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This study proposes a robust approach to quickly design a nuclear reactor core and explores the best per-
forming machine learning (ML) technique for predicting feature parameters of the core. We implemented
the approach into a hypothetical channel of molten salt reactors to demonstrate the applicability of the
method. We prepared a Python tool, named Plankton, which couples to a reactor physics code and an
optimization tool, and imports ML methods. The tool performs three consecutive phases: reactor data-
base generation, machine learning application, and design optimization. We identified the extra trees
method as the best performing estimator. With the estimator, we found nine optimum designs in total,
one for each fuel-salt pair, and estimated all the performance metrics of the designs with a <5% predic-
tion error compared to their actual values. U-Pu-NaCl fuel-salt gave promising results with the highest
conversion ratio, the most negative feedback coefficient, and the lowest fast flux.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

Current applications of learning-based techniques in nuclear
engineering indicate that Artificial Intelligence (AI) will soon
undertake the role of reactor designers in optimizing the designs
of current and future reactors. Al methods, more specifically ML,
have already become important to most sub-fields of nuclear
science and engineering (e.g., in-core fuel management, reactor
safety, flow regime prediction, and radiation protection) to achieve
an optimal core loading map, to make nuclear reactors safer, to
quickly comprehend flow data, and to accurately identify critical
isotopes in nuclear materials. In this context, recently published
two review papers (Gomez-Fernandez et al., 2020; Nissan, 2019)
showed the potential, competence, and importance of these meth-
ods by exploring the recent studies on the use of learning-based
methods in nuclear science and relevant fields. The articles also
probed the suitability of the commonly used algorithms and algo-
rithm selection criteria. However, Al/ML has not contemplated as
an option to seek to find optimal designs of nuclear reactor cores
despite being a proven technique for optimization. Instead, itera-
tive approaches such as individual parameter searches and evolu-
tionary algorithms have been widely employed for reactor core
design optimization.
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Among parametric studies recently reported, Wei et al. (2018)
investigated several critical feature parameters of a Molten Salt
Reactor (MSR) channel by parameter interpolation using KENO-VI
in SCALE 6.1 (Wieselquist et al., 2020). In the study, critical feature
parameters are the fuel type, °Li concentration, composition of fuel
type, channel geometry, moderator and its density, and salt opera-
tion temperature. The research showed that °Li has a strong effect
on criticality. In all different shapes of fuel channels, Wei et al.
(2018) observed that the turning point from under-moderation
to over-moderation for the multiplication factor (k) is at a pitch
to channel ratio (P/D) between 2 and 4, and a fuel volume fraction
between 0 and 0.1. Increasing the amount of moderator resulted in
an increase in k, but then further increase caused a decrease. Mean-
while, the temperature coefficient changes from negative to posi-
tive for pitch >12 cm.

Anderson et al. (2019) assessed the importance of several
parameters (fissile enrichment, lattice pitch, salt-moderator ratio,
and the number of fuel channels) in a MSR core by looking into
the change of fission and removal transition matrices. In that work,
the results showed that some of these parameters have an increas-
ing impact on the average relative difference of transition matrices
while others have a decreasing effect.

The common deficiency of both studies is the neglect of strong
interdependence of those investigated parameters, by carrying out
only a single parametric study. The effect of a single parameter on
performance metrics (multiplication factor, conversion ratio, reac-
tivity feedback coefficient, etc.) can be either beneficial or detri-
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mental. As for more than one parameter, correlations between
parameters can be seen as superpositioning, canceling out another,
or acting on each other up to some extent. Correspondingly, such
multi-parameter optimizations would require more sophisticated
searching techniques like genetic algorithm, particle swarm, and
simulated annealing methods. Unlike parametric studies, these
sophisticated optimization techniques are very useful in finding
optimal parameters, particularly for multi-objective problems,
and are a common and effective way of determining optimal core
loading maps (Nissan, 2019).

In the case of using evolutionary algorithms in core designs,
Kumar and Tsvetkov (2015) used a Genetic Algorithm (GA) method
coupled to regression splines to optimize several performance
metrics such as multiplication factor, fast fission factor, thermal
efficiency, and burn up in the design of Gas Cooled Fast Breeder
reactor. That method interpolates intermediate values of parame-
ters and metrics. Regarding a fuel pin cell, optimal design values
of radius, enrichment fraction, mass flow rate, and coolant temper-
ature at the inlet were found to be 0.22 cm, 18.5 wt.%, 63.5 °C, and
35.9 Kkgfs, respectively. Zeng et al. (2020) performed a multi-
objective optimization to the Advanced Burner Test Reactor (ABTR)
core, a sodium-cooled fast test reactor (SFR), to get an ultimate
core design. In that work, an integrated version of the US Depart-
ment of Energy’s Nuclear Energy Advanced Modeling and Simula-
tion (NEAMS) Workbench (Lefebvre et al., 2019) along with GA
was used for core modeling and optimization. Although they found
about 3150 optimal core designs within Pareto front solutions by
optimizing reactivity swing, Pu mass feed, core volume, core
power, and peak fast flux, only six candidate designs passed their
performance criteria based on their defined constraints.

Pereira et al. (1999) and Pereira and Lapa (2003) investigated a
hypothetical reactor design in a cylindrical fuel rod geometry (i.e.,
composed of a moderator, clad, and fuel regions) to validate the GA
applicability and to make a comparison with classical linear opti-
mization methods. In the first study, only two continuous feature
parameters were considered for optimization. Optimal designs
were completed using 3500 reactor simulations (100 populations
and 35 generations). Later, a more complex version of the previous
problem was repeated with continuous and discrete variables, very
identical to our problem from the aspects of types and number of
feature parameters. Optimization results were obtained with
150000 reactor simulations (300 populations and 500
generations).

Recently published studies (Kim et al., 2018; Kim et al., 2020)
reported the results of an assembly and core design at the Kyoto
University Critical Assembly through an Artificial Neural Network
(ANN) coupled to MCNP6 (Werner et al., 2017). These studies are
similar to fuel loading pattern optimization studies in terms of
the optimization approach. In these works, different core materials,
the number of fuel regions, and fuel assembly types were defined
as vital feature parameters whereas fast flux and multiplication
factor were the target metrics to be optimized.

