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Abstract

The present United States’ nuclear fuel cycle faces challenges that hinder the expansion of nuclear
energy technology. The U.S. Department of Energy identified four nuclear fuel cycle options, which
make nuclear energy technology more desirable. Successfully analyzing the transitions from the
current fuel cycle to these promising fuel cycles requires a nuclear fuel cycle simulator that can
predictively and automatically deploy fuel cycle facilities to meet user-defined power demand.
This work introduces and demonstrates demand-driven deployment capabilities in CYCLUS, an
open-source nuclear fuel cycle simulator framework. User-controlled capabilities such as time
series forecasting algorithms, supply buffers, and facility preferences were introduced to give users
tools to minimize power undersupply in a transition scenario simulation. The demand-driven
deployment capabilities are referred to as d3ploy. We demonstrate d3ploy’s capability to predict
future commodities’ supply and demand, and automatically deploy fuel cycle facilities to meet the
predicted demand in four transition scenarios. Using d3ploy to set up transition scenarios saves the
user simulation set-up time compared to previous efforts that required a user to manually calculate

and use trial and error to set up the deployment scheme for the supporting fuel cycle facilities.

Keywords — nuclear engineering, nuclear fuel cycle, nuclear fuel cycle simulator, time series

forecasting, automated deployment
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I. INTRODUCTION

The nuclear fuel cycle represents the nuclear fuel life cycle from initial extraction through
processing, use in reactors, and, eventually, final disposal. This complex system of facilities and
mass flows collectively provide nuclear energy in the form of electricity [1]. Nuclear fuel cycle
simulator tools were introduced to investigate nuclear fuel cycle dynamics at a local and global level.
These simulators track the flow of materials through the nuclear fuel cycle, from enrichment to final
disposal of the fuel, while also accounting for decay and transmutation of isotopes. The impacts
are evaluated in the form of ‘metrics’, quantitative measures of performance [2]. These metrics are
calculated from mass balances and facility operation histories calculated by a fuel cycle simulator
[2]. By evaluating performance metrics of different fuel cycles, we gain an understanding of how
each facility’s parameters and technology choices impact the system’s performance. Therefore,
these results can be used to guide research efforts, advise future design choices, and provide
decision-makers with a transparent tool for evaluating fuel cycle options to inform policy decisions
[1].

Many fuel cycle simulators automatically deploy reactor facilities to meet a user-defined power
demand. However, the user must define a deployment scheme of supporting facilities to avoid gaps
in the supply chain resulting in idle reactor capacity. Current simulators require the user to set
infinite capacity for supporting facilities but this inaccurately represents reality and obfuscates
required capacities. Manually determining a deployment scheme for a once-through fuel cycle is
straightforward, however, for complex fuel cycle scenarios, it is not. To ease setting up realistic
nuclear fuel cycle simulations, a nuclear fuel cycle simulator must bring dynamic demand-responsive
deployment decisions into the simulation logic [3]. This means the nuclear fuel cycle simulator
decides how many mines, mills, enrichment facilities, reprocessing facilities, etc are deployed to
support dynamically changing power demand and reactor types. Thus, a next-generation nuclear
fuel cycle simulator must predictively and automatically deploy fuel cycle facilities to meet a

user-defined power demand.

I.A. Context of Work

The impact of climate change on natural and human systems is increasingly apparent [4].

The production and use of energy contribute to two-thirds of the total greenhouse gas (GHG)
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Fuel Cycle Open or Closed Fuel Type Reactor Type
EGO01

(current) Open Enriched-U Thermal

EG23 Closed i{elc\l}:tlsfag [/JPU Fast

EG24 Closed lie;};ilifag I/JTRU Fast

EG29 Closed i{el(il};ils?all-] I/JPu Fast & Thermal
EG30 Closed Eelc\l}:tlifag I/JTRU Fast & Thermal

TABLE 1
Descriptions of the current and other high performing nuclear fuel cycle evaluation groups described
in the evaluation and screening study [6].

emissions [4]. Furthermore, as the human population increases and previously under-developed
nations rapidly industrialize, global energy demand is forecasted to increase. Energy generation
technology selection profoundly impacts climate change via growing energy demand. Large scale
deployment of emissions free nuclear power plants could significantly reduce GHG production [4].

However, large scale nuclear power deployment faces challenges of safety, cost, and used
nuclear fuel [5]. The nuclear power industry must overcome these challenges to ensure continued
global use and expansion of nuclear energy technology.

