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Abstract6

The present United States’ nuclear fuel cycle faces challenges that hinder the expansion of nuclear7

energy technology. The U.S. Department of Energy identified four nuclear fuel cycle options, which8

make nuclear energy technology more desirable. Successfully analyzing the transitions from the9

current fuel cycle to these promising fuel cycles requires a nuclear fuel cycle simulator that can10

predictively and automatically deploy fuel cycle facilities to meet user-defined power demand.11

This work introduces and demonstrates demand-driven deployment capabilities in Cyclus, an12

open-source nuclear fuel cycle simulator framework. User-controlled capabilities such as time13

series forecasting algorithms, supply buffers, and facility preferences were introduced to give users14

tools to minimize power undersupply in a transition scenario simulation. The demand-driven15

deployment capabilities are referred to as d3ploy. We demonstrate d3ploy’s capability to predict16

future commodities’ supply and demand, and automatically deploy fuel cycle facilities to meet the17

predicted demand in four transition scenarios. Using d3ploy to set up transition scenarios saves the18

user simulation set-up time compared to previous efforts that required a user to manually calculate19

and use trial and error to set up the deployment scheme for the supporting fuel cycle facilities.20

Keywords — nuclear engineering, nuclear fuel cycle, nuclear fuel cycle simulator, time series21

forecasting, automated deployment22
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I. INTRODUCTION23

The nuclear fuel cycle represents the nuclear fuel life cycle from initial extraction through24

processing, use in reactors, and, eventually, final disposal. This complex system of facilities and25

mass flows collectively provide nuclear energy in the form of electricity [1]. Nuclear fuel cycle26

simulator tools were introduced to investigate nuclear fuel cycle dynamics at a local and global level.27

These simulators track the flow of materials through the nuclear fuel cycle, from enrichment to final28

disposal of the fuel, while also accounting for decay and transmutation of isotopes. The impacts29

are evaluated in the form of ‘metrics’, quantitative measures of performance [2]. These metrics are30

calculated from mass balances and facility operation histories calculated by a fuel cycle simulator31

[2]. By evaluating performance metrics of different fuel cycles, we gain an understanding of how32

each facility’s parameters and technology choices impact the system’s performance. Therefore,33

these results can be used to guide research efforts, advise future design choices, and provide34

decision-makers with a transparent tool for evaluating fuel cycle options to inform policy decisions35

[1].36

Many fuel cycle simulators automatically deploy reactor facilities to meet a user-defined power37

demand. However, the user must define a deployment scheme of supporting facilities to avoid gaps38

in the supply chain resulting in idle reactor capacity. Current simulators require the user to set39

infinite capacity for supporting facilities but this inaccurately represents reality and obfuscates40

required capacities. Manually determining a deployment scheme for a once-through fuel cycle is41

straightforward, however, for complex fuel cycle scenarios, it is not. To ease setting up realistic42

nuclear fuel cycle simulations, a nuclear fuel cycle simulator must bring dynamic demand-responsive43

deployment decisions into the simulation logic [3]. This means the nuclear fuel cycle simulator44

decides how many mines, mills, enrichment facilities, reprocessing facilities, etc are deployed to45

support dynamically changing power demand and reactor types. Thus, a next-generation nuclear46

fuel cycle simulator must predictively and automatically deploy fuel cycle facilities to meet a47

user-defined power demand.48

I.A. Context of Work49

The impact of climate change on natural and human systems is increasingly apparent [4].50

The production and use of energy contribute to two-thirds of the total greenhouse gas (GHG)51
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Fuel Cycle Open or Closed Fuel Type Reactor Type
EG01
(current)

Open Enriched-U Thermal

EG23 Closed
Recycled U/Pu
+ Natural-U

Fast

EG24 Closed
Recycled U/TRU
+ Natural-U

Fast

EG29 Closed
Recycled U/Pu
+ Natural-U

Fast & Thermal

EG30 Closed
Recycled U/TRU
+ Natural-U

Fast & Thermal

TABLE I
Descriptions of the current and other high performing nuclear fuel cycle evaluation groups described
in the evaluation and screening study [6].

emissions [4]. Furthermore, as the human population increases and previously under-developed52

nations rapidly industrialize, global energy demand is forecasted to increase. Energy generation53

technology selection profoundly impacts climate change via growing energy demand. Large scale54

deployment of emissions free nuclear power plants could significantly reduce GHG production [4].55

However, large scale nuclear power deployment faces challenges of safety, cost, and used56

nuclear fuel [5]. The nuclear power industry must overcome these challenges to ensure continued57

global use and expansion of nuclear energy technology.58

The challenges described above are associated with the present once-through fuel cycle in the59

United States (US), in which fabricated nuclear fuel is used once and placed into storage to await60

disposal. An evaluation and screening study of a comprehensive set of nuclear fuel cycle options [6]61

was conducted to assess for promising evaluation groups (EGs) with performance improvements62

compared with the existing once-through fuel cycle (EG01) in the US across a wide range of criteria.63

Fuel cycles that involved continuous recycling of co-extracted U/Pu or U/TRU in fast spectrum64

critical reactors consistently scored high on overall performance based on the nine DOE-specified65

evaluation criteria: nuclear waste management, financial risk and economics, proliferation risk,66

nuclear material security risk, safety, environmental impact, resource utilization, development and67

deployment risk, and institutional issues [6]. Table I describes these fuel cycles: EG23, EG24, EG29,68

and EG30. Recent statements from Rita Baranwal [7], the Nuclear Energy Innovation Capabilities69

