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Motivation
The Computer Problem
Nuclear Basics

Simulating a nuclear reactor is expensive!

® Seven dimensions: space (3), energy (1) angle (2), time (1)
® | ow-error — computationally-intensive methods

Figure 1: OpenMC model of the ATR Reactor, from [4]. The blue cross shape contains
the fuel. The Pink circles on the otuside are control drums.
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Motivation

Nuclear Basics

Fission Chain Reaction

3, g
Lo}
o o uu A~

wea  BU M .
- > > >
o &3m0 &3
o — O
: @ g, By
» >
238U > ey O O

~

89
ST TR - U g
0

‘ @
Xf@ 1gcs
54

236

1Y 102y
& \\o
<)
o}

ki
Figure 2: Diagram of a fission chain reaction, from [1].
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Motivation

Depletion

Concentration of nuclides in a reactor
are constantly changing due to
fission, neutron capture, and decay.

Why do we care?
® Strong coupling between
depletion and transport

® Neutron poisions — affects
neutron economy

® | U, 1 Pu— Change in
fission neutron energy
distribution

® Fission product decay heat —
affects fuel reprocessing/disposal

The Computer Problem
Nuclear Basics

Figure 3: Buildup of plutionium isotopes

with a burnup for a typical LWR fuel
composition. Reproduced from Figure

6-2 in [6]. 5 /20
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Depletion makes everything more expensive

® Depletion calculation track

238 239 _36% 5240 fissile fission%
thousands of nuclides v~ o PU fertile  capture%
. . . 91% less fertile
® Nonuniform neutron density in 28, 15% ch 5
reactor — each fuel element is a
. . o
unique material (recall the ATR, 06% Pu >
Fig 1) 8
® Axial discretization can add
additional orders of magnitude o T arrred
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of complexity /
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Figure 5: Example of the complicated
web of production and transmutation
reactions. From [3]
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Modeling Depletion

Modeling Depletion

Governing Equation:

Production of i from j
Decay of j into /

TN [ 5B (E)E e +3

oo (1)
—/v,-(t)/0 oi(E)p(E, t)dE — Ni( ZAHJ,

Consumption of i .
Decay of i

where
N;i(t) = density of nuclide i at time t [cm ]
oi(E) = transmutation cross section for nuclide i at energy E and time t [cm?]
#(E, t) = neutron flux at energy E and time t [n cm™ 2 s ]
fi—i(E) = fraction of transmutation reactions in nuclide j that produce nuclide i
Aj—i = decay constant for decay modes in nuclide j that produce nuclide / [571]

n = total number of nuclides.
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Methods

Code Additions

Neutron transport software of choice: OpenMC

9) OpenMC

® Monte carlo neutron particle transport code [9]

® Open source, community developed!!

® C++ core: neutron transport

® Python API: creating input, processing output, depletion module

® Depletion dependencies: NumPy (arrays), H5Py (output file processing),
Matplotlib (plotting), SciPy (sparse matrices), uncertainties (uncertainty
propogation)
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Modeling Depletion
Code Additions

Model Problenr

Methods

Depletion algorithm

® N;(0), n — Given by the problem’s initial conditions (e.g. Westinghouse
PWR using 5% enriched fuel at BOL)

® 0i(E), fii, A\j»i — Material properties (data stored in memory for speed)

® ¢(E,t) — Concentration of neutrons in the reactor; requires a neutron
transport simulation

® t — time steppers (called integrators in the depletion module)

® Run an OpenMC simulation to obtain ¢(E, tp)

@ Plug in ¢(E, ts), Ni(tn), oi(E), fi—i, Aj—i to obtain production and
consumption terms in Equation 1

@® Solve Equation 1 for N;(tst1) (Chebyshev rational approximation method
[8])

© Update material compositions using N;(tni1)

©® Repeat for all time steps t, for h € [0, H]
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Methods

el Problemr

Can we make this cheaper?

