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Future Fuel Cycle Options

Domestic Fuel Cycle Options

Title Description Challenges

Open Once Through High Temperatures, Volumes
Current US PWR Fleet
No Separations
No Recycling
Higher Burnups

Modified Open Partial Recycling Both high volumes
Next Gen. PWR Fleet and variable spent fuel streams
Limited Separations
Limited Transmutation
Advanced Fuel Forms
HLW treatment

Closed Full Recycling Variable spent fuel streams
Full Separations
Full Recycling
VHTGR, SFRs,
other transmutation
HLW treatment

Table 1 : Domestic Fuel Cycle Options
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Disposal Geology Options Considered

Figure 1 : U.S. Salt Deposits, ref.
[26].

Figure 2 : U.S. Clay Deposits, ref.
[11].

Figure 3 : U.S. Crystalline Basement,
ref. [26].

Figure 4 : U.S. Granite Beds, ref.
[6].
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Cyclus Top Level Fuel Cycle Simulator

Figure 5 : Top level simulators are intended to model the collective behavior of
various fuel cycle decisions and strategies [24].

Figure 6 : cyclus.github.com [17].
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Need For an Integrated Repository Model

Repository Capabilities within Systems Analysis Tools

Tool Institution Fuel Disposition Radionuclide Transport Heat Transport
NUWASTE[2] NWTRB yes no no
VISION [38] INL yes no YMR only
DANESS [34] ANL no no no
COSI [3] CEA yes no yes
NFCSim [31] LANL no no no
CAFCA [14] MIT no no no
ORION [14] BNL no no no
TSM [33] OCRWM yes no YMR only

Table 2 : System tools are lacking in radionuclide transport and heat transport
calculations in generic geologic media.
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Contributions from This Work

This work has provided a platform capable of bridging the gap between fuel
cycle simulation and repository performance analysis.

• Conducted thermal transport sensitivity analyses. [19, 18]

• Conducted contaminant transport sensitivity analyses. [20]

• Cyder acheived integration with a fuel cycle simulator.

• Abstracted physical models of thermal and contaminant transport. [22]

• Demonstrated dominant physics of those models in Cyder, integrated
with Cyclus. [23, 17]

• Published source code, documentation, and testing to facilitate extension
by external developers. [21]
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Cyder Paradigm : Waste Stream Acceptance

Figure 7 : To participate in a Cyclus fuel cycle simulation, Cyder must accept
arbitrary spent fuel and high level waste material data objects.
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Cyder Paradigm : Waste Stream Conditioning

Figure 8 : In Cyder, discrete waste streams are conditioned into the appropriate
discrete waste form according to user-specified pairings.
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Cyder Paradigm : Waste Form Packaging

Figure 9 : In Cyder, one or more waste forms are loaded into the appropriate waste
package according to user-specified pairings.
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Cyder Paradigm : Waste Package Emplacement

Finally, the waste package is
emplaced in a buffer
component, which contains
many other waste packages,
spaced evenly in a grid. The
grid is defined by the user
input and depends on
repository depth, ∆z , waste
package spacing, ∆x , and
tunnel spacing, ∆y as in
Figure 10.

Figure 10 : The repository layout has a depth and
a uniform package spacing.
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Cyder Paradigm : Modularity
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Cyder Paradigm : Modularity
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Cyder Paradigm : Modularity
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Clay GDSM Sensitivity Analysis

• Barrier Degradation

• Sorption

• Solubility

• Advective Velocity

• Diffusivity

Figure 11 : The Clay Generic Disposal System Model (GDSM) was used for
preliminary sensitivity analysis, abstraction iteration, and validation. This figure was
reproduced from Figure 3.3-2 in [9].
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Nested Components

The NuclideModel in a Component can be interchangeably represented by any
of the four nuclide transport models.