The challenges described above are associated with the present once-through fuel cycle in the
United States (US), in which fabricated nuclear fuel is used once and placed into storage to await
disposal. An evaluation and screening study of a comprehensive set of nuclear fuel cycle options [6]
was conducted to assess for promising evaluation groups (EGs) with performance improvements
compared with the existing once-through fuel cycle (EGO01) in the US across a wide range of criteria.
Fuel cycles that involved continuous recycling of co-extracted U/Pu or U/TRU in fast spectrum
critical reactors consistently scored high on overall performance based on the nine DOE-specified
evaluation criteria: nuclear waste management, financial risk and economics, proliferation risk,
nuclear material security risk, safety, environmental impact, resource utilization, development and
deployment risk, and institutional issues [6]. Table I describes these fuel cycles: EG23, EG24, EG29,
and EG30. Recent statements from Rita Baranwal [7], the Nuclear Energy Innovation Capabilities
Act (8], and the Advanced Nuclear Technology Development Act [9] show that there continues to

be national interest in pursuing spent fuel recycling and advanced nuclear power technology.
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The evaluation and screening study assumed the nuclear energy systems were at equilibrium
to understand the end-state benefits of each evaluation group [10]. In the current work, our goal is
to model the transition from the initial EG01 state to these promising future end-states without
assuming equilibrium fuel cycles. To successfully analyze time-dependent transition scenarios, the
nuclear fuel cycle simulator tool must automate the transition scenario simulation setup. Therefore,
the Demand-Driven CYCAMORE Archetypes project (NEUP-FY16-10512) was initiated to develop
demand-driven deployment capabilities in CYCLUS, a nuclear fuel cycle simulator. This capability,
d3ploy, is a CYCLUS Institution agent that deploys facilities to meet user-defined power demand.

CyCLUS is an agent-based nuclear fuel cycle simulation framework [2], each entity (i.e. Region,
Institution, or Facility) in the fuel cycle is an agent. An agent-based model enables model
development to take place at an agent level rather than a system level [2]. For example, an analyst
can design a reactor agent that is entirely independent from an fuel fabrication agent. Each agent’s
behavior is designed according to the application interface contract, giving them the capability to
interact with each other in the simulation [2]. Region agents represent geographical or political areas
in which Institution and Facility agents reside. Institution agents represent legal operating
organizations such as utilities, governments, and control the deployment and decommissioning
of Facility agents [2]. Facility agents represent nuclear fuel cycle facilities such as mines,
conversion facilities, reactors, reprocessing facilities, etc. CYCAMORE [11] provides basic Region,
Institution, and Facility archetypes compatible with CycLus. A complete introduction to

CycLus can be found in [2].

I.B. Novelty

We utilized time series forecasting methods to effectively predict future commodities’ supply
and demand in d3ploy. Solar and wind power generation commonly use these methods to make
future predictions based on past time series data [12, 13, 14, 15]. Industrial supply chain management
also uses sophisticated time series forecasting techniques to predict demand for quantities of goods
in the supply chain [16]. This is a novel approach that has never been applied to nuclear fuel cycle

simulators.
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I.C. Objectives

The main objectives of this paper are: (1) to describe the demand-driven deployment
capabilities in CycCLUS, (2) to describe the prediction methods available in d3ploy, and (3) to
demonstrate the use of d3ploy in setting up EG01-23, EG01-24, EG01-29, and EG01-30 transition

scenarios with various power demand curves.

II. METHODOLOGY

In Cycrus, developers have the option to design agents using C++ or Python. The d3ploy
Institution agent was implemented in Python to enable the use of well-developed time series
forecasting Python packages.

During a CycLUS simulation, at every time step, d3ploy predicts the supply and demand
of each commodity for the next time step. It is assumed that facility deployment occurs within
one time step (month). Commodities refer to materials in the nuclear fuel cycle such as reactor
fuel. Upon undersupply for any commodity, d3ploy deploys facilities to meet its predicted demand.
Therefore, if the simulation begins with user-defined power demand, d3ploy deploys reactors to
meet power demand, followed by enrichment facilities to meet fuel demand, and so on, to create
the supply chain. Based on the demand and supply trends of each commodity, d3ploy predicts
their future demand and supply, and deploys facilities accordingly to meet the future demand to
prevent demand from surpassing supply. Figure 1 shows the logical flow of d3ploy at every time
step. In subsequent subsections, we describe how to set up a transition scenario using d3ploy and
the input parameters d3ploy accepts.

d3ploy aims to minimize the undersupply of power:

ty
obj = min Z |Dy.p = St.pl- (1)

t=1



no

|

Start time step (t).

Calculate predicted

D(t+1) and S(t + 1)
for a commodity

Ut+1)=S{E+1)-D(t+1)

U(t+1)< buV y(t + 1) > buffer

{ Deploy Facilities J { No Deployment

~,. 7

Has D(¢t + 1) and

S(t+ 1) been calculated
for all commodities?

yes

Proceed to
next time step.