Regarding the use of ML methods in depletion prediction of
reactor applications, Bae et al. (2020) successfully predicted Pres-
surized Water Reactor (PWR) Used Nuclear Fuel (UNF) composition
by training the dense neural network in the Keras (Chollet et al.,
2015). They showed that their proposed model outperforms the
average recipe method, one of the transmutation methods which
supplies neutronic calculations externally to the nuclear fuel cycle
simulators, by yielding less than 1% error for the UNF inventory
decay heat and activity and less than 5% error for the important
isotopes.

As discussed previously, parametric studies which handle all
feature variables independently ignore the complex interdepen-
dence of these variables and evaluate performance metrics by
changing only one feature variable at a time, thus fixing others.
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Meanwhile, evolutionary algorithms suffer from the choices of
optimizer hyperparameters such as population size, number of
generations, and cross-over rate since it is unlikely to determine
exactly what these parameters would be without making a prelim-
inary calculation. Additionally, these optimization techniques do
not provide any flexibility to designers, such as making optimiza-
tion without running reactor simulator again when constraints
are changed. This hence results in excessive usage of computa-
tional resources. Furthermore, optimization methods occasionally
converge to local instead of global optima fail to achieve ideal
designs that are eliminated by the optimizer’s elimination and/or
selection criteria. At this point, if sufficient data is provided, it
seems rational to use learning-based methods to design a nuclear
reactor. This is because they not only have an exceptional ability
to accurately predict performance metrics but are also suitable
for use with optimization tools as a reactor simulator.

The ML methods, which have not been considered for the sole
design of a reactor core so far, will be the best option in this regard.
This article compares various ML methods in terms of performance
scores and recommends employing these methods in place of neu-
tron transport codes for the prediction of performance metrics.
This research demonstrates that the proposed method predicts
performance metrics accurately and quickly.

2. Methodology

In this section, we described how to apply ML methods to
design a reactor core. We followed a strict methodology consisting
of three separate phases: (1) database generation, (2) machine
learning, and (3) design optimization. For this, we developed a
Python tool, called Plankton. The Plankton produces training and
test datasets for given feature parameters, qualifies a best-
performing method among the selected ML methods based on
their performance scores, trains a predictive model for the method,
predicts performance metrics of designs, and finds optimal designs.
The tool calls a reactor physics code to compute the performance
metrics in the database generation phase and applies an optimiza-
tion technique to reveal optimal designs in the optimization phase.
It uses utilities from the scikit-learn tool (Pedregosa et al., 2011) for
regression/classification, preprocessing, postprocessing, and the
quantification of predictions’ quality. A computational flow chart
showing the main computing steps of the Plankton code is dis-
played in Fig. 1. The following sections describe computational
steps in detail.

2.1. Plankton

2.1.1. Database Generation

Database generation is a step in which samplings in datasets are
created and, training and test datasets are produced based on two
distinctive sampling strategies, Grid sampling and Monte Carlo.

The grid sampling strategy, the simplest exploration approach
to explore an uncertain domain, was used to obtain the training
dataset. It constructs an N-dimensional grid in which each dimen-
sion accounts for a single feature parameter. Also, each dimension
is discretized with the step values (the rightmost column in
Table 3) into equally-spaced intervals between its upper and lower
bounds. A sample in a dataset is represented by a specific node in
the grid system.

Unlike the grid strategy, the test dataset was generated by the
Monte Carlo technique, where the value of each variable is ran-
domly determined between its lower and upper limits.

As the size of the training dataset has a significant effect on per-
formance scores, the criteria for the required size were discussed in
detail in the learning curve section. For this, we examined estima-
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Fig. 1. Computational flowchart of the Plankton code.

tors’ learning curves in conjunction with the cross-validation split-
ting strategy, which examines the change in the validation and
training score of an estimator for which the number of training
samples varies.

Computational steps followed in the database generation phase
are as follows:

e Initialize feature parameters, properties of which are given in
Table 3, for the grid search technique and Monte Carlo method.

e Prepare input files for the reactor physics code for neutron
transport calculation and simulate each sample in the training
and test datasets.

e Calculate performance metrics and extract them from the code
output.

o Supply the prepared reactor database, a set of training/test sam-
ples that comprise the feature parameters with the correspond-
ing performance metrics, to the machine learning phase.

2.1.2. Machine learning

In this part, we employed regression analysis for the estimation
of performance metrics and considered classification analysis,
which differs from the regression part in terms of feature parame-
ters, to determine classes of a design. We intended to separately
use both methods within the scope of this study, but we are also
planning to integrate them for the determination of optimal
designs for future work. We scoped out various regressors and
classifiers from ML methods within the scikit-learn python pack-

Table 1
Examined ML methods (Pedregosa et al., 2011).
Method Estimator
ensemble random forest (RF), bagging (B)
AdaBoost (AB), extra trees (ET)
gradient boosting (GB)
linear elastic net (EN), Perceptron (P), ridge (R)
stochastic gradient descent (SGD)
lasso (L), lasso lars (LL), logistic (Log)
NB Gaussian NB (GNB), Bernoulli NB (BNB)
nearest neighbors k-nearest neighbors (KN)
SVM SVM
NN Multi-layer Perceptron (MLP)
DTs decision tree (DT)

semi-supervised label propagation (LP)

age (Pedregosa et al., 2011) in order for the assessment of the best
performing estimator(s). Table 1 lists the ML methods including
semi-supervised and supervised methods such as neural network
(NN), ensemble, linear, support vector machine (SVM), decision
trees (DTs), naive Bayes (NB), and nearest neighbours methods.
Because there is more than one performance metric, estimators
require a built-in or external multi-class/multi-label support. We,
therefore, used the multi-target multi-output method in regression
and multi-label multi-output method in classification when neces-
sary. We performed a comprehensive performance assessment by
examining various regression and classification metrics given in
Table 2. Prior to regression/classification analyses, we standardized
our datasets by scaling each feature parameter between zero and
one.