• Degradation Rate Based Failure Model

• Mixed Cell with Degradation, Sorption, Solubility Limitation

• Lumped Parameter Model

• 1 Dimensional Approximate Advection Dispersion Solution, Brenner [4]
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Radionuclide Transport: Degradation Rate Based Release

Figure 12 : The control volume contains an intact volume Vi and a degraded volume,
Vd . Contaminants in Vd are available for transport, while contaminants in Vi are
contained.
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Radionuclide Transport : Mixed Cell with Sorption and Solubility

Figure 13 : The degraded volume is modeled as a solid degraded volume, Vds , and a
fluid degraded volume, Vdf . The intact volume is modeled as an intact solid volume,
Vis , and an intact fluid volume Vif . Only contaminants in Vdf are available for
transport.
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Radionuclide Transport : Mixed Cell Sorption

The mass of contaminant sorbed into the degraded and precipitated solids can
be found using a linear isotherm model [32], characterized by the relationship

si = KdiCi (1)

where

si = the solid concentration of isotope i [kg/kg ]

Kdi = the distribution coefficient of isotope i[m3/kg ]

Ci = the liquid concentration of isotope i [kg/m3].
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Radionuclide Transport : Mixed Cell Solubility Limitation

In addition to engineered barriers, contaminant transport is constrained by the
solubility limit [16],

ms,i ≤ VwCsol,i , (2)

where

ms,i = solubility limited mass of isotope i in volume Vw [kg ]

Vw = volume of the solution [m3]

Csol,i = solubility limit, the maximum concentration of i [kg/m3].

21 / 49



Motivation
Modeling Capabilities

Conclusion

Cyder Overview
Radionuclide Transport in Cyder
Thermal Transport in Cyder

Radionuclide Transport: Lumped Parameter Transport Model

Cin0 Cout0 = Cin1 Cout1 = Cin2 Cout2 = Cin3 Cout3

Figure 14 : The method by which each lumped parameter component is modeled is
according to a relationship between the incoming concentration, Cin(t), and the
outgoing concentration, Cout(t).

Cout(t) =

∫

∞

0

Cin(t − t
′
)g(t

′
)e

−λt′
dt

′
(3)

where

t
′
= time of entry [s]

t − t
′
= transit time [s]

g(t − t
′
) = response function, a.k.a. transit time distribution[−]

λ = radioactive decay constant[s
−1

].
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Radionuclide Transport: 1D Finite, Cauchy B.C.

∂C
∂z

∣

∣

L
= 0

C(z , 0) = Ci

−D ∂C
∂z

∣

∣

z=0
+ vC =

{

vC0 t < t0

0 t > t0

z = Lz = 0

Figure 15 : A one dimensional, finite, unidirectional flow, solution with Cauchy and
Neumann boundary conditions [35, 4].
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Clay GDSM Degradation Rate Sensitivity
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Figure 16 : 129I waste form degradation rate sensitivity.
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Cyder Degradation Rate Sensitivity
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Figure 17 : Sensitivity demonstration of the degradation rate in Cyder for an
arbitrary isotope.
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Clay GDSM Sorption Sensitivity

Figure 18 : Kd sensitivity. The peak annual dose due to an inventory, N, of each
isotope.
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Cyder Sorption Sensitivity
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Figure 19 : Kd factor sensitivity in the Cyder tool for an arbitrary isotope assigned a
variable Kd coefficient.
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Clay GDSM Solubility Sensitivity

Figure 20 : Solubility limit sensitivity. The peak annual dose due to an inventory, N,
of each isotope.
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Cyder Solubility Sensitivity
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Figure 21 : Sensitivity demonstration of solubility limitation in Cyder for an
arbitrary isotope assigned a variable solubility limit.
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Specific Temperature Change Calculations

A reference data set of temperature change curves was calculated. Repeated runs of a detailed
model ([15, 13, 12]) over the range of values in Table 4 determined Specific Temperature Change
(STC) values over that range.

Thermal Cases

Parameter Symbol Units Value Range

Diffusivity αth [m2 · s−1] 1.0 × 10−7 − 3.0 × 10−6

Conductivity Kth [W · m−1 · K−1] 0.1 − 4.5
Spacing S [m] 2, 5, 10, 15, 20, 25, 50
Radius rlim [m] 0.1, 0.25, 0.5, 1, 2, 5

Isotope i [−] 241,243Am,
242,243,244,245,246Cm,

238,240,241,242Pu
134,135,137Cs

90Sr

Table 3 : A thermal reference dataset of STC values as a function of each of these
parameters was generated by repeated parameterized runs of the LLNL MathCAD
model[12, 13].
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Thermal Base Case Demonstration

Figure 22 : This comparison of STC calculated thermal response from Cm inventory
per MTHM in 51GWd burnup UOX PWR fuel compares favorably with results from
the semi-analytic model from LLNL.