Fig. 1. d3ploy logic flow at every time step in CycLus [17].
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where:

t; = Number of time steps [months]
t = time [month]

D = Demand

S = Supply

p = power [MW]

The sub-objectives are to minimize the number of time steps of undersupply or under-capacity of

any commodity:

M ty
obj =min Z Z |Dt,c - St,C|v (2)

c=1t=1

and to minimize excessive oversupply of all commodities:

M ty
obj = min Z Z |St,c = Dy cl- (3)
c=1t=1

where:

¢ = commodity type

M = Number of commmodities

Minimizing excessive oversupply reflects reality, in which utilities ensure grid availability
by ensuring power plants are never short of fuel while avoiding expensive storage of excess fuel.
Nuclear fuel cycle simulations often face power shortages due to lack of viable fuel, despite having
sufficient installed reactor capacity. Using d3ploy to automate the deployment of supporting

facilities prevents this.
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Fig. 2. Simple once-through fuel cycle depicting which facilities are deployed by
DemandDrivenDeploymentInst and SupplyDrivenDeploymentInst.

II.A. Structure

Front-end facilities meet the demand for commodities they produce, whereas back-end
facilities meet supply for the commodities they demand. Therefore, in d3ploy two distinct
institutions control front-end and back-end fuel cycle facilities: DemandDrivenDeploymentInst and
SupplyDrivenDeploymentInst, respectively. For example, when a reactor facility demands fuel,
DemandDriven-

DeploymentInst deploys fuel fabrication facilities to create fuel supply. For back-end facilities, the
reactor generates spent fuel, and SupplyDrivenDeploymentInst deploys used fuel storage facilities
to create capacity to store the spent fuel. Figure 2 depicts a simple once-through fuel cycle and the

Institution type governing each facility’s deployment.

IILA.1. Deployment-Driving Method

To prevent over-deployment of facilities with an intermittent supply such as reactors that
require refueling, and to prevent infinite deployment of a facility that demands a commodity no
longer available in the simulation, we introduced the capability to deploy facilities based on the
difference between predicted demand and installed capacity. The user may deploy facilities based on
the difference between predicted demand and predicted supply, or predicted demand and installed
capacity. For example, a reprocessing plant that fabricates Sodium-Cooled Fast Reactor (SFR)
fuel demands for Pu after depletion of the existing Pu inventory and decommissioning of the Light

Water Reactors (LWRs) that produce it. If we used the deployment-driving method driven by
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the difference in predicted demand and predicted supply, this results in infinite deployment of
reprocessing facilities in a futile attempt to produce SFR fuel, crashing the simulation. Instead, if
we use the deployment-driving method driven by the difference in predicted demand and installed
capacity, only one reprocessing facility will be deployed, the simulation will finish, and the user
will see that a large Pu inventory must be accumulated. Therefore, using the deployment-driving
method that deploys facilities based on the difference between predicted demand and installed

capacity is ideal for most transition scenarios.

II.B. Input Variables

Table II lists and gives examples of the input variables d3ploy accepts. The user must define

the following input variables:

1. The available facilities for d3ploy to deploy in the simulation and their respective
capacities. Users must define the facilities they want d3ploy to deploy. It is the user’s
responsibility to ensure the defined facilities create a supply chain to produce the demand

driving commodity.

2. The demand driving commodity and its demand equation. For most simulations,
the demand driving commodity is power. The demand equation is defined by a mathematical
equation with units of MW. For example, a constant power demand equation is 10000, while

a linearly increasing power demand equation is 100t¢.
3. The deployment driving method. This input variable is described in Section IT1.A.1.

4. The prediction method. This input variable is described in Section II.D. There are also

optional input variables:

5. Supply/capacity buffers for individual commodities. This input variable is described

in section I1.B.1.
6. Facility preferences. This input variable is described in section II.C.

7. Facility fleet shares. This input variable is described in section II.C.

10



Input Parameter

Examples

Required

Demand driving commodity

Power

Demand equation [MW]

P(t) = 10000, sin(t), 10000¢

Available Facilities

Mine, LWR, Repository, etc.

Capacities of the facilities

3000 kg, 1000 MW, 50000 kg

Prediction method

Power: Fast Fourier Transform
Fuel: Moving Average
Spent fuel: Moving Average

Deployment driven by

Installed Capacity

Optional

Supply/Capacity Buffer type Absolute

Power: 3000 MW
Supply/Capacity Buffer size ~ Fuel: 0 kg

Spent fuel: 0 kg

. LWR = 100-t

Facility preferences [month] SFR — .99

MOX LWR = 85%
Fleet share percentage [%)] SFR — 15%

TABLE 11

d3ploy’s required and optional input parameters with examples.

ws 1I.B.1.

