH building in the ETH Hoenggerberg campus. The office construction
environment consists of a narrow passage, multiple rooms, and different types of
obstacles. This indoor environment has a size of around 25m x 40m. On the other
hand, the real-world mesh of the HPH building was acquired using hand-held laser
scanners. This scanned environment is 100m x 100m in size and consists of multiple
floors, stairs, indoor halls, and outdoor terrains with various roughness and slopes.
This environment provides a realistic condition for anymal operations.

3.3.1 Navigation Graphs

In Fig. 3.4, we present the navigation graph built using the method described in
the previous section. The navigation graph for the office consists of 2k nodes and
20k edges, while the navigation graph for the HPH building consists of 10k nodes
with 120k edges. Each edge color represents a probability of successful traversal
along that edge for the Anymal robot, and the probability scale is shown in the
right of Fig. 3.4. As we can see in the office environment, the edges only pass inside
the room through the open doors, as well as the robot has some successful edges
passing through the narrow corridor. For the HPH mesh, all outdoor flat ground
is traversable with very high probability. Further, the robot also has edges passing
through the door going inside the building and going down or up the stairs. Also,
we can see that node density is much higher for difficult terrains, such as the stairs,

13 3.3. Results

Figure 3.5: Planned Paths for ETH HPH building

Blind Control Policy Perceptive Control Policy

Figure 3.6: Paths going inside and outside the building using a Blind (left) and
Perceptive (right) policy

rock garden in the left bottom, and vegetation. The higher density in the difficult
terrains ensures that we find a safer path through such regions.

3.3.2 Planned Paths

With access to these navigation graphs, the robot can plan a path between any two
locations in the real world. In Fig. 3.5, we show multiple paths planned for the
ETH-HPH building. On the left of Fig. 3.5 is the real image of ETH-HPH building
from Google Earth, and on the right is the mesh of the same area with the roof
section removed for better visibility. Starting points for the paths are shown in the
circles with the goal positions shown with the stars. These planned paths are ∼100m
in length and pass through difficult terrains: e.g., the green path finds a safer path
to get out of the rock garden, all paths pass through the open door and traverse
through the stairs to a different floor. Also, assuming that the environment is static
these planned paths can be reliably traversed using a P-controller for robots’ linear
and yaw velocity commands (video: B.3).

Since the simulation uses pre-trained policy as an input (Alg. 1), the paths planned
using simulation-based navigation graphs are aware of the robot’s control policy.
For example, in Fig.3.6, we show the paths planned using the policy that does
not use height information during the simulation (left), and the policy that uses
the heights (right). With the blind policy, while going inside the building anymal
chooses a path where it doesn’t need to step up (green), since the blind policy
usually fails in such a scenario. However, while going out of the building anymal
can step down and hence chooses a shorter path (blue). On the other hand, with
the perceptive policy, the anymal can step up and step down the stairs, and hence
both the paths are relatively the same.

Chapter 3. Navigation Graphs in Simulation 14

3.3.3 Run-times

The run-time for the graph building is proportional to the number of edges in the
graph and scales linearly with the higher GPU memory. For example, the run-time
for ETH-HPH mesh with 120k edges is 6h30m on NVIDIA-RTX-2060Ti GPU with
11GiB memory. However, the graph building process happens offline and needs to
be repeated only if there are large environment changes. During the online phase
only the navigation graph needs to be stored in the robot’s memory.
The path-planning time is proportional to the edge density in the graph and imple-
mentation of the shortest-path search algorithm. In this thesis, we used Bellman-
Ford algorithm from the networkx python package [41] for path-planning. The
average run-time across 50 random path search on ETH-HPH navigation graph was
0.72s.