Act [8], and the Advanced Nuclear Technology Development Act [9] show that there continues to70

be national interest in pursuing spent fuel recycling and advanced nuclear power technology.71
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The evaluation and screening study assumed the nuclear energy systems were at equilibrium72

to understand the end-state benefits of each evaluation group [10]. In the current work, our goal is73

to model the transition from the initial EG01 state to these promising future end-states without74

assuming equilibrium fuel cycles. To successfully analyze time-dependent transition scenarios, the75

nuclear fuel cycle simulator tool must automate the transition scenario simulation setup. Therefore,76

the Demand-Driven Cycamore Archetypes project (NEUP-FY16-10512) was initiated to develop77

demand-driven deployment capabilities in Cyclus, a nuclear fuel cycle simulator. This capability,78

d3ploy, is a Cyclus Institution agent that deploys facilities to meet user-defined power demand.79

Cyclus is an agent-based nuclear fuel cycle simulation framework [2], each entity (i.e. Region,80

Institution, or Facility) in the fuel cycle is an agent. An agent-based model enables model81

development to take place at an agent level rather than a system level [2]. For example, an analyst82

can design a reactor agent that is entirely independent from an fuel fabrication agent. Each agent’s83

behavior is designed according to the application interface contract, giving them the capability to84

interact with each other in the simulation [2]. Region agents represent geographical or political areas85

in which Institution and Facility agents reside. Institution agents represent legal operating86

organizations such as utilities, governments, and control the deployment and decommissioning87

of Facility agents [2]. Facility agents represent nuclear fuel cycle facilities such as mines,88

conversion facilities, reactors, reprocessing facilities, etc. Cycamore [11] provides basic Region,89

Institution, and Facility archetypes compatible with Cyclus. A complete introduction to90

Cyclus can be found in [2].91

I.B. Novelty92

We utilized time series forecasting methods to effectively predict future commodities’ supply93

and demand in d3ploy. Solar and wind power generation commonly use these methods to make94

future predictions based on past time series data [12, 13, 14, 15]. Industrial supply chain management95

also uses sophisticated time series forecasting techniques to predict demand for quantities of goods96

in the supply chain [16]. This is a novel approach that has never been applied to nuclear fuel cycle97

simulators.98
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I.C. Objectives99

The main objectives of this paper are: (1) to describe the demand-driven deployment100

capabilities in Cyclus, (2) to describe the prediction methods available in d3ploy, and (3) to101

demonstrate the use of d3ploy in setting up EG01-23, EG01-24, EG01-29, and EG01-30 transition102

scenarios with various power demand curves.103

II. METHODOLOGY104

In Cyclus, developers have the option to design agents using C++ or Python. The d3ploy105

Institution agent was implemented in Python to enable the use of well-developed time series106

forecasting Python packages.107

During a Cyclus simulation, at every time step, d3ploy predicts the supply and demand108

of each commodity for the next time step. It is assumed that facility deployment occurs within109

one time step (month). Commodities refer to materials in the nuclear fuel cycle such as reactor110

fuel. Upon undersupply for any commodity, d3ploy deploys facilities to meet its predicted demand.111

Therefore, if the simulation begins with user-defined power demand, d3ploy deploys reactors to112

meet power demand, followed by enrichment facilities to meet fuel demand, and so on, to create113

the supply chain. Based on the demand and supply trends of each commodity, d3ploy predicts114

their future demand and supply, and deploys facilities accordingly to meet the future demand to115

prevent demand from surpassing supply. Figure 1 shows the logical flow of d3ploy at every time116

step. In subsequent subsections, we describe how to set up a transition scenario using d3ploy and117

the input parameters d3ploy accepts.118

d3ploy aims to minimize the undersupply of power:

obj = min
tf

∑

t=1
∣Dt,p − St,p∣. (1)
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Start time step (t).

Calculate predicted
D(t + 1) and S(t + 1)

for a commodity

U(t + 1) = S(t + 1) −D(t + 1)

Deploy Facilities No Deployment

Has D(t + 1) and
S(t + 1) been calculated

for all commodities?

Proceed to
next time step.

U(t + 1) < buffer U(t + 1) ≥ buffer

yes

no

Fig. 1. d3ploy logic flow at every time step in Cyclus [17].
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where:

tf = Number of time steps [months]

t = time [month]

D = Demand

S = Supply

p = power [MW]

The sub-objectives are to minimize the number of time steps of undersupply or under-capacity of

any commodity:

obj =min
M

∑

c=1

tf

∑

t=1
∣Dt,c − St,c∣, (2)

and to minimize excessive oversupply of all commodities:

obj =min
M

∑

c=1

tf

∑

t=1
∣St,c −Dt,c∣. (3)

where:

c = commodity type

M = Number of commmodities

Minimizing excessive oversupply reflects reality, in which utilities ensure grid availability119

by ensuring power plants are never short of fuel while avoiding expensive storage of excess fuel.120

Nuclear fuel cycle simulations often face power shortages due to lack of viable fuel, despite having121

sufficient installed reactor capacity. Using d3ploy to automate the deployment of supporting122

facilities prevents this.123
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Mine
Enrichment

Facility Reactor
Cooling
Pool

Repository

Natl
U

Demand for Natl U Demand for Fuel

Demand for Cooling

Pool Capacity
Demand for

Repository Capacity

Fuel
Used
Fuel

Cooled
Used
Fuel

∎ Deployed by DemandDrivenDeploymentInst

∎ Deployed by SupplyDrivenDeploymentInst

Fig. 2. Simple once-through fuel cycle depicting which facilities are deployed by
DemandDrivenDeploymentInst and SupplyDrivenDeploymentInst.