The user has the option to specify a supply buffer for each commodity; d3ploy accounts
for the buffer when calculating predicted demand and deploys facilities accordingly. The buffer is

defined as a percentage:

or an absolute value:

Supply/Capacity Buffer

Spwb = Sp(l + d)

Spwb = Sp +b

11
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where:

Spuwb = predicted supply/capacity with buffer
Sy, = predicted supply/capacity
d = buffer’s percentage value in decimal form

b = buffer’s absolute value

Using the buffer capability and installed capacity to drive facility deployment in a transition
scenario simulation will effectively minimize undersupply of a commodity while avoiding excessive

oversupply. This is demonstrated in Section II1.A.

II.C. Facility Preference and Fleet Share

The user can define time-dependent preference equations to facilities’ that supply the same
commodity. If there are two reactor types, LWRs and Sodium-Cooled Fast Reactors (SFRs), in a
simulation, the user can make use of time-dependent preferences to make the simulation deploy
LWRs at earlier times in the simulation, and deploy SFRs at later times in the simulation when
there is a power demand. In Table II, the user defined that the LWR has a preference of 100 —t,
while the SFR has a preference of ¢t — 99. Figure 3 depicts how the preference for each reactor
changes with time. When there is a power undersupply, d3ploy will deploy the reactor that has a
larger preference at that time step. At time step 100, LWR preference is 0, while SFR. preference is
1; therefore an SFR is deployed if there is a power shortage. Thus, the transition occurs at the
100" time step.

The user also has the option to specify percentage-share for facilities that provide the same
commodity. For example, if there are two reactor types, mixed oxide (MOX) LWRs and SFRs, in a
simulation, the user can make use of percentage-share specifications to determine the percentage
of power supplied by each reactor. When MOX LWR has a share of s% and SFR has a share of
(100 - s)%, MOX LWR deployment constrains to s% of total power demand and SFR. deployment
constrains to (100 - s)% of total power demand.

The transition year is selected by customizing facility preferences to prefer advanced reactors

at that year. The fleet-share percentage determines the share of each type of reactor to transition to.

12
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Fig. 3. d3ploy has a 100 - ¢ preference for LWRs and a ¢t — 99 preference for SFRs. When there is a
power undersupply, d3ploy will deploy the reactor that has a larger preference at that time step.

Figure 4 shows the logical flow of which facility d3ploy deploys when there are multiple facilities

offering the same commodity.

II.D. Prediction Methods

d3ploy records supply and demand at each time step for all commodities. Time-series data
informs d3ploy’s time series forecasting methods which predict future supply and demand for each
commodity. The time series forecasting methods investigated include non-optimizing, deterministic-
optimizing, and stochastic-optimizing methods. Non-optimizing methods are techniques that
harness simple moving average and autoregression concepts which use historical data to infer
future supply and demand values. Deterministic-optimizing and stochastic-optimizing methods are
techniques that use an assortment of more sophisticated time series forecasting concepts to predict
future supply and demand values. Deterministic-optimizing methods give deterministic solutions,
while stochastic-optimizing methods give stochastic solutions.

Depending on the scenario in question, each forecasting method offers distinct benefits and
disadvantages. The various methods are compared for each type of simulation to determine the
most effective prediction method for a given scenario. The following sections describe the prediction

methods.

13
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{ Deploy facilities to J { Are there facility J
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meet fleet share % preferences?
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Deploy facilities Deploy facilities
in preference to minimize total
order to meet no. of facilities and
their fleet share % minimize oversupply.

Fig. 4. Logical flow of how d3ploy selects which facility to deploy when there are multiple facilities
offering the same commodity.

s I1.D.1.  Non-Optimizing Methods

208 Non-optimizing methods include: Moving Average (MA), Autoregressive Moving Average
20 (ARMA), and Autoregressive Heteroskedasticity (ARCH). The MA method calculates the average of a
a0 user-defined number of previous entries in a commodity’s time series and returns it as the predicted

a1 value (equation 6).