We evaluated the performances of regressors by cross-
validation plots and the performance of classifiers by confusion
matrices. Cross-validation is for the visualization of prediction
errors whereas confusion matrix is a table that contains all the
defined classes in both the horizontal and vertical directions. In a
confusion matrix, predicted outputs are listed along the top of a
table whereas actual values are listed on the left-hand side column
of the table. Anything on the primary diagonal is correctly pre-
dicted values. Values above and below the primary diagonal are
incorrectly predicted labels called false negative and false
possitive.

Table 2
Metrics for the performance assessment of estimators (Pedregosa et al., 2011).

Regression Classification

fit score: € [0, 1], best score: 1
mean square error (MSE), best

fit score: € [0, 1], best score: 1
average precision (AP): € [0, 1], best

score: 0 score: 1
mean absolute error (MAE), best ranking-based average precision (LRAPS):
score: 0 € [0, 1], best score: 1

label ranking loss (LRL): € [0, 1], best
score: 0

explained variance regression
score (EVR): € [0, 1], best
score: 1

R?: € [0, 1], best score: 1 average Hamming loss (HL): € [0, 1], best

score: 0

computed area under the receiver

operating characteristic curve (ROCAUC):

€ [0, 1], best score: 1
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Table 3

Feature parameters for database generation.
Variable Distribution Material types Steps
Fuel Type Discrete U, U-Th, U-Pu 3
Salt Type Discrete LiF-BeF,, NaCl, NaF-BeF, 3

Lower value Upper value

f3s5 Continuous 1 wt% 20 wt.% 10
fu Continuous 10 wt.% 90 wt.% 9
P Continuous 1cm 16 cm 10
14 Continuous 0.274 10.46 10
Tave Continuous 900 K 1200 K 5

For the optimization of hyperparameters of estimators, we per-
formed an exhaustive search over specified parameter values to
further improve the scores of estimators. The scoring parameters
were set to f1 samples in classification and coefficient of determi-
nation (R?) in regression.

Computational steps followed in the machine learning phase
are as follows:

e As a starting point, use various ML methods listed in Table 1
from the scikit-learn tool.
o With the default settings of hyperparameters, assess potential
estimators to be used in training just by looking into their fit
scores and exclude the worst ones from the list of the potential
estimators.
Analyze learning curves of the selected estimators to under-
stand the optimal size of a training dataset required for high-
quality training.
Make a hyperparameter optimization for the selected estima-
tors to further improve the scores of the estimators.
Eliminate outliers according to the performance metrics of the
estimators seemingly impracticable from the viewpoint of
designing a reactor and out of interest in order to further
improve the estimators’ scores and focus on only feasible solu-
tion domain.
Select the best estimator(s) according to the fit scores of the
estimators.
To better understand the selected estimators’ capability, get the
final scores of the estimators, cross-validate the results of the
regressors, and draw confusion matrices of the classifiers.
Supply the best estimator(s) (along with the optimized hyper-
parameters) to the design optimization phase to predict the
performance metrics of objective functions.

2.1.3. Design optimization

In the final stage of the channel design, we aimed at finding
optimal designs. We implemented a multi-variable multi-
objective evolutionary algorithm appropriate to design space’s
structure which manifests multimodal rather than unimodal. We
selected this method because optimization methods such as
gradient-based or non-linear least-square do not accept discrete
and non-numeric variables, and do not work well in non-convex
design spaces such as this problem.

We defined the number of generations as a convergence stop-
ping criterion. After finding the optimal designs, we rerun Serpent
tool (Leppanen et al., 2014) with their feature parameters to cross-
check the solutions. The acceptance criterion for the accuracy of
the optimal designs was selected as:

X—"“Xf X < 59 (1)
1.a

where x;, is the actual value of ith metric and x;, is the predicted
value of ith metric.

Computational steps followed in the design optimization phase
are as follows:

e Specify an optimization tool (Multi-Objective Genetic Algo-
rithm (MOGA) method) consistent with the structure of the fea-
ture parameters and the problem at hand.

e Determine tool’s parameters such as decision variables, opera-
tors, number of generations, and initial population size.

e Define constraints for the performance metrics to eliminate
undesired designs.

¢ Integrate the optimizer with the best performing estimator (in
place of reactor physics code) to evaluate the performance met-
rics of objective functions.

o Iterate this ML-GA coupled system until either the constraints
are met or the solutions are converged to one of the predefined
criteria.

e Validate Pareto-front (predicted) solutions with actual values
(with additional Serpent simulation).

2.2. Channel design with plankton

2.2.1. Design parameters

We applied the suggested method to a single fuel channel MSR
geometry with square unit cell approximation to use in a basic
geometry with the least number of feature parameters and perfor-
mance metrics. An illustration of the channel geometry is shown in

Pitch (p)

— Fuel Salt

T Moderator

T

o
N
5

= 9 channel

5}
—

Vsalt
v Tin

Fig. 2. Single fuel channel representation.
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Fig. 2. In the figure, p is the pitch length, T, and T, are inlet and
outlet temperatures, vy is the velocity of fuel-salt, L is the channel
length, Ry is the radius of the fuel-salt channel and ¢, is the
total heat generation in the channel. Feature parameters describing
material and geometry properties of the channel were selected as
fuel type, salt type, 233U fraction (f35) in U, U fraction (f;;) in heavy
metal, channel-to-channel pitch length (p), moderator-to-salt vol-
ume ratio (¢), and average fuel-salt temperature (Tq,.) along the
channel. We varied these variables between upper and lower
bounds described in Table 3. The 23U fraction in U was limited
to 20 wt.% which is the maximum limit for High Assay Low
Enriched Uranium (HALEU). For the fuel types other than U fuel
type, U content in heavy metal varies from 10 to 90 wt.%. The max-
imum p, based on Oak Ridge National Laboratory (ORNL)’s Molten
Salt Reactor Experiment (MSRE) design (Robertson, 1971), was set
to 16 cm. From the ratio of pitch length to fuel-salt channel radius
(p/Ry), the ¢ variable was calculated and found in the range of
0.274 (p/Rs = 0.5) and 10.46 (p/Rs = 1.5).