II.A. Structure124

Front-end facilities meet the demand for commodities they produce, whereas back-end125

facilities meet supply for the commodities they demand. Therefore, in d3ploy two distinct126

institutions control front-end and back-end fuel cycle facilities: DemandDrivenDeploymentInst and127

SupplyDrivenDeploymentInst, respectively. For example, when a reactor facility demands fuel,128

DemandDriven-129

DeploymentInst deploys fuel fabrication facilities to create fuel supply. For back-end facilities, the130

reactor generates spent fuel, and SupplyDrivenDeploymentInst deploys used fuel storage facilities131

to create capacity to store the spent fuel. Figure 2 depicts a simple once-through fuel cycle and the132

Institution type governing each facility’s deployment.133

II.A.1. Deployment-Driving Method134

To prevent over-deployment of facilities with an intermittent supply such as reactors that135

require refueling, and to prevent infinite deployment of a facility that demands a commodity no136

longer available in the simulation, we introduced the capability to deploy facilities based on the137

difference between predicted demand and installed capacity. The user may deploy facilities based on138

the difference between predicted demand and predicted supply, or predicted demand and installed139

capacity. For example, a reprocessing plant that fabricates Sodium-Cooled Fast Reactor (SFR)140

fuel demands for Pu after depletion of the existing Pu inventory and decommissioning of the Light141

Water Reactors (LWRs) that produce it. If we used the deployment-driving method driven by142
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the difference in predicted demand and predicted supply, this results in infinite deployment of143

reprocessing facilities in a futile attempt to produce SFR fuel, crashing the simulation. Instead, if144

we use the deployment-driving method driven by the difference in predicted demand and installed145

capacity, only one reprocessing facility will be deployed, the simulation will finish, and the user146

will see that a large Pu inventory must be accumulated. Therefore, using the deployment-driving147

method that deploys facilities based on the difference between predicted demand and installed148

capacity is ideal for most transition scenarios.149

II.B. Input Variables150

Table II lists and gives examples of the input variables d3ploy accepts. The user must define151

the following input variables:152

1. The available facilities for d3ploy to deploy in the simulation and their respective153

capacities. Users must define the facilities they want d3ploy to deploy. It is the user’s154

responsibility to ensure the defined facilities create a supply chain to produce the demand155

driving commodity.156

2. The demand driving commodity and its demand equation. For most simulations,157

the demand driving commodity is power. The demand equation is defined by a mathematical158

equation with units of MW. For example, a constant power demand equation is 10000, while159

a linearly increasing power demand equation is 100t.160

3. The deployment driving method. This input variable is described in Section II.A.1.161

4. The prediction method. This input variable is described in Section II.D. There are also162

optional input variables:163

5. Supply/capacity buffers for individual commodities. This input variable is described164

in section II.B.1.165

6. Facility preferences. This input variable is described in section II.C.166

7. Facility fleet shares. This input variable is described in section II.C.167
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Input Parameter Examples

Required

Demand driving commodity Power
Demand equation [MW] P(t) = 10000, sin(t),10000t
Available Facilities Mine, LWR, Repository, etc.
Capacities of the facilities 3000 kg, 1000 MW, 50000 kg

Prediction method
Power: Fast Fourier Transform
Fuel: Moving Average
Spent fuel: Moving Average

Deployment driven by Installed Capacity

Optional

Supply/Capacity Buffer type Absolute

Supply/Capacity Buffer size
Power: 3000 MW
Fuel: 0 kg
Spent fuel: 0 kg

Facility preferences [month]
LWR = 100-t
SFR = t-99

Fleet share percentage [%]
MOX LWR = 85%
SFR = 15%

TABLE II
d3ploy’s required and optional input parameters with examples.

II.B.1. Supply/Capacity Buffer168

The user has the option to specify a supply buffer for each commodity; d3ploy accounts

for the buffer when calculating predicted demand and deploys facilities accordingly. The buffer is

defined as a percentage:

Spwb = Sp(1 + d) (4)

or an absolute value:

Spwb = Sp + b (5)
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where:

Spwb = predicted supply/capacity with buffer

Sp = predicted supply/capacity

d = buffer’s percentage value in decimal form

b = buffer’s absolute value

Using the buffer capability and installed capacity to drive facility deployment in a transition169

scenario simulation will effectively minimize undersupply of a commodity while avoiding excessive170

oversupply. This is demonstrated in Section III.A.171

II.C. Facility Preference and Fleet Share172

The user can define time-dependent preference equations to facilities’ that supply the same173

commodity. If there are two reactor types, LWRs and Sodium-Cooled Fast Reactors (SFRs), in a174

simulation, the user can make use of time-dependent preferences to make the simulation deploy175

LWRs at earlier times in the simulation, and deploy SFRs at later times in the simulation when176

there is a power demand. In Table II, the user defined that the LWR has a preference of 100 − t,177

while the SFR has a preference of t − 99. Figure 3 depicts how the preference for each reactor178

changes with time. When there is a power undersupply, d3ploy will deploy the reactor that has a179

larger preference at that time step. At time step 100, LWR preference is 0, while SFR preference is180

1; therefore an SFR is deployed if there is a power shortage. Thus, the transition occurs at the181

100th time step.182

The user also has the option to specify percentage-share for facilities that provide the same183

commodity. For example, if there are two reactor types, mixed oxide (MOX) LWRs and SFRs, in a184

simulation, the user can make use of percentage-share specifications to determine the percentage185

of power supplied by each reactor. When MOX LWR has a share of s% and SFR has a share of186

(100 − s)%, MOX LWR deployment constrains to s% of total power demand and SFR deployment187

constrains to (100 − s)% of total power demand.188

The transition year is selected by customizing facility preferences to prefer advanced reactors189

at that year. The fleet-share percentage determines the share of each type of reactor to transition to.190
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Fig. 3. d3ploy has a 100− t preference for LWRs and a t− 99 preference for SFRs. When there is a
power undersupply, d3ploy will deploy the reactor that has a larger preference at that time step.