31 / 49



Motivation
Modeling Capabilities

Conclusion

Cyder Overview
Radionuclide Transport in Cyder
Thermal Transport in Cyder

Thermal Base Case Demonstration

Figure 23 : Percent error between the semi-analytic model from LLNL and the STC
calculated thermal response from Cm inventory per MTHM in 51GWd burnup UOX
PWR fuel demonstrates a maximum percent error of 4.4%.
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LLNL Model Thermal Conductivity Sensitivity

Figure 24 : Increased thermal conductivity decreases the temperature (here
represented by STC) at the limiting radius.
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Cyder Thermal Conductivity Sensitivity
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Figure 25 : Cyder results agree with those of the LLNL model. Increased Kth

decreases temperature change at the limiting radius. The above example thermal
profile results from 10kg of 242Cm, αth = 2× 10−7, s = 5m, and rlim = 0.25m.
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LLNL Model Thermal Diffusivity Sensitivity

Figure 26 : Increased thermal diffusivity decreases temperature change (here
represented by STC) at the limiting radius (here rcalc = 0.5m).
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Cyder Thermal Diffusivity Sensitivity

0.0000002 0.0000004 0.0000006 0.0000008 0.0000010
Thermal Diffusivity αth[m

2 /s]

101

M
a
x
im

u
m

 T
e
m

p
e
ra

tu
re

 [
◦ K

]

Maximum Temperature Sensitivity at k=0.5 r=0.25 s=5.0 

Figure 27 : Cyder trends agree with those of the LLNL model, in which increased
thermal diffusivity results in reduced temperature change at the limiting radius. The
above example thermal profile results from 10kg of 242Cm.
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Conclusion : Summary of Contributions

This work has provided a software platform capable of bridging the gap
between fuel cycle simulation and repository performance analysis.

• Conducted thermal transport sensitivity analyses. [19, 18]

• Conducted contaminant transport sensitivity analyses. [20]

• Cyder acheived integration with a fuel cycle simulator.

• Abstracted physical models of thermal and contaminant transport. [22]

• Demonstrated dominant physics of those models in Cyder, integrated
with Cyclus. [23, 17]

• Published source code, documentation, and testing to facilitate extension
by external developers. [21]
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Conclusion : Suggested Future Work

Further work could include

• cultivation of a developer community,

• more detailed benchmarking validation against sophisticated tools,

• comparison against experimental data, where available,

• demonstration of dynamic fuel cycle feedback sensitivities,

• additional physics (fracture models, biosphere models),

• and additional supporting data.
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GDSM Model Advective Diffusive Sensitivity
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Figure 29 : 129I reference diffusivity
sensitivity.
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Figure 30 : 129I vertical advective
velocity sensitivity.
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Figure 31 : Dual advective velocity and reference diffusivity sensitivity for a
non-sorbing, infinitely soluble nuclide. This demonstration utilized the Degradation
Rate model and the coupled advective dispersive mass transfer mode.
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Thermal Modeling in Cyder

Two types of thermal modeling occur in Cyder.

• The first is capacity estimation for waste stream acceptance.

• The next is heat evolution which determines heat evolution in the
modules over repository lifetime.
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Thermal Modeling in Cyder

Each can be acheived with one thermal model,

• This model employs a Specific Temperature Change algorithm [30, 29] and

• relies on a supporting response database combining detailed spent
nuclear fuel composition data [8] with a detailed thermal repository
performance analysis tool from Lawrence Livermore National Lab (LLNL)
and the Used Fuel Disposition (UFD) campaign [12].

• This method is capable of rapid estimation of temperature increase near
emplacement tunnels as a function of

• waste composition,
• limiting radius, rlim,
• waste package spacing, S ,
• near field thermal conductivity, Kth,
• and near field thermal diffusivity, αth.
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Specific Temperature Change Method

Introduced by Radel, Wilson et al., the Specific Temperature Change (STC) method uses a linear
approximation to arrive at the thermal loading density limit [29, 30].
First, ∆T is determined for a limiting loading density of the particular material composition then it
is normalized to a single kilogram of that material, ∆t, the so called STC.