Chapter 4

Navigation Costs from Point
Cloud

4.1 Motivation

In Chapter 3, we built navigation graphs by simulating the robots to estimate
traversal cost between any two nodes in PRM. However, for the simulation to be
reliable the meshing needs to accurately represent all the terrains and need to
have continuous surface topology without holes or bumps. However, creating such
accurate meshing of the real-world environment is difficult and the resulting mesh
usually has some noise.
On the other hand, the underlying point cloud which is used for the meshing is easy
to acquire. Point Cloud of the real-world environment can be either acquired using
hand-held LiDAR scanners or by manually operating the robots in the environment
and building a map. Furthermore, point clouds can be easily extended by merging
with the point clouds acquired during different times. This allows us to continuously
extend the environment by remapping and adding new areas. Also, the point cloud
information is available in real-time for anymal robots via their LiDAR scanners.
This point cloud information can be used to find alternative paths in case of large
map changes (e.g. blocking of one entrance to the building, road blocked due to
construction). Hence, using point cloud to estimate navigation costs is a good
alternative to simulation-based costs. In this chapter, we introduce a supervised
training method that predicts the navigation costs from the input point cloud.

4.2 Methodology

We use the same method for building PRM as discussed in Chapter 3, with the
only difference being in step-3 (3.2.3), where we use a deep neural network (DNN)
to predict navigation costs using point-cloud instead of doing a simulation on the
mesh. In this section, we describe the training data generation pipeline and the
architecture used for training the navigation cost predictor.

4.2.1 Training Data Generation

To predict the navigation costs for an edge in PRM, we use the point cloud sample
along the edge as an input to the network. To generate input data and ground truth
samples, we rely on simulated terrains. We simulate the anymal robots in these
terrains and estimate the safety (success rate) for anymal traversability between
two points on the map. The terrains used in simulation and corresponding costs

15

Chapter 4. Navigation Costs from Point Cloud 16

Figure 4.1: Simulated terrain (left) and training cost labels (right)

for different traversal paths are shown in Fig. 4.1. Our simulation environment
consists of varied terrains, such as sloped, rough surfaces, steps of different sizes,
and narrow corridors. Moreover, it also includes surface and overhanging obstacles
of various sizes and shapes. This detailed environment allows us the navigation cost
predictor to learn diverse scenarios the robots need to traverse.

Figure 4.2: Training Sample

Each edge in Fig. 4.1, represents one sample
for the network. To pass the network enough
information about the underlying terrain of
an edge, we fit a rectangular box with the
height and width proportional to anymal’s
footprint and oriented along the length of the
edge as shown in Fig. 4.2. All the points
enclosed within this box consist of a sample
that is passed to the neural network for cost
prediction. We use the box with the cross-
section of 2m x 2m, hence the sampled point
cloud within this box might contain over-
hanging obstacles, which the robot can pass
through.

4.2.2 Network Architecture and Training

To learn a traversability from the point cloud sample, we need specialized archi-
tectures that operate on an unordered point-set. The previous work on applying
deep learning to unordered point-set data mostly focuses on shape classification
and segmentation [42, 43, 44, 45]. We exploit architectures developed for the point
cloud classification purposes to estimate anymal’s traversability. Specifically, we
explore PointNet++ [42] and Dynamic Graph CNN (DGCNN)[43]. PointNet++ is
a hierarchical neural network, which extracts the point cloud features at multiple
levels. Through learning in the metric space this network is able to learn local fea-
tures of the point cloud with increasing contextual scales. While DGCNN applies
graph convolution to the unordered point-set learning problem. In this work, au-
thors dynamically build graphs at different feature levels by exploiting feature space
proximity. Graph convolution on these dynamically built graphs allows learning not
just in a metric space but also in the feature space, and the network is able to learn
local topology as well as a semantic understanding of the point-set. In our work,
we apply DGCNN [43] for the navigation cost prediction.

17 4.3. Results

Built with Simulation (in 6.5 hours) Predicted with DGCNN (in 35 min)

Figure 4.3: Comparison of Costs

To train DGCNN we use the data-generated using procedure described in Section
4.2.1. For each point cloud input, we first randomly sample 1048 points and pass
them to the network. DGCNN is trained with k = 60 nearest neighbors and with an
embedding dimension of 512. The output of the network is the success probability of
a particular edge, which is regressed using a binary-cross-entropy (BCE) loss. The
network is trained with a batch size of 16, using Adam optimizer with 0.01 learning
rate. These hyperparameters for training are chosen by 70-30 train-validation split
of the simulated data.