Figure 4 shows the logical flow of which facility d3ploy deploys when there are multiple facilities191

offering the same commodity.192

II.D. Prediction Methods193

d3ploy records supply and demand at each time step for all commodities. Time-series data194

informs d3ploy’s time series forecasting methods which predict future supply and demand for each195

commodity. The time series forecasting methods investigated include non-optimizing, deterministic-196

optimizing, and stochastic-optimizing methods. Non-optimizing methods are techniques that197

harness simple moving average and autoregression concepts which use historical data to infer198

future supply and demand values. Deterministic-optimizing and stochastic-optimizing methods are199

techniques that use an assortment of more sophisticated time series forecasting concepts to predict200

future supply and demand values. Deterministic-optimizing methods give deterministic solutions,201

while stochastic-optimizing methods give stochastic solutions.202

Depending on the scenario in question, each forecasting method offers distinct benefits and203

disadvantages. The various methods are compared for each type of simulation to determine the204

most effective prediction method for a given scenario. The following sections describe the prediction205

methods.206
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Are there fleet
share constraints?

Deploy facilities to
meet fleet share %

Are there facility
preferences?

Deploy facilities
in preference
order to meet

their fleet share %

Deploy facilities
to minimize total

no. of facilities and
minimize oversupply.

yes no

yes no

Fig. 4. Logical flow of how d3ploy selects which facility to deploy when there are multiple facilities
offering the same commodity.

II.D.1. Non-Optimizing Methods207

Non-optimizing methods include: Moving Average (MA), Autoregressive Moving Average208

(ARMA), and Autoregressive Heteroskedasticity (ARCH). The MA method calculates the average of a209

user-defined number of previous entries in a commodity’s time series and returns it as the predicted210

value (equation 6).211

PV =
∑
N
n=1 Vn
n

(6)

where:

PV = predicted value

Vn = time series value

N = length of time series

The ARMA method combines moving average and autoregressive models (equation 7). The

first term is a constant, the second term is white noise, the third term is the autoregressive model,

and the fourth term is the moving average model. The ARMA method is more accurate than the MA
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method because of the inclusion of the autoregressive term:

Xt = c + εt +
p

∑

i=1
ϕiXt−i +

q

∑

i=1
θiεt−i. (7)

where:

c = a constant

εt = error terms (white noise)

ϕ = the autoregressive models parameters

θ = the moving average models parameters

p = order of the autoregressive polynomial

q = order of the moving average polynomial

The ARCH method models time series data by describing the variance of the current error term212

as a function of the sizes of the previous time periods’ error terms [18]. This allows the method to213

support changes in the time dependent volatility, such as increasing and decreasing volatility in the214

same series [18]. The ARCH method is better than the ARMA method for volatile time-series data [19].215

The StatsModels [20] Python package is used to implement ARMA and ARCH methods in d3ploy.216

II.D.2. Deterministic-Optimizing Methods217

Deterministic methods include Fast Fourier Transform (FFT), Polynomial Fit (POLY), Ex-

ponential Smoothing (EXP-SMOOTHING), and Triple Exponential Smoothing (HOLT-WINTERS). The

FFT method uses the fast Fourier transform algorithm to map a time series into the frequency

domain. The algorithm returns complex numbers from which frequency, amplitude, and phase is

extracted. Future demand and supply values are predicted by summing the significant components,

then using the inverse Fourier transform method to return it into a usable form. The discrete

Fourier transform (DFT) transforms a sequence of N complex numbers (Xk) into another sequence

of complex numbers (xn) [21]:

Xk =

N−1
∑

n=0
xne

−i2πkn/N . (8)
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where:

X = sequence of complex numbers

k = 0, ...,N − 1

N = No. of complex numbers

x = sequence of complex numbers

n = 0, ...,N − 1

This method is implemented in d3ploy using the SciPy [22] Python package.218

The POLY method fits the time series data with a user-defined nth degree polynomial and uses219

the fitted trend-line to determine future demand and supply values:220

Yt = β0 +
N

∑

n=1
βnt

n
+ ε (9)

where:

t = time index

n = polynomial order

β = fitted parameters

ε = unobserved random error

This method was implemented in d3ploy using the NumPy [23] Python package.221

The EXP-SMOOTHING and HOLT-WINTERS methods use a weighted average of time-series data222

with exponentially decaying weights for older time series values [24] to create a model to determine223

future demand and supply values. The EXP-SMOOTHING method excels in modeling univariate time224

series data without trend or seasonality [24]:225

yt+1 = αyi + (1 − α)yt. (10)
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where:

y = timeseries value

α = smoothing factor (0 < α < 1)

The HOLT-WINTERS method applies triple exponential smoothing, resulting in higher accuracy when226

modeling seasonal time series data [25]:227

Ft+m = (St +mbt)It−L+m (11)

