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Simulating a nuclear reactor is expensive!

• Seven dimensions: space (3), energy (1) angle (2), time (1)
• Low-error → computationally-intensive methods

Figure 1: OpenMC model of the ATR Reactor, from [4]. The blue cross shape contains
the fuel. The Pink circles on the otuside are control drums.
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Fission Chain Reaction

Figure 2: Diagram of a fission chain reaction, from [1].
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Depletion

Concentration of nuclides in a reactor
are constantly changing due to
fission, neutron capture, and decay.

Why do we care?
• Strong coupling between

depletion and transport
• Neutron poisions → affects

neutron economy
• ↓ U, ↑ Pu → Change in

fission neutron energy
distribution

• Fission product decay heat →
affects fuel reprocessing/disposal

Figure 3: Buildup of plutionium isotopes
with a burnup for a typical LWR fuel
composition. Reproduced from Figure
6-2 in [6].
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Depletion makes everything more expensive

• Depletion calculation track
thousands of nuclides

• Nonuniform neutron density in
reactor → each fuel element is a
unique material (recall the ATR,
Fig 1)

• Axial discretization can add
additional orders of magnitude
of complexity

Figure 4: Table of Nuclides. Z on y-axis,
N on x-axis. From [10]
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Figure 5: Example of the complicated
web of production and transmutation
reactions. From [3]
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Modeling Depletion

Governing Equation:

dNi

dt
=

n∑
j=1

Production of i from j︷ ︸︸ ︷
Nj(t)

∫ ∞

0

fj→i (E)σj(E)ϕ(E , t)dE +
n∑

j=1

Decay of j into i︷ ︸︸ ︷
Nj(t)λj→i

− Ni (t)

∫ ∞

0

σi (E)ϕ(E , t)dE︸ ︷︷ ︸
Consumption of i

−Ni (t)
n∑

j=1

λi→j︸ ︷︷ ︸
Decay of i

,

(1)

where

Ni (t) ≡ density of nuclide i at time t [cm−3]

σi (E) ≡ transmutation cross section for nuclide i at energy E and time t [cm2]

ϕ(E , t) ≡ neutron flux at energy E and time t [n cm−2 s−1]

fj→i (E) ≡ fraction of transmutation reactions in nuclide j that produce nuclide i

λj→i ≡ decay constant for decay modes in nuclide j that produce nuclide i [s−1]

n ≡ total number of nuclides.
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Neutron transport software of choice: OpenMC

• Monte carlo neutron particle transport code [9]

• Open source, community developed!!

• C++ core: neutron transport

• Python API: creating input, processing output, depletion module

• Depletion dependencies: NumPy (arrays), H5Py (output file processing),
Matplotlib (plotting), SciPy (sparse matrices), uncertainties (uncertainty
propogation)
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Depletion algorithm

What do we need to solve Equation 1?

• Ni (0), n → Given by the problem’s initial conditions (e.g. Westinghouse
PWR using 5% enriched fuel at BOL)

• σi (E ), fj→i , λj→i → Material properties (data stored in memory for speed)

• ϕ(E , t) → Concentration of neutrons in the reactor; requires a neutron
transport simulation

• t → time steppers (called integrators in the depletion module)

Simplified Algorithm

1 Run an OpenMC simulation to obtain ϕ(E , th)

2 Plug in ϕ(E , th), Ni (th), σi (E), fj→i , λj→i to obtain production and
consumption terms in Equation 1

3 Solve Equation 1 for Ni (th+1) (Chebyshev rational approximation method
[8])

4 Update material compositions using Ni (th+1)

5 Repeat for all time steps th for h ∈ [0,H]
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Can we make this cheaper?

1 Assume static fluxes → decouple transport from depletion.

2 Use a discrete energy grid → Integrals in Equation 1 become sums over
energy groups g (simple + fast to evaluate)

MicroXS

• Stores σi,g

• Indexed by nuclide, reaction,
energy group

get microxs and flux()

• Run an OpenMC simulation to
obtain σi,g and ϕg for all
nuclides

• Can get σi,g , ;ϕg for as many
materials/domains as desired

IndependentOperator

• Drop in replacement for
Operator class

• Performs step 2 in the Simplified
algorithm for energy-discretezed
value ϕg and σi,g
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Model Problem

• Single Pressurized Water
Reactor (PWR) pincell

• 4.25% enriched fuel

• Reflective boundary conditions

Three cases:

1 Transport-coupled depletion
(base truth)

2 Transport-independent depletion

3 Transport-independent depletion
w/ recalculated cross sections
(sanity check)

Ten time steps, two different ∆t:

1 3-day (Xe 135 poisioning limit)

2 30-day (long timestep
approximation)

Figure 6: Slice plot of the pincell model
in the xy -plane. Blue = water, black =
cladding, pink = fuel

Three energy group structures: One
group (single energy), 8 group, 40
group
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Run time

Explicit run time data was not collected, but based on the file timestamps, we
can estimate how long each case took to complete on a cluster

Table 1: Comparison of average total runtimes

Case Runtime scale Notes
1 hours
2 minutes Does not include the initial simulation to

obatin ϕg and σi,g

3 hours Cross section data had to be loaded in
at each timestep, s this case took the
longest amount of time

Case 2 is very fast!
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Figure 7: Actinide concentration error relative to Case 1 using 3-day time steps at 3, 12,
21, and 30 days of depletion for (a) constant cross sections (Case 2); (b) updating cross
sections (Case 3).
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One-group actinides (30-day time steps)
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Figure 8: Actinide concentration error relative to Case 1 using 30-day time steps at 30,
120, 210, and 300 months of depletion for (a) constant cross sections (Case 2); (b)
updating cross sections (Case 3).
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Overprediction of (n, γ) reaction rates on 240Pu
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Figure 9: Relative 240Pu (n, γ) reaction rate error using constant cross sections and
30-day time steps.
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Figure 10: (a) constant cross sections (Case 2); (b) updating cross sections (Case 3). 18 / 29
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Fission products (30-day time steps)
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Figure 11: (a) constant cross sections (Case 2); (b) updating cross sections (Case 3). 19 / 29
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Figure 12: (a) 3-day time steps; (b) 30-day time steps
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Figure 13: (a) 3-day time steps; (b) 30-day time steps
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Conclusion

• Depletion calculations are expensive!

• Static, energy-discretized fluxes and cross sections yield low errors for
abundant nuclides, moderate errors for trace nuclides

• Transport-independent depletion provide orders of magnitude of speedup for
low to moderate errors in nuclide concentration.

• Energy group structure does not matter for simple models
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Technical Gaps and future work

• Full core model

• Multiple materials/depletion zones
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Application to fusion systems

• Proposed fusion energy facilities have a source rate high enough to activate
materials, low enough to avoid significant composition change via depletion

• Activated nuclides decay and relase high energy photons after long after
reactor shutdown

• Computing this dose is an important quantity for saftey and liscensing

Transport-independent depletion was used in the workflow to calculate the
shutdown dose rate in [7]
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Application to fuel cycles

• Depletion determines how loaded fuel compositin affect spent fuel
compositions and related fuel cycle metrics.

• Global fuel cycle accounts for hundreds of reactors at once → impractical to
run transport-coupled depletion to get spent fuel compositions

• A common approach is to use “recipes” that are based on depletion
calculations for a specific reactor.

Transport-independent depletion was used in Cyclus [5], an open source fuel
cycle simulator, to provide real-time fuel depletion capabilities that is
reactor-agnostic [2].
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