4.3 Results

In this section, we present the navigation graphs built for the ETH-HPH building,
but we only use the point cloud of the building. To sample the point cloud from
the mesh we use Poisson sampling to uniformly sample points on the mesh. Fur-
thermore, we add a small noise to the resulting point cloud to replicate realistic
point cloud acquisition. To acquire the point cloud for the office construction en-
vironment, we import this environment in Gazebo along with a full stack of the
Anymal-C [1] robot. We map the environment using the onboard LiDAR-based
mapping pipeline of the robot. Hence, this acquired point cloud has noise that a
typical point cloud acquired by the robot will have.

4.3.1 Navigation Graph

In Fig. 4.3, we present the navigation graph using the costs predicted by DGCNN
and compare it with the costs estimated by the simulation. For the better visibility
of both the graphs, we only show the edges with a success probability greater
than 0.3. Costs predicted by the DGCNN correspond well with the simulation-
based costs, as can be seen by comparing both graphs. It is important to note
that while training DGCNN, we did not use any data from this environment and
the network was only trained using the environment shown in Fig. 4.1. Hence,
our training procedure shows great generalization capabilities to the new obstacle
types. Furthermore, our network handles the noise in the mesh well, such as in
the rock garden where we predict more successful edges over the holes in the mesh,
while simulation fails there because the robot can not walk through the holes.
Furthermore, the navigation graphs can be built order of magnitude faster with
the point-cloud-based navigation cost predictor. The simulation of the costs took

Chapter 4. Navigation Costs from Point Cloud 18

Path planned based on simulation costs Path planned using costs predicted by DGCNN

Figure 4.4: Planned Paths comparison for ETH-HPH building (top) and office
construction environment (bottom)

around 6h30m on NVIDIA RTX 2060Ti GPU with 11GiB of memory. While all
navigation costs are predicted within 35m on the same GPU. The mean absolute
error (MAE) rate of navigation costs compared with the simulation-based cost is
7.45% on the scale of 100.

4.3.2 Planned Paths

We compare the path planning using the simulation-based navigation costs and
point cloud-based navigation costs in Fig. 4.4. For the ETH-HPH environment,
planned paths using both methods are almost identical. Since the point cloud for
HPH building was acquire by sampling on the mesh, it did not have too much noise
and hence the planned paths using predicted navigation costs compare well with
the paths planned using simulation-based costs (Fig. 4.3). However, for the office
construction environment, the point cloud was acquired by manually operating the
robot in this environment in Gazebo, and acquiring the point cloud by onboard
mapping pipeline. Since this generated point cloud is noisier, the planned paths
differ a bit. For example, the red path planned in simulation-based graph finds a
safer path through under the table, such that it can avoid the table legs. While in
the case of point cloud the planned path pass too close to the wall. Nevertheless,
the simulation of the Anymal in Gazebo shows that the robot is able to follow both
paths successfully.

4.3.3 Real-time Global Path-Replanning

The pre-built navigation graphs allow efficient planning, but they are usually static.
The paths planned using such navigation graphs are fixed. However, the real-world
environment may observe large map changes (for example one path from the stair is
blocked, or a door entry to the room is closed), in which case the robot might need
to find an alternative path. It is important to make a distinction between large map
changes and static/dynamic obstacles. Static or dynamic obstacles in the paths can
be avoided by taking a small detour along the path. Such obstacle avoidance can