We studied three different fuel types, U, U-Th, and U-Pu in this
work. Th in U-Th contains only 232Th isotope whereas Pu in U-Pu
comes from the weapons-grade Pu constituting the following iso-
topes: 238Pu (0.05 at.%), 2*°Pu (94.3 at.%), 24°Pu (5 at.%), 24'Pu (0.6
at.%) and 2*?Pu (0.05 at.%). It is assumed that there is no 2**U in
U as a parasitic absorber.

We examined three types of different salts widely used in pro-
totype reactors by various companies (Terrestrial Energy, Ter-
rapower, Thorcon, etc.): LiF-BeF,, NaF-BeF,, and NaCl. The upper
value of the average fuel-salt temperature (Tg.e) is set to 1200 K
while its base temperature used to calculate the total feedback
coefficient of reactivity is 900 K. As the temperature is the main
driver for fuel-salt density and Doppler effect of feedback, salt den-
sity variation with the T, was taken into account based on the
reports (Janz, 1988; Jerden, 2019).

In the regression analysis, the most critical performance metrics
are selected as infinite multiplication factor (k.. ), conversion ratio
(¢), fast flux (¢, ) incident on the graphite moderator, and total
feedback coefficient (o). But, we did not include the oy as a
performance metric since this metric caused huge errors in scores,
probably due to zero values at 900 K. Yet, we promptly and accu-
rately calculated it from Eq. 2 using k.. at the end of the design
optimization phase.

In the classification analysis, the o, metric did not cause
any trouble so that we were able to use it. We labeled the single
channel design with different labels according to its spectrum,
type, criticality condition, and positive or the negative sign of
the feedback coefficient. Accordingly, we addressed any channel
design as breeder type when ¢ > 1.0, as fast spectrum when
energy corresponding to average lethargy of neutrons causing
fission (EALF) > 1eV, as supercritical condition when k., > 1.0,
and as positive feedback when oy, > 0.0. For the opposite of
these conditions, the design is labeled as burner type, thermal
spectrum, sub-critical condition, and negative feedback,
respectively.

Associated with the channel design, we made the following
approximations, simplifications, and approaches involved in the
model/method development:

e The unit cell approximation in a square lattice geometry was
chosen to represent the single channel geometry. It is an effec-
tive geometry structure for periodicity.

o The fuel-salt was assumed to be stationary, by neglecting ther-
mal-hydraulic effects such as delayed neutron precursor
movement.

e Calculations were performed for initial fuel loading assuming
fresh fuel.
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o The total heat generation rate along the channel was expressed
in terms of an arithmetic average of the inlet and outlet temper-
atures, i.e., Tgpe = (Tin+Tou)/2, thereby making the design inde-
pendent from the length of the channel.

Using these approximations, we eliminated four interdepen-
dent variables: inlet and outlet temperatures, heat generation rate,
and channel length. We reduced the total number of feature
parameters from eleven to seven parameters.

2.2.2. Optimization parameters

We used the non-dominated sorting genetic algorithm
(NSGAIII) (Deb and Jain, 2014; Jain and Deb, 2014) from the pymoo
tool (Blank and Deb, 2020) as an optimizer with the simulated bin-
ary crossover (SBX) and polynomial mutation (PM) operators. The
population size and number of generations were set to 150 and
5000, respectively. The tournament selection, in which a set of
chromosomes are selected randomly and then the fittest chromo-
somes are selected for further operation, was employed to select
the fittest candidates from the current generation.

Several independent constraints imposed by the basic requi-
sites of a MSR design were implemented to the solution objectives
in line with the given references (Robertson, 1971; Rykhlevskii
etal., 2019; Betzler et al., 2017; Ashraf et al., 2020) in the following
way: We searched for k., greater than 1.06 to make up for neutron
leakage. Despite the MSRs typically have a conversion ratio of
around 1.0, ¢ was chosen as higher than 0.6 to include as many
designs as into the optimization process. As there is no reported
constraints on ¢y, we simply assumed ¢, per source neutron
on graphite to be lower than half (50) of what the maximum value
(~ 100) of the fast flux in the training dataset is.

For optimization, feature parameters were assigned as decision
variables, while performance metrics were assigned as solution
objectives (or objective functions). The k., and ¢ metrics were max-
imized while the ¢, was minimized.

2.2.3. Neutronic simulator

We employed a Monte Carlo neutron transport tool, Serpent 2
(2.1.31) (Leppanen et al., 2014) to compute performance metrics.
It uses ENDF/B-VIL.O (Chadwick, 2006) as the neutron cross-
section library alongside the S(«, ) thermal scattering libraries.
In the simulator, neutron population per cycle, passive cycle, and
active cycle were set to 2000, 50, and 100, respectively, to yield a
computational standard error of less than 100 pcm in the k.. A
two-group neutron energy structure for the calculation of ¢, on
the moderator was used, and lower and upper energy boundaries
for the fast region were set to 0.625 eV and 20 MeV, respectively.
The k.., ¢, and ¢y, metrics were directly extracted from the output
file whereas o, Was calculated by Eq. 2:

_op _Ap_p—py
atotal*aTNAT* T—Tb (2)

where p is the reactivity, p, is the reactivity at the base tempera-
ture, T is the temperature, and T}, is the base temperature. However,
we purposefully avoided using dp/dT in estimating the o, since it
goes to infinity when T, is very close to the base temperature.
Instead, we used 9k(mk) and converted to o, at the end of the cal-
culations. For the estimation of reactor spectrum in classification,
we used the EALF value given in the code output.