∆T (rlim) = m · ∆t(rlim) (4)

where

∆T = Temperature change due to m [K ]

m = Mass of heat generating material [kg ]

∆t = Temperature change due to 1 kg [K/kg ]

rlim = Limiting radius [m].
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Specific Temperature Change Superposition

For an arbitrary waste stream composition, scaled curves, ∆ti , calculated in this manner for
individual isotopes can be superimposed for each isotope to arrive at an approximate total
temperature change.

∆T (rlim) ∼
∑

i

mi∆ti (rlim) (5)

where

i = An isotope in the material [−]

mi = mass of isotope i [kg ]

∆ti = Specific temperature change due to i [K ].
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LLNL UFD MathCAD Model

The analytic model used to populate the reference dataset was created at LLNL for the UFD

campaign [15, 13, 12]. It employs an analytic model from Carslaw and Jaeger and is implemented

in MathCAD [7, 28]. The integral solver in the MathCAD toolset is the primary calculation engine

for the analytic MathCAD thermal model, which relies on superposition of point, finite-line, and

line source integral solutions.
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Specific Temperature Change Calculations

A reference data set of temperature change curves was calculated. Repeated runs of a detailed
model over the range of values in Table 4 determined Specific Temperature Change (STC) values
over that range.

Thermal Cases

Parameter Symbol Units Value Range

Diffusivity αth [m2 · s−1] 1.0 × 10−7 − 3.0 × 10−6

Conductivity Kth [W · m−1 · K−1] 0.1 − 4.5
Spacing S [m] 2, 5, 10, 15, 20, 25, 50
Radius rlim [m] 0.1, 0.25, 0.5, 1, 2, 5

Isotope i [−] 241,243Am,
242,243,244,245,246Cm,

238,240,241,242Pu
134,135,137Cs

90Sr

Table 4 : A thermal reference dataset of STC values as a function of each of these
parameters was generated by repeated parameterized runs of the LLNL MathCAD
model[12, 13].
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Scaling Demonstration

Figure 32 : As a demonstration of the calculation procedure, the temperature change
curve for one initial gram of 242Cm and is scaled to represent 25.9g , approximately the
242Cm inventory per MTHM in 51GWd burnup UOX PWR fuel.
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Superposition Concept

The supporting database was limited to some primary heat contributing isotopes present in
traditional spent nuclear fuel, H, such that the superposition in equation (5) becomes

∆T (rlim, S,Kth, αth) ∼
∑

i∈H

mi∆ti (rlim, S,Kth, αth) (6)

where

H = set of high heat isotopes [−]

S = uniform waste package spacing [m]

Kth = thermal conductivity [W · m−1 · K−1
]

αth = thermal diffusivity [m
2 · s−1

]

(7)
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Superposition Demonstration

Figure 33 : As a demonstration of the calculation procedure, scaled temperature
change curves for five curium isotopes are superimposed to achieve a total
temperature change (note log scale). 61 / 49
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Timestepping Algorithm

Figure 34 : Two components share an interface at rj and contain mass and
concentration profiles at the beginning of timestep tn.
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Timestepping Algorithm

Figure 35 : The mass balance model in component k calculates the appropriate mass
transfer based on boundary information from component j.
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Timestepping Algorithm

Figure 36 : Based on the mass transfer, both components update their mass and
concentration profiles based on their mass balance model.
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Advection Dispersion Equation

In a saturated, reducing environment, contaminants are transported by dispersion and advection
[32, 37, 35]:

J = Jdis + Jadv

= −θ(Dmdis + τDm)∇C + θvC

= −θD∇C + θvC

(8)

where

Jdis = Total Dispersive Mass Flux [kg/m
2
/s]

Jadv = Advective Mass Flux [kg/m
2
/s]

τ = Toruosity [−]

θ = Porosity [−]

Dm = Molecular diffusion coefficient [m
2
/s]

Dmdis = Coefficient of mechanical dispersivity[m
2
/s]

D = Effective Dispersion Coefficient [m
2
/s]

C = Concentration [kg/m
3
]

v = Fluid Velocity in the medium [m/s].
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Radionuclide Transport: Lumped Parameter Transport Model

Cin0 Cout0 = Cin1 Cout1 = Cin2 Cout2 = Cin3 Cout3

Figure 37 : The method by which each lumped parameter component is modeled is
according to a relationship between the incoming concentration, Cin(t), and the
outgoing concentration, Cout(t).