>NV

PV =
where:

PV = predicted value
V,, = time series value

N =length of time series

The ARMA method combines moving average and autoregressive models (equation 7). The
first term is a constant, the second term is white noise, the third term is the autoregressive model,

and the fourth term is the moving average model. The ARMA method is more accurate than the MA

14
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method because of the inclusion of the autoregressive term:

p q
Xt =Cc+e€+ ZcpiXt—i + Zﬁiet,i. (7)

i=1 i=1

where:

c = a constant

€; = error terms (white noise)

@ = the autoregressive models parameters
f = the moving average models parameters
p = order of the autoregressive polynomial

q = order of the moving average polynomial

The ARCH method models time series data by describing the variance of the current error term
as a function of the sizes of the previous time periods’ error terms [18]. This allows the method to
support changes in the time dependent volatility, such as increasing and decreasing volatility in the
same series [18]. The ARCH method is better than the ARMA method for volatile time-series data [19].

The StatsModels [20] Python package is used to implement ARMA and ARCH methods in d3ploy.

I1I.D.2. Deterministic-Optimizing Methods

Deterministic methods include Fast Fourier Transform (FFT), Polynomial Fit (POLY), Ex-
ponential Smoothing (EXP-SMOOTHING), and Triple Exponential Smoothing (HOLT-WINTERS). The
FFT method uses the fast Fourier transform algorithm to map a time series into the frequency
domain. The algorithm returns complex numbers from which frequency, amplitude, and phase is
extracted. Future demand and supply values are predicted by summing the significant components,
then using the inverse Fourier transform method to return it into a usable form. The discrete
Fourier transform (DFT) transforms a sequence of N complex numbers (X}) into another sequence

of complex numbers (z,,) [21]:

N-1 .
Xk — Z mne—ﬁﬂ'kn/N. (8)
n=0

15



where:

X =sequence of complex numbers
k=0,...N-1

N = No. of complex numbers

x = sequence of complex numbers

n=0,..N-1

28 This method is implemented in d3ploy using the SciPy [22] Python package.
210 The POLY method fits the time series data with a user-defined n'* degree polynomial and uses

20 the fitted trend-line to determine future demand and supply values:

N
Y}:BO+Zﬂnt”+5 (9)
n=1
where:

t = time index
n = polynomial order
[ = fitted parameters

€ = unobserved random error

a1 This method was implemented in d3ploy using the NumPy [23] Python package.

2 The EXP-SMOOTHING and HOLT-WINTERS methods use a weighted average of time-series data
23 with exponentially decaying weights for older time series values [24] to create a model to determine
24 future demand and supply values. The EXP-SMOOTHING method excels in modeling univariate time

25 series data without trend or seasonality [24]:

Yer1 = i + (1= )y, (10)

16



where:

y = timeseries value

a = smoothing factor (0 < a < 1)

26 The HOLT-WINTERS method applies triple exponential smoothing, resulting in higher accuracy when

27 modeling seasonal time series data [25]:

Fiim = (St + mbt)lt—L+m (11)

S, = ali + (1= a)(Sit +bey)
t—-L

by = (St = Sp-1)+) (L =7)be1

Iy = ﬁ%i +(1-p8)1-1

where:

F = forecast at m periods ahead
t = time period index
L = periods in a season
S = smoothed observation
y = the observation
b = trend factor
I = seasonal index

a, 3,7 = constants

28 The StatsModels [20] Python package was used to implement the EXP-SMOOTHING and HOLT-WINTERS

29 methods in d3ploy.

17
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II.LE. Stochastic-Optimizing Methods

We implemented one stochastic-optimizing method: step-wise seasonal method (SW-SEASONAL).
The method was implemented in d3ploy by the Auto-Regressive Integrated Moving Averages
(ARIMA) method in the pmdarima [26] Python package. The ARIMA model is a dependent time
series that is modeled as a linear combination of its own past values and past values of an error

series [27]:

0(B)
¢(B) "

(1-B)Y, = p+ (12)

where:

t = time index
A =1mean term
B = backshift operator, such that BX; = X;_;
d =no. of roots
Y = timeseries data
¢(B) = autoregressive operator
6(B) = moving average operator

a; = random error

III. RESULTS

This section aims to demonstrate d3ploy’s capability to completely automate the setup of
transition scenarios and meet the objectives described in section I.C. This section is split into two
subsections. The first subsection (section III.A) will demonstrate d3ploy’s capabilities to set up
a simple transition scenario with only three facility types. The second subsection (section III.B)
will demonstrate d3ploy’s capabilities to set up complex EG01-23, EG01-24, EG01-29, EG01-30

transition scenarios and is further subdivided into:

18
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Input Parameters Simple Transition Scenario
Demand driving commodity Power
Demand equation [MW] t <40 =1000,¢ > 40 = 1000 + 250¢

Required | Available facilities Source, Reactor, Sink
Prediction method FFT
Deployment driving method Installed Capacity

. Buffer type Absolute
Optional Buffer size Power: 2000MW, Fuel: 1000kg
TABLE 111

d3ploy’s input parameters for the simple transition scenario with linearly increasing power demand.