St = α
yt
It−L

+ (1 − α)(St−1 + bt−1)

bt = γ(St − St−1)+)(1 − γ)bt−1

It = β
yt
St

+ (1 − β)It−L

where:

F = forecast at m periods ahead

t = time period index

L = periods in a season

S = smoothed observation

y = the observation

b = trend factor

I = seasonal index

α,β, γ = constants

The StatsModels [20] Python package was used to implement the EXP-SMOOTHING and HOLT-WINTERS228

methods in d3ploy.229
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II.E. Stochastic-Optimizing Methods230

We implemented one stochastic-optimizing method: step-wise seasonal method (SW-SEASONAL).231

The method was implemented in d3ploy by the Auto-Regressive Integrated Moving Averages232

(ARIMA) method in the pmdarima [26] Python package. The ARIMA model is a dependent time233

series that is modeled as a linear combination of its own past values and past values of an error234

series [27]:235

(1 −B)
dYt = µ +

θ(B)

φ(B)

at (12)

where:

t = time index

µ = mean term

B = backshift operator, such that BXt =Xt−1

d = no. of roots

Y = timeseries data

φ(B) = autoregressive operator

θ(B) = moving average operator

at = random error

III. RESULTS236

This section aims to demonstrate d3ploy’s capability to completely automate the setup of237

transition scenarios and meet the objectives described in section I.C. This section is split into two238

subsections. The first subsection (section III.A) will demonstrate d3ploy’s capabilities to set up239

a simple transition scenario with only three facility types. The second subsection (section III.B)240

will demonstrate d3ploy’s capabilities to set up complex EG01-23, EG01-24, EG01-29, EG01-30241

transition scenarios and is further subdivided into:242
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Input Parameters Simple Transition Scenario

Required

Demand driving commodity Power
Demand equation [MW] t < 40 = 1000, t ≥ 40 = 1000 + 250t
Available facilities Source, Reactor, Sink
Prediction method FFT

Deployment driving method Installed Capacity

Optional
Buffer type Absolute
Buffer size Power: 2000MW, Fuel: 1000kg

TABLE III
d3ploy’s input parameters for the simple transition scenario with linearly increasing power demand.

1. Section III.B.1: compare the use of different d3ploy prediction methods in EG01-EG23,243

EG01-EG24, EG01-EG29, and EG01-EG30 transition scenarios,244

2. Section III.B.2: compare the use of varied power buffer sizes in EG01-EG23, EG01-EG24,245

EG01-EG29, and EG01-EG30 transition scenarios, and246

3. Section III.B.3: demonstrate successful d3ploy setup of EG01-EG23, EG01-EG24, EG01-247

EG29, and EG01-EG30 transition scenarios using the prediction method and power buffer size248

that proved to best minimize power undersupply in the Sections III.B.1 and III.B.2. These249

will be referred to as ‘best performance models’.250

The input files and scripts to reproduce the results and plots in this paper are found in [28] and251

[29].252

III.A. Simple Transition Scenario253

We conducted a simple transition scenario simulation with linearly increasing power demand254

to demonstrate d3ploy’s capabilities and inform input parameter choices when setting up complex255

many-facility transition scenarios. This simulation is defined as simple since it only includes three256

facility types: source, reactor, and sink. The simulation begins with ten reactor facilities257

(reactor1 to reactor10). These reactors have staggered cycle lengths and lifetimes to prevent258

simultaneous refueling and set up gradual decommissioning. d3ploy is configured to deploy new259

reactor facilities to meet the loss of power supply created by the decommissioning of the initial260

reactor facilities. Table III shows the d3ploy input parameters for this simulation.261

Figures 5(a), 6(a), and 6(b) demonstrate d3ploy’s capability to deploy reactors and supporting262

facilities to minimize undersupply when meeting linearly increasing power demand and subsequent263
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(a) Power demand and supply, and reactor facility deployment plot for a simple linearly increasing power
demand transition scenario with three facility types: source, reactor, and sink. The simulation begins
with reactor1 to reactor10 and d3ploy deploys newreactors to meet increasing power demand.

secondary commodities demand. In Figure 5(a) there exists no time steps in which the supply264

of power falls under demand, meeting the main objective of d3ploy. By using a combination of265

the FFT method for predicting demand and a power supply buffer of 2000MW (the capacity of 2266

reactors), we minimized the number of undersupplied time steps for every commodity.267

In figure 6(a), a large-throughput source facility is initially deployed to meet the large initial268

fuel demand for the commissioning of ten reactors. Deployment of a large-throughput source269

facility for the first few time steps ensures d3ploy does not deploy supporting facilities that become270

redundant at later times in the simulation. This reflects reality in which reactor manufacturers271

accumulate an appropriate amount of fuel inventory before starting up reactors.272
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(a) Fuel demand and supply, and source facility deployment plot. Fuel is demanded by reactors and supplied
by source facilities. There is only one time step with undersupply of fuel.

(b) Spent fuel capacity and supply, and sink facility deployment plot. Spent fuel is supplied by reactors and
the capacity to store them is provided by sink facilities. There are no time steps with under-capacity of
sink space.