2.2.4. Datasets
In this work, a total training sample size of 285000 and a total
test sample size of 8000 were used.
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3. Results
3.1. Preselection

For the estimators listed in Table 1, we presented performance
score in Table 4 for regression analysis and in Table 5 for classifica-
tion analysis. The results were obtained using the default hyperpa-
rameters. RF, ET, KN, SVM, and MLP estimators predicted the
performance metrics with significantly higher accuracy than the
others. Even without hyperparameter optimization, R?> scores of
these five estimators ranged from 90 to 98% for regression and
from 92 to 96% for classification. This implies that the trained mod-
els by these estimators will have very low variance. The ET regres-
sor most accurately predicted the performance metrics while the
SVM classifier was superior to the others in classifying designs.

In general, the linear methods (i.e., SGD, R, EN, L, LL, P, and Log)
yielded lower fit scores and higher errors with respect to the non-
linear methods such as ensemble, SVM, and ANN. These results
clearly imply that linear methods are not quite enough to design
a nuclear reactor and thus in predicting its performance metrics.
Like linear methods, the NB classification methods such as GNB
and BNB seem inappropriate due to the suboptimal performance
scores. This is because these methods such as linear and NB are
not sufficient to fit the training dataset (leading to underfitting)
into a linear function due to the higher degree interdependencies
of our feature parameters. In addition to this, the RF, DT, B, and
AB estimators, gave similar results, except for fit score values, as
they use the same base estimator (DT) in training. Likewise, the
LP classifier produced the same results with the SVM classifier
due to the use of the same kernel (rbf). In regression analysis,
the ET regressor has the lowest MAE and MSE scores while the R
regressor has the highest scores.

As to the classification, the SVM classifier has the lowest HL and
LRL scores while the P classifier has the highest scores. Briefly, any
design can be classified with high precision (> 95%) and very few
incorrectly predicted labels (false neagtive plus false positive: <
5%), leading to an opportunity for an accurate prediction of reactor
design even without making any regression analysis.

On the whole, five estimators (i.e., RF, ET, KN, SVM, and MLP)
that satisfy a score of more than 90% in R? and fit scores appear
to be suitable for the subsequent stage of calculations. Among
the selected estimators, the SVM regressor interestingly shows
the second-best performance right after the ET regressor despite
its worst fit score. In fact, as the scores of the best performing esti-
mators are very close to each other, at this point, it is not easy to
distinguish which estimator is the best. Therefore, in the following
section, the current scores of these estimators are further improved
by tuning their hyperparameters and investigating their learning
curves.

3.2. Hyperparameters optimization and learning curve

We applied two distinct methods to the estimators to improve
their performance. The first method, expected to have an impact on
the R? scores, prediction errors, and thus cross-validation results,
aims to find an optimal size for the training dataset. For this,
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Fig. 3 demonstrates the estimator’s learning curves for the (U-Th)
F,-NaF-BeF, fuel-salt pair from the viewpoint of R? score in regres-
sion and multi-label classification accuracy in classification.

At first look, the MLP and SVM predictive models do not require
more data since the training and cross-validation scores converge
together. On the contrary, the RF, ET and KN models require more
data as their training scores are much higher than their cross-
validation scores.

From all the learning curves, the RF, ET, MLP, and SVM models
require a training size in the range of 32000 and 40000 in which
the curves level off to a R? score of 0.99 whereas the KN model
requires sample size more than 40000. A similar situation was
observed in the classifiers’ learning curves. As a result, we decided
to use about forty thousand samples for each fuel-salt pair. In other
words, for nine fuel-salt pairs, we generated around three hundred
thousand samples in total. In the second method, we obtained
optimal hyperparameters of the estimators tabulated in Table 6.
Parameters not listed in the table are at their default values and
do not need optimization.

3.3. Final estimators

After performing the hyperparameter optimization and learning
curve assessment, we evaluated the final scores of the selected
estimators and listed them in Table 7 and 8. At a glance, we saw
that there is a slight enhancement in the performance scores of
all regressors, except for the scores of the MLP regressor that exhi-
bits a strong hyperparameter dependency. However, the hyperpa-
rameter optimization did not improve the scores of the classifiers.
With the optimized hyperparameters and data size in the training
dataset, the ET, SVM, and MLP regressors predicted performance
metrics with a higher R? and lower MAE compared to their prese-
lection scores.

On the other hand, the SVM and MLP classifiers labeled the
design attributes with the highest AP and lowest LRL scores rela-
tive to the other estimators. Nonetheless, the others are also suit-
able as all the scores are very close to each other. As the scores
did not give us sufficient information about determining the right
estimator for the next phase, we investigated cross-validation plots
and multi-label confusion matrices on the basis of each perfor-
mance metric (i.e., ks, G, Pyast)-

3.4. Cross-validation plot and confusion matrix

In this section, we compared the predicted test dataset with the
actual test dataset. Fig. 4 visualizes the predicted performance
metrics against their actual values for the chosen estimators in
terms of cross-validation plots. These plots show the estimator’s
prediction quality separately for each performance metric. Results
indicated that the ET, KN, and MLP estimators accurately predict
performance metrics per the acceptance criterion (within <5% rel-
ative error).

According to these results, the ET estimator is the best option to
employ in the optimization phase. In comparison to the actual val-
ues, it correctly estimated the k., metric, slightly underestimated
the ¢ metric, and predicted a few values of the ¢y, metric outside