1. Section III.B.1: compare the use of different d3ploy prediction methods in EG01-EG23,

EGO01-EG24, EG01-EG29, and EG01-EG30 transition scenarios,

2. Section III.B.2: compare the use of varied power buffer sizes in EG01-EG23, EG01-EG24,
EGO01-EG29, and EG01-EG30 transition scenarios, and

3. Section II1.B.3: demonstrate successful d3ploy setup of EG01-EG23, EG01-EG24, EGO01-
EG29, and EG01-EG30 transition scenarios using the prediction method and power buffer size
that proved to best minimize power undersupply in the Sections ITI.B.1 and III.B.2. These

will be referred to as ‘best performance models’.

The input files and scripts to reproduce the results and plots in this paper are found in [28] and

[29].

ITII.A. Simple Transition Scenario

We conducted a simple transition scenario simulation with linearly increasing power demand
to demonstrate d3ploy’s capabilities and inform input parameter choices when setting up complex
many-facility transition scenarios. This simulation is defined as simple since it only includes three
facility types: source, reactor, and sink. The simulation begins with ten reactor facilities
(reactorl to reactor10). These reactors have staggered cycle lengths and lifetimes to prevent
simultaneous refueling and set up gradual decommissioning. d3ploy is configured to deploy new
reactor facilities to meet the loss of power supply created by the decommissioning of the initial
reactor facilities. Table I1I shows the d3ploy input parameters for this simulation.

Figures 5(a), 6(a), and 6(b) demonstrate d3ploy’s capability to deploy reactors and supporting

facilities to minimize undersupply when meeting linearly increasing power demand and subsequent

19
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Supply, Demand and Facilities for Growing Transition, Commodity: Power
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(a) Power demand and supply, and reactor facility deployment plot for a simple linearly increasing power
demand transition scenario with three facility types: source, reactor, and sink. The simulation begins
with reactorl to reactor10 and d3ploy deploys newreactors to meet increasing power demand.

secondary commodities demand. In Figure 5(a) there exists no time steps in which the supply
of power falls under demand, meeting the main objective of d3ploy. By using a combination of
the FFT method for predicting demand and a power supply buffer of 2000MW (the capacity of 2
reactors), we minimized the number of undersupplied time steps for every commodity.

In figure 6(a), a large-throughput source facility is initially deployed to meet the large initial
fuel demand for the commissioning of ten reactors. Deployment of a large-throughput source
facility for the first few time steps ensures d3ploy does not deploy supporting facilities that become
redundant at later times in the simulation. This reflects reality in which reactor manufacturers

accumulate an appropriate amount of fuel inventory before starting up reactors.
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(a) Fuel demand and supply, and source facility deployment plot. Fuel is demanded by reactors and supplied
by source facilities. There is only one time step with undersupply of fuel.

Supply, Demand and Facilities for Growing Transition, Commodity: Spent Fuel
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(b) Spent fuel capacity and supply, and sink facility deployment plot. Spent fuel is supplied by reactors and
the capacity to store them is provided by sink facilities. There are no time steps with under-capacity of
sink space.

Fig. 6. Simple linearly increasing power demand transition scenario with three facility types:
source, reactor, and sink.
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ITI.B. Complex Transition Scenarios

EGO01-EG23, EG01-EG24, EG01-EG29, and EG01-EG30 transition scenarios are automatically
set up in CYCLUS using d3ploy. We defined the EG01-EG23 and EG01-EG29 transition scenario
simulations to have a constant power demand, while EG01-EG24 and EG0O1-EG30 have a linearly
increasing power demand. Similar to the simple transition scenario, these transition scenario
simulations begin with an initial fleet of LWRs that start progressively decommissioning at the
80-year mark, after which d3ploy deploys SFRs and MOX LWRs to meet the power demand.
Figure 7 shows the setup of facilities and mass flows for EG01-EG23 and EG01-EG29 in CycLus.
In EG01-EG23 and EGO01-EG29, recycled plutonium from LWR spent fuel produces SFR fuel.
EGO01-EG24 and EG01-EG30 are similar to EG01-EG23 and EG01-EG29, respectively, with the
exception that all transuranic elements are recycled.