19 4.3. Results

Figure 4.5: Real-time global replanning using point cloud information

be learned in the simulation and be applied to real-world scenarios [46]. However,
we are focused on large static changes, where one path to the goal is completely
blocked and the robot needs to do replanning through a completely different path.
In this section, we simulate one such scenario of global path-re-planning.
In Fig. 4.5 (top-left) shows a path planned through the stairs using a pre-built
navigation graph (Fig. 4.5 bottom-left). In one scenario, the entry to the stairs
is completely blocked by a big obstacle in the path, and the robot needs to find
an alternative path. Such cases can not be handled by local obstacle avoidance
planners, since the robot needs to have access to the global graph to plan an al-
ternative route. Here, we propose the use of a point-cloud-based navigation cost-
predictor. For example, the point cloud in the robot’s vicinity can be acquired by
onboard LiDAR sensors (bottom-middle). We use this point cloud to re-evaluate
all the edges around the obstacle and the navigation graph is updated with the new
costs (bottom-right). With this updated navigation graph the robot replans a path
through different stairs (top-right).
We also show the real-time replanning experiment for the office construction envi-
ronment in Gazebo in this video B.3.

4.3.4 Run-times

The point-cloud-based cost predictor allows us to build navigation graphs 10x faster
than the simulation. On the NVIDIA-RTX-2060Ti GPU with 11GiB of memory,
we are able to do 96 edge cost predictions in a second on an average. These parallel
predictions can be increased with higher GPU memory and by increasing the batch
size for the prediction. For the global path-replanning, we re-evaluate the costs of
all the edges around the current robot location. The overhead of acquiring point-
cloud data, processing it to pass through the network, and prediction in total adds
3s at each way-point for the global replanning.

Chapter 4. Navigation Costs from Point Cloud 20

Chapter 5

Conclusion and Directions

5.1 Conclusion

In this thesis, we proposed two methods for building navigation graphs using either
a mesh or a point-cloud-based digital twin. We demonstrated a PRM building
algorithm that relies on parallel simulation of the Anymal robots in Isaac Gym
and builds graphs for multi-floor environments within hours. With these pre-built
graphs, the Anymal can plan a path between any two points within a second.
Furthermore, the simulation allows us to discover different navigation costs and
we can plan a path for a specific application (e.g. minimum time vs maximum
safety). We also proposed a training pipeline for the point-cloud-based navigation
cost predictor. With the navigation cost predictor, we can build graphs 10 times
faster than the simulation-based approach. Furthermore, it allows us to do real-time
global replanning using the point cloud to handle large, static map changes. With
the Anymal robot experiments, we showed planning capabilities of our methods in
simulation as well as real-world digital-twin.

5.2 Future Directions

While building navigation graphs by simulating Anymal robots on a mesh, we need
to assign a friction coefficient to each triangle. Real-world terrains such as vegeta-
tion, gravels, slopes can have varied friction properties. Assigning the right friction
values to a different area in the mesh can lead to better navigation graphs and close-
to-optimal path planning. Such terrain properties can be learned via self-supervised
learning by acquiring the real-world experience for the Anymal’s traversals[47]. Fur-
thermore, the paths planned on the pre-built navigation graphs are not necessarily
smooth as can be seen in Fig 4.4. While traversing such paths robot might have to
rotate many times. Path smoothing methods such as one proposed in [36], can help
in reducing unnecessary rotation of the Anymal while following a path.
We find that to train out point cloud-based cost predictor we need diverse simulated
terrain and obstacles data. With better training data generation and improved
architectures, we can increase the confidence in the predictions of the navigation
costs. Also, the global replanning adds 3s overhead at each waypoint. This can
be reduced by look-ahead replanning, where we update the future edge cost while
traversing the previous edge.

21

Chapter 5. Conclusion and Directions 22

Bibliography

[1] M. Hutter, C. Gehring, A. Lauber, F. Gunther, C. D. Bellicoso, V. Tsounis,
P. Fankhauser, R. Diethelm, S. Bachmann, M. Blösch et al., “Anymal-toward
legged robots for harsh environments,” Advanced Robotics, vol. 31, no. 17, pp.
918–931, 2017.

[2] J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter, “Learning
quadrupedal locomotion over challenging terrain,” Science robotics, vol. 5,
no. 47, 2020.

[3] G. Singh and J. Košecká, “Acquiring semantics induced topology in urban
environments,” in 2012 IEEE International Conference on Robotics and Au-
tomation. IEEE, 2012, pp. 3509–3514.