Cout(t) =

∫

∞

0

Cin(t − t
′
)g(t

′
)e

−λt′
dt

′
(9)

where

t
′
= time of entry [s]

t − t
′
= transit time [s]

g(t − t
′
) = response function, a.k.a. transit time distribution[−]

λ = radioactive decay constant[s
−1

].
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Radionuclide Transport: Lumped Parameter Transport Model

Some response functions used commonly in chemical engineering applications include the Piston
Flow Model (PFM), Exponential Model (EM), and the dispersion model (DM). The solutions to
these for constant concentration at the source boundary are given in [25],

C(t) =



















PFM C0e
−λtt

EM
C0

1+λtt

DM C0e

Pe
2

(

1−

√

1+
4λtt
Pe

)

.

(10)
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Lumped Parameter Model Base Case

Figure 38 : The transit time parameterization of the lumped parameter model has a
strong effect on the material reaching the far field after 30 months. The choice of
model also strongly affects the results.
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Radionuclide Transport: 1D Finite, Cauchy B.C.

For the boundary conditions,

−D
∂C

∂z

∣

∣

z=0
+ vzc =

{

vzC0 (0 < t < t0)

0 (t > t0)
(11)

and

∂C

∂z

∣

∣

z=L
= 0 (12)

and the initial condition,

C(z , 0) = Ci , (13)

the solution is given as

C(z , t) =

{

Ci + (C0 − Ci )A (z , t) 0 < t ≤ t0

Ci + (C0 − Ci )A (z , t)− C0A(z , t − t0) t ≥ t0.

(14)
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Radionuclide Transport: 1D Finite, Cauchy B.C.

For the vertical flow coordinate system, A is defined as

A(z, t) =

(

1

2

)

erfc

[

Rz − vt

2
√
DRt

]

+

(

v2t

πRD

)1/2

exp

[

−
(Rz − vt)2

4DRt

]

−
1

2

(

1 +
vz

D
+

v2t

DR

)

exp

[

vz

D

]

erfc

[

Rz + vt

2
√
DRt

]

+

(

4v2t

πRD

)1/2 [

1 +
v

4D

(

2L − z +
vt

R

)]

exp

[

vL

D
−

R

4Dt

(

2L − z +
vt

R

)2]

−
v

D

[

2L − z +
3vt

2R
+

v

4D

(

2L − z +
vt

R

)2]

exp

[

vL

D

]

erfc

[

R(2L − z) + vt

2
√
DRt

]

where

L =Extent of the solution domain [m]

R =Retardation factor [−].
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Analytical Model Background

Analytical Model : Background

The analytical model

• was created at LLNL (H. Greenberg, J. Blink, et. al) [15, 13, 12]

• employs an analytic model from Carslaw and Jaeger [7]

• is implemented in MathCAD [28]

• seeks to inform heat limited waste capacity calculations for
• arbitrary geology
• arbitrary waste package loading densities
• arbitrary homogeneous decay heat source
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Analytical Model : Geometry

Figure 39 : Vertical, horizontal, alcove, and borehole emplacement layouts can be
represented by a line of point sources and adjacent line sources [13].

74 / 49



Thermal Methodology
Nuclide Transport Methodology

LLNL Model Background
Geologic Media and Concepts

Mixed Cell Model

Analytical Model Background

Analytical Model : Calculation Method

LLNL’s model is a MathCAD solution of the transient homogeneous
conduction equation,

∇
2
T =

1

α

∂T

∂t
, (15)

in which superimposed point and line source solutions approximate the
repository layout.
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Analytical Model Background

Analytical Model : Calculation Method

The model consists of two conceptual regions, an external region representing
the host rock and an internal region representing the waste form, package, and
buffer Engineered Barrier System within the disposal tunnel wall.

• Since the thermal mass of the EBS is small in comparison to the thermal
mass of the host rock, the internal region may be treated as quasi-steady
state.

• The transient state of the temperature at the calculation radius is found
with a convolution of the transient external solution with the steady state
internal solution.

• The internal and external regions are approximated to be a single
homogeneous medium.