Table 4
Performance scores of the studied regression methods.
RF ET KN SVM MLP DT GB B AB SGD R EN L LL

fit score 1.00 1.00 0.99 0.96 0.99 1.00 0.97 1.00 0.78 0.54 0.73 0.70 0.69 0.55
EVR 0.90 0.98 0.97 0.98 0.95 0.90 0.89 0.90 0.54 0.38 0.37 0.46 0.25 0.38
MAE 1.27 0.35 0.57 0.54 0.87 1.28 1.72 1.27 3.36 4,77 4,78 4.60 4,77 4,77
MSE 7.60 0.62 1.61 1.45 2.97 7.71 12.99 7.60 38.85 82.73 82.94 77.95 81.94 82.95
R? 0.90 0.98 0.97 0.98 0.95 0.90 0.89 0.90 0.00 0.23 0.22 0.35 0.07 0.23
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Table 5
Performance scores of the studied classification methods.
RF ET KN SVM MLP DT B LP GB AB SGD R GNB BNB P Log
fit score 1.00 1.00 0.91 0.90 0.90 1.00 0.98 0.90 0.88 0.84 0.61 0.65 0.64 0.55 0.45 0.68
AP 0.90 0.93 0.92 0.95 0.96 0.90 0.90 0.96 0.91 0.90 0.80 0.69 0.78 0.52 0.77 0.81
HL 0.05 0.04 0.04 0.03 0.04 0.05 0.05 0.04 0.05 0.06 0.17 0.18 0.13 0.18 0.22 0.17
LRAPS 0.94 0.95 0.95 0.96 0.96 0.94 0.94 0.95 0.94 0.93 0.81 0.81 0.86 0.82 0.77 0.82
LRL 0.09 0.07 0.07 0.06 0.06 0.09 0.09 0.06 0.08 0.09 0.27 0.28 0.21 0.27 0.34 0.27
ROCAUC 0.92 0.94 0.94 0.96 0.95 0.92 0.92 0.92 0.93 0.93 0.79 0.70 0.87 0.60 0.75 0.77
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Fig. 3. Learning curves of the selected estimators. Solid lines represent mean scores, while the shaded areas around lines represent the standard deviation of the mean due to

error.

of the region. The KN and MLP estimators have good results com-
parable to the ET and, therefore, be considered as alternative esti-
mators for regression analysis.

For classification analysis, we presented confusion matrices,
normalized over the total test sample size, in Fig. 5 to compare

Table 6
Optimal hyperparameters of the selected estimators.

the predicted labels with the actual labels in terms of true/false
positive and true/false negative scores. From the prediction capa-
bility standpoint, these estimators have very close scores in each
label and predict all labels with high precision (<95%). Related to
the scores of the labels, the only label that causes the highest mis-
classification score by 10% is the feedback coefficient. This misla-
beling originates from the feedback coefficients very close to zero
as they are not accurately estimated. Other labels were, however,
correctly estimated with an error of less than 1%. As a result, any

Method Parameters (Regressor/Classifier) of these classifiers can easily handle the classification of channel
RF maximum features: None/None, number of trees: 400/400, designs without causing a notable loss in labeling. In this context,
minimum number of samples: 7/7 as in the regression analysis, we decided to use the ET classifier in
ET maximum features: None/None, number of trees: 800/800, the design optimization phase to estimate the labels of optimum
minimum number of samples: 1/7, quality criterion: -/gini desi
KN weight function: distance/distance, number of neighbors: 7/44, esigns.
distance metric: manhattan/manhattan, leaf size: 136/200
SVM kernel type: rbf/poly, polynomial degree: -/3, kernel coefficient: . desi
auto/scale, epsilon: 0.1/-, regularization parameter: 3.4/1.2, 3.5. Optimum designs
stopping criterion: 1e-5
MLP activation function: relu/tanh, hidden layers: 1000/250, maximum Based on the constraints applied to performance metrics, we
ltgrattl_"“?: ]e‘t/ ]et“' tol: Te-5, solver: adam/sgd, learning rate: found a set of optimum solutions for each fuel-salt pair. As an illus-
adaptivejconstan tration, we presented the Pareto-front solutions for the (U-Th) Fy4-
Table 7
Final performance scores of the selected regressors.
RF ET KN SVM MLP
fit score 1.00 1.00 1.00 0.97 1.00
EVR 0.94 0.99 0.99 0.96 1.00
MAE 1.07 0.28 0.41 0.37 0.23
MSE 5.52 0.41 0.83 0.44 0.24
R? 0.94 0.99 0.98 0.96 1.00
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Table 8
Final performance scores of the selected classifiers.
RF ET KN SVM MLP
fit score 0.93 1.00 1.00 0.89 0.90
AP 0.92 0.94 0.95 0.96 0.97
HL 0.04 0.04 0.04 0.03 0.03
LRAPS 0.95 0.96 0.96 0.96 0.97
LRL 0.07 0.06 0.06 0.05 0.05
ROCAUC 0.94 0.95 0.96 0.95 0.96
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Fig. 5. Normalized confusion matrices of the selected classifiers.

NaF-BeF,, which is very similar to the results of other fuel-salt
pairs, in Fig. 6. This figure includes (a) cross-validation plots for
each performance metric, (b) the distribution of the Pareto-front

solutions in 3-D performance metric space, and (c) the normalized
confusion matrix. As seen from the subplot (a), the Pareto-optimal
solutions (blue triangle) overlapped very well with the actual val-
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Fig. 6. Optimum solutions for (U-Th) F4-NaF-BeF,: (a) cross-validation plots of performance metrics, (b) the distribution of the Pareto-front solutions in 3-D performance

metric space, and (c) the normalized confusion matrix.

ues (orange circles). The other subplots also confirm this situation
by showing good distributions in the very proximity of the inter-
section line of each performance metric.

The cross-validation subplots also indicated that all the pre-
dicted metrics totally stay within the 5% relative error (shaded
area) and very close to the intersection line. We found even better
results for the k., metric with no more than 1% relative error.

As in the regression analysis results, the classification results of
the optimal solutions in subplot (c) agreed very well with the
actual labels. The only noteworthy complication is the misclassifi-
cation of a tiny fraction of the feedback indicators. This mislabeling
certainly arose from the prediction of the o,y values as discussed
before and were estimated as positive instead of negative. In con-
formity with the constraints applied to performance metrics in the
optimization phase, all the optimum designs we found are of char-
acteristics of supercritical eigenvalue, fast spectrum, burner type,
and negative feedback.

Of the entire Pareto front solutions (around 650) which account
for each combination of the fuel-salt pairs, only the nine best solu-
tions are tabulated in Table 9. We simply opted for the solutions

that grant the highest breeding ratio (¢) and the lowest fast flux
(¢rase) at the k., = 1.06. The only exception for the multiplication
factor criterion is for the NaCl salt in U-Pu fuel as there are no solu-
tions with a multiplication factor less than 1.21 for this fuel-salt
pair.