[4] F. Blochliger, M. Fehr, M. Dymczyk, T. Schneider, and R. Siegwart,
“Topomap: Topological mapping and navigation based on visual slam maps,”
in 2018 IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2018, pp. 3818–3825.

[5] C. Gomez, M. Fehr, A. Millane, A. C. Hernandez, J. Nieto, R. Barber, and
R. Siegwart, “Hybrid topological and 3d dense mapping through autonomous
exploration for large indoor environments,” in 2020 IEEE International Con-
ference on Robotics and Automation (ICRA). IEEE, 2020, pp. 9673–9679.

[6] S. Niijima, R. Umeyama, Y. Sasaki, and H. Mizoguchi, “City-scale grid-
topological hybrid maps for autonomous mobile robot navigation in urban
area,” in 2020 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2020, pp. 2065–2071.

[7] A. C. Murtra, E. Trulls, O. Sandoval, J. Pérez-Ibarz, D. Vasquez, J. M. Mirats-
Tur, M. Ferrer, and A. Sanfeliu, “Autonomous navigation for urban service
mobile robots,” in 2010 IEEE/RSJ International Conference on Intelligent
Robots and Systems. IEEE, 2010, pp. 4141–4146.

[8] F. Ruetz, E. Hernández, M. Pfeiffer, H. Oleynikova, M. Cox, T. Lowe, and
P. Borges, “Ovpc mesh: 3d free-space representation for local ground vehicle
navigation,” in 2019 International Conference on Robotics and Automation
(ICRA). IEEE, 2019, pp. 8648–8654.

[9] R. Buchanan, L. Wellhausen, M. Bjelonic, T. Bandyopadhyay, N. Kottege, and
M. Hutter, “Perceptive whole-body planning for multilegged robots in confined
spaces,” Journal of Field Robotics, vol. 38, no. 1, pp. 68–84, 2021.

[10] R. Triebel, P. Pfaff, and W. Burgard, “Multi-level surface maps for outdoor
terrain mapping and loop closing,” in 2006 IEEE/RSJ international conference
on intelligent robots and systems. IEEE, 2006, pp. 2276–2282.

23

Bibliography 24

[11] P. Karkowski and M. Bennewitz, “Real-time footstep planning using a geo-
metric approach,” in 2016 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2016, pp. 1782–1787.

[12] R. O. Chavez-Garcia, J. Guzzi, L. M. Gambardella, and A. Giusti, “Learn-
ing ground traversability from simulations,” IEEE Robotics and Automation
letters, vol. 3, no. 3, pp. 1695–1702, 2018.

[13] L. Wellhausen and M. Hutter, “Rough terrain navigation for legged robots
using reachability planning and template learning,” in 2021 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS 2021), 2021.

[14] J. Guzzi, R. O. Chavez-Garcia, M. Nava, L. M. Gambardella, and A. Giusti,
“Path planning with local motion estimations,” IEEE Robotics and Automation
Letters, vol. 5, no. 2, pp. 2586–2593, 2020.

[15] N. Ratliff, D. Bradley, J. A. Bagnell, and J. Chestnutt, “Boosting structured
prediction for imitation learning,” 2007.

[16] N. D. Ratliff, D. Silver, and J. A. Bagnell, “Learning to search: Functional
gradient techniques for imitation learning,” Autonomous Robots, vol. 27, no. 1,
pp. 25–53, 2009.

[17] N. Savinov, A. Dosovitskiy, and V. Koltun, “Semi-parametric topological mem-
ory for navigation,” arXiv preprint arXiv:1803.00653, 2018.

[18] P. Mirowski, M. Grimes, M. Malinowski, K. M. Hermann, K. Anderson,
D. Teplyashin, K. Simonyan, A. Zisserman, R. Hadsell et al., “Learning to
navigate in cities without a map,” Advances in Neural Information Processing
Systems, vol. 31, pp. 2419–2430, 2018.

[19] B. Eysenbach, R. Salakhutdinov, and S. Levine, “Search on the replay
buffer: Bridging planning and reinforcement learning,” arXiv preprint
arXiv:1906.05253, 2019.