@ Assume static fluxes — decouple transport from depletion.
® Use a discrete energy grid — Integrals in Equation 1 become sums over
energy groups g (simple + fast to evaluate)

® Stores oj g ® Drop in replacement for

® |ndexed by nuclide, reaction, Operator class

energy group ® Performs step 2 in the Simplified
algorithm for energy-discretezed

® Run an OpenMC simulation to
obtain i and ¢, for all
nuclides

® Can get 0jg,; g for as many
materials/domains as desired
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Conclusion

Model Problem

® Single Pressurized Water
Reactor (PWR) pincell

® 4.25% enriched fuel
® Reflective boundary conditions
Three cases:

® Transport-coupled depletion
(base truth)

® Transport-independent depletion

©® Transport-independent depletion
w/ recalculated cross sections
(sanity check)

Ten time steps, two different At:
® 3-day (Xe 135 poisioning limit)

® 30-day (long timestep
approximation)

Model Problem

Figure 6: Slice plot of the pincell model
in the xy-plane. Blue = water, black =
cladding, pink = fuel

Three energy group structures: One
group (single energy), 8 group, 40
group 12 /29
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Motivation
Methods
Results

Run time

Explicit run time data was not collected, but based on the file timestamps, we
can estimate how long each case took to complete on a cluster

Table 1: Comparison of average total runtimes

Case | Runtime scale | Notes

1 hours

2 minutes Does not include the initial simulation to
obatin ¢, and o g

3 hours Cross section data had to be loaded in

at each timestep, s this case took the
longest amount of time

Case 2 is very fast!
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oup actinides (3-day time steps)
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Figure 7: Actinide concentration error relative to Case 1 using 3-day time steps at 3, 12,
21, and 30 days of depletion for (a) constant cross sections (Case 2); (b) updating cross

sections (Case 3).
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Figure 8: Actinide concentration error relative to Case 1 using 30-day time steps at 30,
120, 210, and 300 months of depletion for (a) constant cross sections (Case 2); (b)
updating cross sections (Case 3).
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Overprediction of (n,~) reaction rates on 2*°Puy
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Figure 9: Relative 2*°Pu (n, ) reaction rate error using constant cross sections and
30-day time steps.
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Results

Fission products (3-day time steps)
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Figure 10: (a) constant cross sections (Case 2): (b) updating cross sections (Case 3). 18/20
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Figure 11: (a) constant cross sections (Case 2): (b) updating cross sections (Case 3). 19/20
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8-group actinides
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40-group actinides
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Figure 13: (a) 3-day time steps; (b) 30-day time steps
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® Depletion calculations are expensive!
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® Static, energy-discretized fluxes and cross sections yield low errors for
abundant nuclides, moderate errors for trace nuclides
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Conclusion

Conclusion

® Depletion calculations are expensive!
® Static, energy-discretized fluxes and cross sections yield low errors for
abundant nuclides, moderate errors for trace nuclides

® Transport-independent depletion provide orders of magnitude of speedup for
low to moderate errors in nuclide concentration.

23 /29



Conclusion

Conclusion

® Depletion calculations are expensive!

® Static, energy-discretized fluxes and cross sections yield low errors for
abundant nuclides, moderate errors for trace nuclides

Transport-independent depletion provide orders of magnitude of speedup for
low to moderate errors in nuclide concentration.

® Energy group structure does not matter for simple models
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Conclusion

Technical Gaps and future work

® Full core model

® Multiple materials/depletion zones
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Results
Conclusion

Application to fusion systems

® Proposed fusion energy facilities have a source rate high enough to activate
materials, low enough to avoid significant composition change via depletion

® Activated nuclides decay and relase high energy photons after long after
reactor shutdown

® Computing this dose is an important quantity for saftey and liscensing

Transport-independent depletion was used in the workflow to calculate the
shutdown dose rate in [7]
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Results
Conclusion

Application to fuel cycles

® Depletion determines how loaded fuel compositin affect spent fuel
compositions and related fuel cycle metrics.
® Global fuel cycle accounts for hundreds of reactors at once — impractical to
run transport-coupled depletion to get spent fuel compositions
® A common approach is to use “recipes’ that are based on depletion
calculations for a specific reactor.
Transport-independent depletion was used in Cyclus [5], an open source fuel
cycle simulator, to provide real-time fuel depletion capabilities that is
reactor-agnostic [2].
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