As provided in the table, the suggested solutions can be grouped
more easily by fuel type as the solutions show a certain relation-
ship with the fuel type rather than the salt type. When the fuel
types are compared to each other, U-Th fuels require the highest
235U content (18-20%) due to the existence of the 23?Th isotope
which has an absorption cross-section approximately four times
higher than 238U. U fuels reach their top performance when a mod-
erate amount of 23°U (14-15%) is used. U-Pu fuels need the lowest
amount of 23°U (5%) as not only does Pu in U-Pu already contain a
certain fraction of fissile isotopes like 23°Pu and 24'Pu, but also Pu
fissile isotopes emit greater average fission neutrons per absorp-
tion. Similarly, we noticed that U-Th fuels demand 13-14% Th in
U-Th while U-Pu fuels favor the highest grade of U content (90%).

A comprehensive look at the common properties of the optimal
designs suggests that T,,. should be in the range of 1100-1200 K
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Table 9

Optimal designs for each fuel-salt pair*.
Fuel Type Salt Type f3s5 fu p Tave ¢ koo t ¢t Brast Lrotal
u LiF-BeF, 14.47 100.0 86.7 1200 0.274 1.0600(+60) 0.661(-6) 18.6(-0.5) -3.9
u NaF-BeF, 14.88 100.0 7.18 1125 0.274 1.0600(-120) 0.638(+6) 19.0(-0.9) -4.0
u NaCl 14.28 100.0 1.00 1176 0.274 1.0604(-20) 0.692(0) 12.6(0) -3.0
U-Th LiF-BeF, 19.10 86.7 5.50 1123 0.276 1.0601(-70) 0.665(-7) 17.1(-0.2) —-43
U-Th NaF-BeF, 20.00 86.8 5.98 1125 0.275 1.0600(+30) 0.643(-11) 16.0(-0.2) -2.8
U-Th NaCl 18.48 86.2 1.00 1199 0.274 1.0600(+140) 0.696(-1) 14.4(0) -2.8
U-Pu LiF-BeF, 5.00 90.0 4.40 1198 0.274 1.0600(-20) 0.732(+3) 16.0(0.2) -4.5
U-Pu NaF-BeF, 5.00 89.3 437 1125 0.275 1.0600(+460) 0.723(+15) 13.6(0.3) -33
U-Pu NaCl 5.00 90.0 1.00 1193 0.274 1.2192(+10) 0.753(+1) 13.0(0) -34

* Performance metrics given in the table are the predicted values. The values inside the brackets are the actual values in terms of difference from the predicted values.
f The computational error of the infinite multiplication factor is +0.0009. The values within the brackets are in the units of pcm.
¥ The computational error of the conversion ratio is +0.005. The values within the brackets are in the units of milli.

+ The computational error of the fast flux is +0.007.

" The propagated computational error of the feedback coefficient of reactivity is +0.4.

and ¢ needs to be at its minimum value (0.274). Furthermore, as
expected, Th necessitates higher fissile material than any other fuel
types whereas the fissile material required by the U-Pu fuel is the
lowest as the weapons-grade Pu comprises a gread deal of fissile
isotopes by almost 50% of its content. On the other hand, unlike
the other feature parameters that display a direct characteristic
relationship with the fuel type, there is no noticeable evidence to
associate the channel-to-channel pitch length (p) with the fuel
types. The p parameter is, however, likely to vary with the salt type
just as the NaCl salt calls for a constant pitch value of 1.0 cm in all
fuel types.

In summary, among the optimal designs, it appears that all the
fuels mixed with the NaCl salt are the most promising designs. In
particular, the F4-PuFs-NaCl fuel-salt yields the highest ¢ and k..
The most unfavorable side of this fuel-salt is to have a lower ¢y
than other salt types but the coefficient is still quite sufficient com-
pared to the exiting designs of MSRs at the initial state with a total
fuel-salt feedback coefficient of around —3.4 pcm/K (Rykhlevskii
et al.,, 2019; Robertson, 1971). From the reactor safety point of
view, the LiF-BeF, salt with the highest o, is the most favorable.

4. Conclusion

This study explored the promise of Al/ML techniques to identify
optimal designs for a single channel of a MSR. The main focus of
this study was to compare the prediction accuracy of different
ML methods and to decide the best estimator suitable for single
channel design. We created a reactor database to train and test
ML methods, trained the best performing estimator, and used the
genetic algorithm technique (NSGAIII) coupled to the best per-
forming estimator (ET) to seek the optimal channel designs. Major
findings throughout this study and general remarks on the results
are as follows:

As a result of the assessment of the scores of the estimators, we
found RF, ET, KN, MLP, and SVM as the best performing estimators
for the design optimization phase. Estimators of ensemble, SVM,
NN, and DTs methods performed well, while the linear methods
(L, R, SGD etc.) performed poorly as compared to the non-linear
methods (DT, GB, and RF etc.).

For sufficiently accurate and reliable results, we determined
from the learning curves of the estimators that the optimum size
of the training dataset should be at least 12,000 for each fuel-salt
pair and 300,000 in total.

The cross-validation plots and confusion matrices of the
selected estimators shed light on the best estimator for the design
optimization phase by pinpointing the individual performance
metric. We predicted all the performance metrics with less than
5% error and classified with less than 1% error except for the feed-
back label which has an error of 10%. We also understood that the
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MLP handles performance metrics as good as ET, but with consid-
erably higher computational run-time. The ET estimator was the
best performing estimator among the explored ML methods.

We estimated all the performance metrics of the optimum
designs within a prediction error of at most 5% in comparison to
their actual values. A comprehensive overview of the common
properties of the optimal designs pointed to a particular enrich-
ment level and U content associated with fuel type (but not with
salt type), Tqye higher than 1100 K, and a moderator-to-salt ratio
of 0.274. The relation of the channel-to-channel pitch length (p)
with either fuel type or salt type was not as clear as the other fea-
ture variables.