[20] X. Meng, N. Ratliff, Y. Xiang, and D. Fox, “Scaling local control to large-scale
topological navigation,” in 2020 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 2020, pp. 672–678.

[21] D. Shah, B. Eysenbach, G. Kahn, N. Rhinehart, and S. Levine, “Ving: Learning
open-world navigation with visual goals,” arXiv preprint arXiv:2012.09812,
2020.

[22] A. Faust, K. Oslund, O. Ramirez, A. Francis, L. Tapia, M. Fiser, and J. David-
son, “Prm-rl: Long-range robotic navigation tasks by combining reinforcement
learning and sampling-based planning,” in 2018 IEEE International Confer-
ence on Robotics and Automation (ICRA). IEEE, 2018, pp. 5113–5120.

[23] H.-T. L. Chiang, J. Hsu, M. Fiser, L. Tapia, and A. Faust, “Rl-rrt: Kinody-
namic motion planning via learning reachability estimators from rl policies,”
IEEE Robotics and Automation Letters, vol. 4, no. 4, pp. 4298–4305, 2019.

[24] “skydio 3d scan,” https://www.skydio.com/3d-scan, 2021.

[25] V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Macklin,
D. Hoeller, N. Rudin, A. Allshire, A. Handa et al., “Isaac gym: High per-
formance gpu-based physics simulation for robot learning,” arXiv preprint
arXiv:2108.10470, 2021.

https://www.skydio.com/3d-scan

25 Bibliography

[26] S. Thrun, “Learning metric-topological maps for indoor mobile robot naviga-
tion,” Artificial Intelligence, vol. 99, no. 1, pp. 21–71, 1998.

[27] D. S. Chaplot, R. Salakhutdinov, A. Gupta, and S. Gupta, “Neural topological
slam for visual navigation,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2020, pp. 12 875–12 884.

[28] A. Pronobis, O. Martinez Mozos, B. Caputo, and P. Jensfelt, “Multi-modal
semantic place classification,” The International Journal of Robotics Research,
vol. 29, no. 2-3, pp. 298–320, 2010.

[29] K. Zheng, A. Pronobis, and R. Rao, “Learning graph-structured sum-product
networks for probabilistic semantic maps,” in Proceedings of the AAAI Con-
ference on Artificial Intelligence, vol. 32, no. 1, 2018.

[30] A. Tamar, Y. Wu, G. Thomas, S. Levine, and P. Abbeel, “Value iteration
networks,” arXiv preprint arXiv:1602.02867, 2016.

[31] D. Schleich, T. Klamt, and S. Behnke, “Value iteration networks on multiple
levels of abstraction,” arXiv preprint arXiv:1905.11068, 2019.

[32] M. Wulfmeier, D. Rao, D. Z. Wang, P. Ondruska, and I. Posner, “Large-scale
cost function learning for path planning using deep inverse reinforcement learn-
ing,” The International Journal of Robotics Research, vol. 36, no. 10, pp. 1073–
1087, 2017.

[33] M. Wermelinger, P. Fankhauser, R. Diethelm, P. Krüsi, R. Siegwart, and
M. Hutter, “Navigation planning for legged robots in challenging terrain,” in
2016 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2016, pp. 1184–1189.

[34] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal motion
planning,” The international journal of robotics research, vol. 30, no. 7, pp.
846–894, 2011.

[35] T. Klamt and S. Behnke, “Towards learning abstract representations for lo-
comotion planning in high-dimensional state spaces,” in 2019 International
Conference on Robotics and Automation (ICRA). IEEE, 2019, pp. 922–928.

[36] B. Yang, L. Wellhausen, T. Miki, M. Liu, and M. Hutter, “Real-time opti-
mal navigation planning using learned motion costs,” in IEEE International
Conference on Robotics and Automation (ICRA 2021), 2021, p. 699.

[37] M. Brandao, O. B. Aladag, and I. Havoutis, “Gaitmesh: controller-aware nav-
igation meshes for long-range legged locomotion planning in multi-layered en-
vironments,” IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 3596–
3603, 2020.