• The process is then iterated with a one year resolution in order to arrive at
a temperature evolution over the lifetime of the repository.
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Analytical Model : Calculation Method

Figure 40 : The central
package is represented by
a finite line source [13].

The geometric layout of the analytic LLNL
model in Figure 42 shows that the central pack-
age is represented by the finite line solution

Tline(t, x, y , z) =

1

8πKth

∫
t

0

qL(t
′)

t − t′
e

−

(

x2+z2
)

4α(t−t′)

·
[

erf

[

1

2

(

y + L
2

)

√

α(t − t′)

]

− erf

[

1

2

(

y − L
2

)

√

α(t − t′)

]]

dt
′
.

(16)
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Analytical Model : Calculation Method

Figure 41 : Adjacent
packages are represented
as point sources [13].

Adjacent packages within the central tunnel are
represented by the point source solution,

Tpoint(t, r) =
1

8Kth

√
απ

3
2∫

t

0

q(t′)

(t − t′)
3
2

e
−r2

4α(t−t′) dt
′
. (17)
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Analytical Model : Calculation Method

Figure 42 : The
non-central disposal
tunnels are represented as
infinite line sources [13].

Adjacent disposal tunnels are represented by the
infinite line source solution,

T∞line(t, x, z) =
1

4πKth

∫
t

0

qL(t
′)

t − t′
e

−

(

x2+z2
)

4α(t−t′) (18)

in infinite homogeneous media, where

α = thermal diffusivity [m
2 · s−1

]

q(t) = point heat source[W ]

and

qL(t) = linear heat source[W · m−1
]

Superimposed point and line source solutions allow for a
notion of the repository layout to be modeled in the host
rock.
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Repository Components

Figure 43 : Geologic disposal systems typically employ engineered barrier systems as
well as natural barrier systems. This is a Swedish concept in granite [1].
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Clay Disposal Environments

Figure 44 : Belgian reference concept in Boom Clay [36].
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Granite Disposal Environments

Figure 45 : Czech reference concept in Granite [36].
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Salt Disposal Environments

Figure 46 : DOE-NE Used Fuel Disposition Campaign concept in Salt [15].

84 / 49



Thermal Methodology
Nuclide Transport Methodology

LLNL Model Background
Geologic Media and Concepts

Mixed Cell Model

Salt Disposal Environments

Figure 47 : DOE-NE Used Fuel Disposition Campaign concept in Salt [15].
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Deep Borehole Disposal Environment

Figure 48 : DOE-NE Used Fuel Disposition Campaign Deep Borehole concept [15].
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Engineered Barriers : Waste Forms

The first line of defense is the waste form.

Figure 49 : A comparison of uranium oxide and borosilicate glass waste forms [27].
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Engineered Barriers : Waste Packages

Figure 50 : Conceptual mockup of waste packages around waste forms [5].
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Engineered Barriers : Disposal Cask

Figure 51 : Conceptual mockup of a transport and disposal cask [5].

89 / 49



Thermal Methodology
Nuclide Transport Methodology

LLNL Model Background
Geologic Media and Concepts

Mixed Cell Model

Engineered Barriers : Buffer

Figure 52 : Belgian reference concept in Boom Clay [36].
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Natural Barrier : Geology

Figure 53 : The Waste Isolation Pilot Plant has many geologic layers above the salt
bed [10].
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Radionuclide Transport : Mixed Cell Sorption

The mass of contaminant sorbed into the degraded and precipitated solids can be found using a
linear isotherm model [32], characterized by the relationship

si = Kdici (19)

where

si = the solid concentration of isotope i [kg/kg ]

Kdi = the distribution coefficient of isotope i[m
3
/kg ]

ci = the liquid concentration of isotope i [kg/m
3
].

From the sorbed contaminant mass, we find the non-sorbed contaminant mass in the free fluid,

mffl = mffT −
1

2

(

mffT − mpsm −
Vff

Kd

)

∓
1

2

√

m2
ffT

+ 2mffT

(

mpsm −
Vff

Kd

)

+

(

mpsm +
Vff

Kd

)2

. (20)

where

mffT = total degraded contaminant mass [kg ]

mpsm = noncontaminant mass in degraded and precipitated solids [kg ]

mpsc = contaminant mass in degraded and precipitated solids [kg ]

ρb = bulk (dry) density of the medium [kg/m
3
].
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