All the optimum designs were accurately labeled as a supercrit-
ical reactor, burner type, fast spectrum, and negative feedback. As
indicated by confusion matrices, only a few designs, most of which
belong to the feedback coefficient, were mislabeled.

Based on the constraints in this study, the optimal fuel-salt
option was a combination of U-Pu fuel and Nacl salt. It achieved
the longest graphite lifetime (i.e., the lowest ¢, ), the highest ¢,
and a sufficient negative .

Using the very basic sampling method, we achieved optimal
designs, which have seven feature parameters, with a total of
280,000 reactor simulations. We used up to 10-discretization
points for each continuous parameter. When compared to the out-
comes of the papers discussed in the Introduction (Pereira et al.,
1999; Pereira and Lapa, 2003) from the perspective of computing
speed and computational resource utilization, recalling that 3500
against 100 reactor simulations for two feature parameters, each
with 10-discretization points, the proposed method in this study
outperforms the traditional methods for less than five feature
parameters. In the case of more feature parameters, recalling that
150,000 against 280,000 for seven feature parameters, this method
will be as fast as others at a single optimization run if advanced
sampling methods like Latin hypercube are employed. Meanwhile,
it, contrary to other methods, provides utmost flexibility to the
designers by allowing any optimization tool to run numerous
times with different hyperparameters and constraints at no addi-
tional costs. This is the main reason why this method provides fas-
ter convergence and better solutions than many traditional
techniques.

In addition to the above numerical findings, the most important
success of this study is the integration of the ML-enabled tech-
nique coupled to an optimization tool into the reactor core design
process. Another important success achieved by this proposed
method is the examination of optimal designs in a very short time
(within minutes), regardless of the value and number of perfor-
mance metrics or feature parameters, once a reactor database is
generated. Without using any reactor physics code, this method
makes available evaluating performance metrics of any design
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with very high accuracy by using a training dataset specific to the
feature parameters of interest to be loaded from a reactor database
generated initially. Due to the very fast computing speed and high
accuracy in estimating performance metrics, we recommend using
this method for neutronic calculations (also for thermal-hy-
draulics) in nuclear engineering along with nuclear computer
codes such as deterministic and Monte Carlo that require signifi-
cant user expertise.

Besides these achievements, we encountered various difficul-
ties that have a direct and indirect impact on the outcomes of
this study throughout the work. First, we understood that the
number of performance metrics, data size, and assigning differ-
ent estimators (composite estimators) to an individual perfor-
mance metric significantly affect performance scores. For
instance, the larger the sample size in a training dataset, the
higher the fit scores, thus better fitting results. Second, there
were several known drawbacks to getting better estimators’
scores: hyperparameter dependency, data distribution on the
search domain, and quality of the training dataset (outlier elim-
ination), such as very low k. and very high ¢. Although the
effects of hyperparameters are limited, outliers have a profound
effect on the fit scores, therefore on the predicted performance
metrics and optimal designs.

We also figured out that the primary difficulty concerning the
applicability of ML methods for reactor design is to generate a
reactor database that consumes the entire computer’s resources,
requires a powerful supercomputer, and takes a long time. In
fact, this is not a critical issue for the applicability of the pro-
posed method since the database generation is a quite easy pro-
cess in comparison to other tasks and it is enough to do it once
at the very beginning of the study. Third, it is likely to find dif-
ferent solutions when the population size and the number of
generations are further increased, or a different optimization
method, such as bayesian optimization, is used. But, we antici-
pate that all the solutions to be obtained using different param-
eters would be close to the optimal solutions presented in this
work as we already verified our solutions with different optimiz-
ers and their varying hyperparameters. The only concern with
the optimization process is the defined constraints on perfor-
mance metrics as an optimizer directs offspring according to
these constraints.

In our follow-up studies, we will take the following steps to do
away with some of the assumptions and simplifications we have
made in this research, to complement the shortcomings in the
study, and to further improve the existing method. Initially, we
have a plan to use the suggested method for a full-core MSR design
as a second phase of the ongoing study. Different from the single
channel design, designing a full reactor core will bring several
additional variables (e.g., the number of fuel channels, reactor
diameter) to the existing feature parameters and a few additional
performance metrics (e.g., power peaking factor) to the existing
performance metrics. The rest is expected to be the same as the
procedure suggested in this study.

Concurrently, we will replace the grid-based search technique
used in generating the reactor database with an advanced sam-
pling strategy (e.g., adaptive, Latin hypercube, or hybrid) as gener-
ating a high-quality training dataset is a critical step in building a
robust predictive model. This is because, despite being the simplest
and capable of evaluating all the possible scenarios among the dif-
ferent parameters of feature space, the grid technique is computa-
tionally expensive and consumes computing resources by a
considerable amount. An advanced method can reduce the number
of samples in datasets while improving the quality of the data and
thus use computational resources more efficiently by effective
space-filling.
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On the other hand, in order to simplify the optimization prob-
lem and make a significant gain in the simulation run-time, we
had deliberately disregarded the thermal-hydraulics effects such
as delayed precursor movement, temperature distribution along
the channel, and reactivity feedback on the neutronic calculations.
Related to this, we will integrate the Moltres MOOSE application
that solves the thermal-hydraulics and neutronics equations for
liquid-fueled MSRs with the Plankton python tool having been
developed in this work and increase the accuracy of neutronic
calculations.

To sum up, the research will make a significant contribution to
the further advancement of optimization studies by eliminating
the deficiencies of the existing methods in reaching ideal designs
such as the tournament approach of the optimizers, convergence
criteria, strict constraints on performance metrics, and concerns
about computer resource utilization. The results of this study could
benefit researchers who are interested in a multi-purpose reactor
design that provides more flexibility for in-core fuel management,
improved neutron economy for fuel utilization, more safety margin
against core melt-down, prolonged reactor lifetime, and less spent
nuclear fuel.
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