[38] N. Rudin, D. Hoeller, P. Reist, and M. Hutter, “Learning to walk in
minutes using massively parallel deep reinforcement learning,” in 5th Annual
Conference on Robot Learning, 2021.

[39] P. Cignoni, M. Callieri, M. Corsini, M. Dellepiane, F. Ganovelli, and
G. Ranzuglia, “MeshLab: an Open-Source Mesh Processing Tool,” in Euro-
graphics Italian Chapter Conference, V. Scarano, R. D. Chiara, and U. Erra,
Eds. The Eurographics Association, 2008.

[40] “Clearpath robotics gazebo worlds,” https://github.com/clearpathrobotics/
cpr gazebo, 2020.

https://github.com/clearpathrobotics/cpr_gazebo
https://github.com/clearpathrobotics/cpr_gazebo

Bibliography 26

[41] “Netowrkx,” https://github.com/networkx/networkx, 2004.

[42] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “Pointnet++: Deep hierarchical fea-
ture learning on point sets in a metric space,” arXiv preprint arXiv:1706.02413,
2017.

[43] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M. Solomon,
“Dynamic graph cnn for learning on point clouds,” Acm Transactions On
Graphics (tog), vol. 38, no. 5, pp. 1–12, 2019.

[44] H. Thomas, C. R. Qi, J.-E. Deschaud, B. Marcotegui, F. Goulette, and L. J.
Guibas, “Kpconv: Flexible and deformable convolution for point clouds,” in
Proceedings of the IEEE/CVF International Conference on Computer Vision,
2019, pp. 6411–6420.

[45] N. Sharp, S. Attaiki, K. Crane, and M. Ovsjanikov, “Diffusion is all you need
for learning on surfaces,” arXiv preprint arXiv:2012.00888, 2020.

[46] D. Hoeller, L. Wellhausen, F. Farshidian, and M. Hutter, “Learning a state
representation and navigation in cluttered and dynamic environments,” IEEE
Robotics and Automation Letters, vol. 6, no. 3, pp. 5081–5088, 2021.

[47] L. Wellhausen, A. Dosovitskiy, R. Ranftl, K. Walas, C. Cadena, and M. Hutter,
“Where should i walk? predicting terrain properties from images via self-
supervised learning,” IEEE Robotics and Automation Letters, vol. 4, no. 2, pp.
1509–1516, 2019.

[48] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Ma-
chine learning in Python,” Journal of Machine Learning Research, vol. 12, pp.
2825–2830, 2011.

https://github.com/networkx/networkx

Appendix A

Topological Map

At the very beginning of the thesis, we attempted to do global navigation via topo-
logical maps for the indoor and outdoor environment. In this section, we described
our approach for topological mapping. For topological map building, we received
the point clouds for one outdoor building and one indoor floor. We followed these
steps.

• To build a topological map means the clustering of the regions. For clustering,
we first need to identify which points to cluster. For our experiment, we first
extracted the ground by fitting multiple planes with +Z axis normal to the
point cloud data and chose the ones that have fitted points above a certain
threshold. Hence, we only take care of the multi-floor environments through
multiple plane fittings.

• Usually, the ground points are very large in number, and clustering of all such
points can be slower. Hence, we first downsample the ground points and use
them as the set of locations we need to cluster.

• For clustering we first extracted the features of the selected location. We use
points XYZ position, principal components of the visible points from each
location, and RGB values.

• For clustering, we attempted multiple algorithms, such as KMeans, DBSCAN,
Region Growing [48]. We found the region growing clustering to be optimal.
We had to hand-tune the parameters of the algorithm and the number of
clusters by inspection of the extracted clusters.

In Fig. A.1, we show the topological clusters extracted for the outdoor building and
the indoor floor. As we can see the clustered points do make sense in some cases,
however sometimes the clustering merges points that are at different heights, and
finding good clusters which can be used by the robots for navigation requires big
effort in parameter tuning. Also, to start the clustering process, we need to first
identify the ground, which is a difficult process in itself if we do not have good prior
of the ground regions for a specific environment. Furthermore, extracted clusters
do not take into account the robots’ capabilities, and they are the same for wheeled
robots as well as legged robots such as anymal. For controller-aware navigation
graphs, topological maps are rather limited.