The facilities used in the transition scenario simulations are described below. The source
facility has a throughput of 1le8kg of natural uranium, and the enrichment facility has a SWU
capacity of 1e100. The LWRs have an assembly size of 29863.3kg with 3 assemblies per core, and a
power capacity of 1000 MW. The FRs have an assembly size of 3950kg and power capacity of 333.34
MW. The MOX LWRs have an assembly size of 33130kg and power capacity of 1000 MW. The
reactor facility used in the CycCLUS simulation is a recipe reactor; it accepts a fresh fuel recipe
and outputs a spent fuel recipe. The recipes used for the LWR, MOX LWR, and SFR are based on
recipes generated by VISION [29] that closely match EG30 scenario specifications in Appendix B
of the Department of Energy (DOE) Evaluation and Screening Study (E&S study) [6]. The LWR,
FR, and MOX LWR cooling pools have a residence time of 36 months, and a max inventory size of
le8kg of fuel. The reprocessing segment for each reactor type has a reprocessing and mixer facility.
Each reprocessing facility has a throughput of 1e8kg and separates U/Pu or U/TRU from other
isotope in spent fuel. Each mixer facility mixes the U/Pu or U/TRU to fabricate new reprocessed
fuel. d3ploy will deploy reprocessing facilities based on the demand of reprocessed fuel from the
MOX LWRs and FRs to ensure that sufficient fissile material feeds the reprocessing facilities to
make sufficient reprocessed fuel for each reactor type. Each waste repository is assumed to have

infinite capacity. For more details about each simulation, the input files can be found at [29].
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EG23 and EG29 are closed fuel cycles with continuous recycling of U/Pu. EG23 counsists of fast
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No. of Time Steps with Power Undersupply for Each Transition Scenario

Algorithm EGO01-EG23 EGO01-EG24 EGO01-EG29 EGO01-EG30
MA 26 36 15 24
ARMA 26 36 15 24
ARCH 26 36 15 21
POLY 6 65 4 9
EXP-SMOOTHING 27 37 16 25
HOLT-WINTERS 27 37 16 25
FFT 8 20 ) 9
SW-SEASONAL 36 107 14 o1
TABLE IV

Total number of time steps with undersupply of power for the EG01-EG23, EG01-EG24, EG01-EG29,
and EG01-EG30 transition scenarios for different prediction methods.

III.B.1. Comparison of Prediction Methods

EGO01-EG23, EG01-EG24, EG01-EG29, and EG01-EG30 transition scenarios are set up in
CycLus using d3ploy. We ran each transition scenario with different prediction methods to
determine the prediction method that best minimizes power undersupply for that scenario.

In Figure 8, each histogram represents the number of time steps with undersupply or under
capacity for all commodities for each prediction method. Table IV shows the total number of time
steps with power undersupply for constant power EG01-EG23 and EG01-EG29 transition scenarios
and linearly increasing power EG01-EG24 and EG01-EG30 transition scenarios for each prediction
method. Figure 8 demonstrates that the POLY method minimized undersupply for all commodities
for the EG01-EG23 transition scenario, with the smallest bars on the plot, indicating that they
have the fewest number of time steps with undersupply and under capacity of commodities. We
conducted a similar analysis for the constant power EG01-EG29 scenario, and as seen in Table
IV, the POLY prediction method also minimized undersupply for all commodities for minimizing
undersupply of power.

In Figure 9, each histogram represents the number of time steps with undersupply or under
capacity for all commodities for each prediction method. Figure 9 demonstrates that the FFT
method minimized undersupply for all commodities for the EGO1-EG24 transition scenario. We
conducted a similar analysis for the linearly increasing power EG01-EG30 scenario, and as seen in
Table IV, the FFT prediction method also minimized undersupply for all commodities.

Figures 8, 9, and Table IV show that the POLY method minimizes power undersupply for

constant power transition scenarios, and the FFT method minimizes power undersupply for linearly
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EG1-23: Time steps with an undersupply or under capacity of each commodity for different prediction methods
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EG1-24: Time steps with an undersupply or under capacity of each commodity for different prediction methods
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increasing power transition scenarios. Undersupply and under-capacity of commodities occur
during two main time periods: initial demand for the commodity and during the transition period
(month 950 onwards). The POLY method minimizes commodity undersupply during the transition
period, and does especially well during the start of the simulation in Figure 8. We hypothesize
that it is because a first order polynomial was used, and thus, POLY could best predict the future
demand of each commodity. The FFT method struggled with predicting the demand at the start of
the simulation in both Figures 8 and 9, but did very well during the transition period for both
simulations. The reason why it is so effective is that is able to capture the significant features of
the time series data and uses it to predict future demand values. It is weaker at the beginning
of the simulation because there is a lack of time series data. Different methods perform well for
different power demand curves. In [17], we demonstrate that the HOLT-WINTERS method minimizes
undersupply of all commodities for a sinusoidal power demand curve. This is because the triple
exponential smoothing method excels in forecasting data points for repetitive seasonal series of
data [17].