Fig. 6. Simple linearly increasing power demand transition scenario with three facility types:
source, reactor, and sink.
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III.B. Complex Transition Scenarios273

EG01-EG23, EG01-EG24, EG01-EG29, and EG01-EG30 transition scenarios are automatically274

set up in Cyclus using d3ploy. We defined the EG01-EG23 and EG01-EG29 transition scenario275

simulations to have a constant power demand, while EG01-EG24 and EG01-EG30 have a linearly276

increasing power demand. Similar to the simple transition scenario, these transition scenario277

simulations begin with an initial fleet of LWRs that start progressively decommissioning at the278

80-year mark, after which d3ploy deploys SFRs and MOX LWRs to meet the power demand.279

Figure 7 shows the setup of facilities and mass flows for EG01-EG23 and EG01-EG29 in Cyclus.280

In EG01-EG23 and EG01-EG29, recycled plutonium from LWR spent fuel produces SFR fuel.281

EG01-EG24 and EG01-EG30 are similar to EG01-EG23 and EG01-EG29, respectively, with the282

exception that all transuranic elements are recycled.283

The facilities used in the transition scenario simulations are described below. The source284

facility has a throughput of 1e8kg of natural uranium, and the enrichment facility has a SWU285

capacity of 1e100. The LWRs have an assembly size of 29863.3kg with 3 assemblies per core, and a286

power capacity of 1000 MW. The FRs have an assembly size of 3950kg and power capacity of 333.34287

MW. The MOX LWRs have an assembly size of 33130kg and power capacity of 1000 MW. The288

reactor facility used in the Cyclus simulation is a recipe reactor; it accepts a fresh fuel recipe289

and outputs a spent fuel recipe. The recipes used for the LWR, MOX LWR, and SFR are based on290

recipes generated by VISION [29] that closely match EG30 scenario specifications in Appendix B291

of the Department of Energy (DOE) Evaluation and Screening Study (E&S study) [6]. The LWR,292

FR, and MOX LWR cooling pools have a residence time of 36 months, and a max inventory size of293

1e8kg of fuel. The reprocessing segment for each reactor type has a reprocessing and mixer facility.294

Each reprocessing facility has a throughput of 1e8kg and separates U/Pu or U/TRU from other295

isotope in spent fuel. Each mixer facility mixes the U/Pu or U/TRU to fabricate new reprocessed296

fuel. d3ploy will deploy reprocessing facilities based on the demand of reprocessed fuel from the297

MOX LWRs and FRs to ensure that sufficient fissile material feeds the reprocessing facilities to298

make sufficient reprocessed fuel for each reactor type. Each waste repository is assumed to have299

infinite capacity. For more details about each simulation, the input files can be found at [29].300
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Fig. 7. Facility and mass flow of the transition scenarios EG01-EG23 and EG01-EG29 in Cyclus.
EG23 and EG29 are closed fuel cycles with continuous recycling of U/Pu. EG23 consists of fast
reactors, while EG29 consists of both fast and thermal reactors.
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No. of Time Steps with Power Undersupply for Each Transition Scenario
Algorithm EG01-EG23 EG01-EG24 EG01-EG29 EG01-EG30
MA 26 36 15 24
ARMA 26 36 15 24
ARCH 26 36 15 21
POLY 6 65 4 9
EXP-SMOOTHING 27 37 16 25
HOLT-WINTERS 27 37 16 25
FFT 8 20 5 9
SW-SEASONAL 36 107 14 51

TABLE IV
Total number of time steps with undersupply of power for the EG01-EG23, EG01-EG24, EG01-EG29,
and EG01-EG30 transition scenarios for different prediction methods.

III.B.1. Comparison of Prediction Methods301

EG01-EG23, EG01-EG24, EG01-EG29, and EG01-EG30 transition scenarios are set up in302

Cyclus using d3ploy. We ran each transition scenario with different prediction methods to303

determine the prediction method that best minimizes power undersupply for that scenario.304

In Figure 8, each histogram represents the number of time steps with undersupply or under305

capacity for all commodities for each prediction method. Table IV shows the total number of time306

steps with power undersupply for constant power EG01-EG23 and EG01-EG29 transition scenarios307

and linearly increasing power EG01-EG24 and EG01-EG30 transition scenarios for each prediction308

method. Figure 8 demonstrates that the POLY method minimized undersupply for all commodities309

for the EG01-EG23 transition scenario, with the smallest bars on the plot, indicating that they310

have the fewest number of time steps with undersupply and under capacity of commodities. We311

conducted a similar analysis for the constant power EG01-EG29 scenario, and as seen in Table312

IV, the POLY prediction method also minimized undersupply for all commodities for minimizing313

undersupply of power.314

In Figure 9, each histogram represents the number of time steps with undersupply or under315

capacity for all commodities for each prediction method. Figure 9 demonstrates that the FFT316

method minimized undersupply for all commodities for the EG01-EG24 transition scenario. We317

conducted a similar analysis for the linearly increasing power EG01-EG30 scenario, and as seen in318

Table IV, the FFT prediction method also minimized undersupply for all commodities.319

Figures 8, 9, and Table IV show that the POLY method minimizes power undersupply for320

constant power transition scenarios, and the FFT method minimizes power undersupply for linearly321
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Fig. 8. EG01-EG23 transition scenario with constant power demand. Each subplot shows the total
number of time steps in which there exists undersupply and under capacity of commodities for each
prediction method. The different colors represent different commodities and each vertical bar refers
to 50 time steps in the simulation. 25



Fig. 9. EG01-EG24 transition scenario with linearly increasing power demand. Each subplot shows
the total number of time steps in which there exists undersupply and under capacity of commodities
for each prediction method. The different colors represent different commodities and each vertical
bar refers to 50 time steps in the simulation. 26



increasing power transition scenarios. Undersupply and under-capacity of commodities occur322

during two main time periods: initial demand for the commodity and during the transition period323