27

Appendix A. Topological Map 28

Outdoor Indoor

Figure A.1: Topological clusters extracted for the outdoor (left) and indoor (right)
environments

Appendix B

Extras

B.1 Meshing Errors

Noise in the meshes results in wrong simulation costs. We found these noises (Fig.
B.1) in the ETH-HPH mesh and going forward these need to be addressed to build
reliable navigation graphs.

Holes in the stairs

Holes in the ground
(vegetation) Glasses of the building are not meshed

Figure B.1: Noise in the meshes

B.2 Useful Mesh Processing

There are many functionalities in the meshlab that have been used throughout the
thesis for mesh processing.

• To merge multiple meshes
Import into Meshlab −→ Filters −→ Mesh Layer −→ Flatten Visible Layers

• To reduce the number of triangles
Import into Meshlab −→ Filters −→ Remeshing −→ Quadratic Edge Collapse

29

Appendix B. Extras 30

• To increase the number of triangles
Import into Meshlab −→ Filters −→ Remeshing −→ Midpoint Sub-division

• Sampling points on Mesh
Import into Meshlab −→ Filters −→ Sampling −→ Poisson-Disk Sampling

B.3 Videos

Here are some sample videos of our methods

• Anymals building graph in Isaac Gym
https://youtu.be/jlqAoUXQBqw

• Anymal following a path
https://youtu.be/rn2AD-OPwTk

• Anymal replanning in Office construction environment in Gazebo
https://youtu.be/6fgLKVx3HPA

https://youtu.be/jlqAoUXQBqw
https://youtu.be/rn2AD-OPwTk
https://youtu.be/6fgLKVx3HPA

31 B.3. Videos

Declaration of Originality

I hereby declare that the written work I have submitted entitled

Global Path Planning in a Digital-Twin

is original work which I alone have authored and which is written in my own words.1

Author(s)

Ajaykumar Unagar

Student supervisor(s)

Marko Bjelonic
Lorenz Wellhausen
David Hoeller
Joonho Lee

Supervising lecturer

Marco Hutter

With the signature I declare that I have been informed regarding normal academic
citation rules and that I have read and understood the information on ‘Citation eti-
quette’ (https://www.ethz.ch/content/dam/ethz/main/education/rechtliches-abschluesse/
leistungskontrollen/plagiarism-citationetiquette.pdf). The citation con-
ventions usual to the discipline in question here have been respected.

The above written work may be tested electronically for plagiarism.

Place and date Signature

1Co-authored work: The signatures of all authors are required. Each signature attests to the
originality of the entire piece of written work in its final form.

https://www.ethz.ch/content/dam/ethz/main/education/rechtliches-abschluesse/leistungskontrollen/plagiarism-citationetiquette.pdf
https://www.ethz.ch/content/dam/ethz/main/education/rechtliches-abschluesse/leistungskontrollen/plagiarism-citationetiquette.pdf

	Acknowledgements
	Abstract
	Symbols
	Introduction
	Main Contributions
	Thesis Organization

	Related Work
	Topological Maps
	RL based navigation
	Learning Navigation Costs
	Navigation graphs using a Digital-Twin

	Navigation Graphs in Simulation
	Motivation
	Methodology
	Sampling
	Node Connectivity
	Cost Estimate
	Shortest Path Search

	Results
	Navigation Graphs
	Planned Paths
	Run-times

	Navigation Costs from Point Cloud
	Motivation
	Methodology
	Training Data Generation
	Network Architecture and Training

	Results
	Navigation Graph
	Planned Paths
	Real-time Global Path-Replanning
	Run-times

	Conclusion and Directions
	Conclusion
	Future Directions

	Bibliography
	Topological Map
	Extras
	Meshing Errors
	Useful Mesh Processing
	Videos