(month 950 onwards). The POLY method minimizes commodity undersupply during the transition324

period, and does especially well during the start of the simulation in Figure 8. We hypothesize325

that it is because a first order polynomial was used, and thus, POLY could best predict the future326

demand of each commodity. The FFT method struggled with predicting the demand at the start of327

the simulation in both Figures 8 and 9, but did very well during the transition period for both328

simulations. The reason why it is so effective is that is able to capture the significant features of329

the time series data and uses it to predict future demand values. It is weaker at the beginning330

of the simulation because there is a lack of time series data. Different methods perform well for331

different power demand curves. In [17], we demonstrate that the HOLT-WINTERS method minimizes332

undersupply of all commodities for a sinusoidal power demand curve. This is because the triple333

exponential smoothing method excels in forecasting data points for repetitive seasonal series of334

data [17].335

To further d3ploy’s primary objective of minimizing the power undersupply, sensitivity336

analysis of the power supply buffer is conducted with the prediction method that best minimizes337

commodity undersupply for each transition scenario.338

III.B.2. Comparison of Power Buffer Sizes339

For the EG01-EG23, EG01-EG24, EG01-EG29, and EG01-EG30 transition scenarios, the340

power buffer size is varied for the prediction method which minimizes commodity undersupply,341

which is the POLY method for EG01-EG23 and EG01-EG29, and the FFT method for EG01-EG24342

and EG01-EG30. Varying the power buffer size does not impact the number of undersupplied343

time steps for the EG01-EG23 and EG01-EG29 constant power demand transition scenarios. In344

Table V, there are 6 and 4 time steps in which there is power undersupply for the EG01-EG23345

and EG01-EG29 transition scenarios, respectively. As seen in figure 8, these undersupply time346

steps occur at the beginning of the simulation and for one time step when the transition begins.347

We expected this since without time-series data at the beginning of the simulation, d3ploy takes348

a few time steps to collect time-series data about power demand to predict and start deploying349

reactors and supporting fuel cycle facilities. When the transition begins, power is undersupplied for350
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No. of Time Steps with Undersupply
Transition Scenario EG01-EG23 EG01-EG24 EG01-EG29 EG01-EG30
Commodities
Natural Uranium 2 3 1 1
LWR Fuel 4 6 1 2
SFR Fuel 0 0 2 2
MOX LWR Fuel - - 2 2
Power 6 7 4 5
LWR Spent Fuel 1 1 1 1
SFR Spent Fuel 1 1 1 1
MOX LWR Spent Fuel - - 1 1

TABLE V
Undersupply/capacity of key commodities for the best performing EG01-EG23, EG24, EG29, EG30
transition scenarios.

one time step, following this, d3ploy accounts for the undersupply by deploying facilities to meet351

power demand. Therefore, we minimized the power undersupply for constant power EG01-EG23352

and EG01-EG29 transition scenarios with a 0MW power supply buffer.353

We varied the power buffer size for the EG01-EG24 and EG01-EG30 linearly increasing power354

demand transition scenarios. Figures 10(a), 10(b), and Table VI show that increasing the buffer355

size increases the robustness of the supply chain by minimizing power undersupply. The cumulative356

undersupply is minimized with a 6000MW and 8000MW buffer for EG01-EG24 and EG01-EG30357

respectively. In Figure 10(a), a 4000MW buffer size has 8 time steps with undersupply, while a358

6000MW buffer size has 7 time steps with undersupply. In Figure 10(b), a 2000MW buffer size has359

6 time steps with undersupply, while a 8000MW buffer size has 5 time steps with undersupply. We360

determined that extra commissioning of multiple reactors does not justify a single time step with361

no undersupply. This type of logic is difficult to program into a NFC simulator, therefore, even362

though NFC simulators can help inform policy decisions, decision-makers must still evaluate NFC363

simulator results to determine if they are valid and logical. Therefore, a buffer of 4000MW and364

2000MW minimizes the power undersupply for EG01-EG24 and EG01-EG30 transition scenarios,365

respectively.366

III.B.3. Best Performance Models367

The ‘best performance models’ for each transition scenario use the prediction method and368

power buffer size determined in the previous subsections that best minimize the undersupply of369
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(a) EG01-EG24: Power buffer size vs. cumulative undersupply

(b) EG01-EG30: Power buffer size vs. cumulative undersupply

Fig. 10. The effect of sensitivity analysis of power buffer size on cumulative undersupply of power
for EG01-EG24 and EG01-EG30 transition scenarios with linearly increasing power demand using
the FFT prediction method.
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Buffer [MW] Undersupply EG01-EG24 EG01-EG30
0 Time steps [#] 20 9

Energy [GW ⋅mo] 315791 152517
2000 Undersupplied [#] 9 6

Energy [GW ⋅mo] 306520 147166
4000 Time steps [#] 8 6

Energy [GW ⋅mo] 303438 143166
6000 Time steps [#] 7 5

Cumulative [GW ] 303438 139083
8000 Time steps [#] 7 5

Energy [GW ⋅mo] 303438 135083

TABLE VI
The effect of sensitivity analysis of power buffer size on cumulative undersupply of power for
EG01-EG24 and EG01-EG30 transition scenarios with linearly increasing power demand using the
FFT prediction method.

power as well as the undersupply and under-capacity of the other commodities in the simulation.370

Table VII shows the d3ploy input parameters for these EG01-EG23, EG01-EG24, EG01-EG29, and371

EG01-EG30 transition scenarios. The need for commodity supply buffers is a reflection of reality372

in which a supply buffer is usually maintained to ensure continuity in the event of an unexpected373

failure in the supply chain [30].374

Figures 11 and 12 show time-dependent deployment of reactor and supporting facilities for the375

EG01-EG23 constant power demand and EG01-EG30 linearly increasing power demand transition376

scenarios, respectively. d3ploy automatically deploys reactor and supporting facilities to set up377

a supply chain to meet power demand during a transition from LWRs to SFRs for EG01-EG23,378

and from LWRs to MOX LWRs and SFRs for EG01-EG30. EG01-EG24 and EG01-EG29 facility379

deployment plots are similar to EG01-EG23 and EG01-EG30, respectively, therefore they are not380

shown.381
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(a) EG01-EG23: Reactor Deployment

(b) EG01-EG23: Supporting Facility Deployment

Fig. 11. Time dependent deployment of reactor and supporting facilities in the EG01-EG23 constant
power demand transition scenario. d3ploy automatically deploys reactor and supporting facilities
to setup a supply chain to meet constant power demand of 60000 MW during a transition from
LWRs to SFRs.
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(a) EG01-EG30: Reactor Deployment

(b) EG01-EG30: Supporting Facility Deployment

Fig. 12. Time dependent deployment of reactor and supporting facilities in the EG01-EG30 linearly
increasing power demand transition scenario. d3ploy automatically deploys reactor and supporting
facilities to setup a supply chain to meet linearly increasing power demand of 60000 + 250t/12 MW
during a transition from LWRs to MOX LWRs and SFRs.
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Input Parameter
Simulation Description

EG01-EG23 EG01-EG24 EG01-EG29 EG01-EG30
Demand Driving Power Power Power Power

Commodity
Demand 60000 60000 60000 60000

Equation [MW] +250t/12 +250t/12
Prediction POLY FFT POLY FFT

Method
Deployment Installed Installed Installed Installed

Driving Method Capacity Capacity Capacity Capacity
Fleet Share MOX: 85% MOX: 85% MOX: 85% MOX :85%
Percentage SFR: 15% SFR: 15% SFR: 15% SFR: 15%
Buffer type Absolute

Power Buffer 0 4000 0 2000
Size [MW]

TABLE VII
d3ploy’s input parameters for EG01-EG23, EG01-EG24, EG01-EG29, and EG01-EG30 transition
scenarios that minimizes undersupply of power and minimizes the undersupply and under-capacity
of the other facilities.

IV. CONCLUSION382

The present nuclear fuel cycle in the United States is a once-through fuel cycle of LWRs383

with no used fuel reprocessing. This nuclear fuel cycle faces cost, safety, proliferation, and spent384

nuclear fuel challenges that hinder large-scale nuclear power deployment. The U.S Department of385

Energy identified future nuclear fuel cycles, involving continuous recycling of co-extracted U/Pu386

or U/TRU in fast and thermal spectrum reactors, that may overcome these challenges. These387

transition scenarios have been modeled previously in the following nuclear fuel cycle simulators388

[10, 31]: ORION, DYMOND, VISION, MARKAL, and Cyclus. However, for many nuclear fuel389

cycle simulators, the user is required to define a deployment scheme for all supporting facilities to390

avoid any supply chain gaps or resulting idle reactor capacity. Manually determining a deployment391

scheme for a once-through fuel cycle is straightforward; however, for complex fuel cycle scenarios, it392

is not. In this paper, we introduce the capability, d3ploy, in Cyclus that automatically deploys fuel393

cycle facilities to meet user-defined power demand. In this paper, we demonstrate that with careful394

selection of d3ploy parameters, we can completely automate the setup of constant and linearly395

increasing power demand transition scenarios for EG01-23, EG01-24, EG01-29, and EG01-30 with396

minimal power undersupply. Using d3ploy to set up transition scenarios saves the user simulation397
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set-up time, making it more efficient than the previous efforts that required a user to manually398

calculate and use trial and error to set up the deployment scheme for the supporting fuel cycle399

facilities. Transition scenario simulations set up manually are sensitive to changes in the input400

parameters resulting in an arduous setup process since a slight change in one input parameter401

would result in the need to recalculate the deployment scheme to ensure no undersupply of power.402

Therefore, by automating this process, when the user varies input parameters in the simulation,403

d3ploy automatically adjusts the deployment scheme to meet the new constraints.404

V. FUTURE WORK405

We simulate transition scenarios to predict the future; however, when implemented in the real406

world, the transition scenario tends to deviate from the optimal scenario. Therefore, nuclear fuel407

cycle simulators must be used to conduct sensitivity analysis studies to understand the subtleties of408

a transition scenario better to reliably inform policy decisions. Previously it was difficult to conduct409

sensitivity analysis with Cyclus as users have to manually calculate the deployment scheme for a410

single change in an input parameter. By using the d3ploy capability, sensitivity analysis studies are411

more efficiently conducted as facility deployment in transition scenarios are automatically set up.412

d3ploy will also be open-source and available for the forseeable future on github [28], to be used413

with Cyclus for conducting any transition scenario analysis. The transition scenario simulations in414

this work assumed recipe reactors, however, complexity introduced by the reprocessing plants cause415

the reactor’s incoming and outgoing material composition to be dynamic. Therefore, making simple416

static assumptions such as recipe method is a poor approximation [32, 33]. In future transition417

scenario work with d3ploy, a Cyclus reactor archetype that uses dynamic fuel compositions could418

be used.419
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