To further d3ploy’s primary objective of minimizing the power undersupply, sensitivity
analysis of the power supply buffer is conducted with the prediction method that best minimizes

commodity undersupply for each transition scenario.

II1.B.2. Comparison of Power Buffer Sizes

For the EG01-EG23, EG01-EG24, EG01-EG29, and EG01-EG30 transition scenarios, the
power buffer size is varied for the prediction method which minimizes commodity undersupply,
which is the POLY method for EG01-EG23 and EG01-EG29, and the FFT method for EGO1-EG24
and EG01-EG30. Varying the power buffer size does not impact the number of undersupplied
time steps for the EG01-EG23 and EG01-EG29 constant power demand transition scenarios. In
Table V, there are 6 and 4 time steps in which there is power undersupply for the EG01-EG23
and EG01-EG29 transition scenarios, respectively. As seen in figure 8, these undersupply time
steps occur at the beginning of the simulation and for one time step when the transition begins.
We expected this since without time-series data at the beginning of the simulation, d3ploy takes
a few time steps to collect time-series data about power demand to predict and start deploying

reactors and supporting fuel cycle facilities. When the transition begins, power is undersupplied for
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No. of Time Steps with Undersupply
Transition Scenario EGO01-EG23 EGO01-EG24 EG01-EG29 EG01-EG30

Commodities

Natural Uranium 2 3 1 1
LWR Fuel 4 6 1 2
SFR Fuel 0 0 2 2
MOX LWR Fuel - - 2 2
Power 6 7 4 5
LWR Spent Fuel 1 1 1 1
SFR Spent Fuel 1 1 1 1
MOX LWR Spent Fuel - - 1 1

TABLE V
Undersupply /capacity of key commodities for the best performing EG01-EG23, EG24, EG29, EG30
transition scenarios.

one time step, following this, d3ploy accounts for the undersupply by deploying facilities to meet
power demand. Therefore, we minimized the power undersupply for constant power EG01-EG23
and EG01-EG29 transition scenarios with a 0MW power supply buffer.

We varied the power buffer size for the EG01-EG24 and EG01-EG30 linearly increasing power
demand transition scenarios. Figures 10(a), 10(b), and Table VI show that increasing the buffer
size increases the robustness of the supply chain by minimizing power undersupply. The cumulative
undersupply is minimized with a 6000MW and 8000MW buffer for EG01-EG24 and EG01-EG30
respectively. In Figure 10(a), a 4000MW buffer size has 8 time steps with undersupply, while a
6000MW buffer size has 7 time steps with undersupply. In Figure 10(b), a 2000MW buffer size has
6 time steps with undersupply, while a 8000MW buffer size has 5 time steps with undersupply. We
determined that extra commissioning of multiple reactors does not justify a single time step with
no undersupply. This type of logic is difficult to program into a NFC simulator, therefore, even
though NFC simulators can help inform policy decisions, decision-makers must still evaluate NFC
simulator results to determine if they are valid and logical. Therefore, a buffer of 4000MW and
2000MW minimizes the power undersupply for EG01-EG24 and EG01-EG30 transition scenarios,

respectively.

III.B.3. Best Performance Models

The ‘best performance models’ for each transition scenario use the prediction method and

power buffer size determined in the previous subsections that best minimize the undersupply of
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EGO1-24: Power Undersupply vs. Power Buffer Size
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(a) EG01-EG24: Power buffer size vs. cumulative undersupply

EGO01-30: Power Undersupply vs. Power Buffer Size
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Fig. 10. The effect of sensitivity analysis of power buffer size on cumulative undersupply of power

for EGO1-EG24 and EG01-EG30 transition scenarios with linearly increasing power demand using
the FFT prediction method.
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Buffer [MW] | Undersupply EG01-EG24 EGO01-EG30
0 | Time steps [#] 20 9
Energy [GW - mo] 315791 152517

2000 | Undersupplied [#] 9 6
Energy [GW - mo] 306520 147166

4000 | Time steps [#] 8 6
Energy [GW -mo] 303438 143166

6000 | Time steps [#] 7 5
Cumulative [GW] 303438 139083

8000 | Time steps [#] 7 5
Energy [GW - mo] 303438 135083

TABLE VI

The effect of sensitivity analysis of power buffer size on cumulative undersupply of power for
EGO01-EG24 and EG01-EG30 transition scenarios with linearly increasing power demand using the
FFT prediction method.

power as well as the undersupply and under-capacity of the other commodities in the simulation.
Table VII shows the d3ploy input parameters for these EG01-EG23, EG01-EG24, EG01-EG29, and
EGO01-EG30 transition scenarios. The need for commodity supply buffers is a reflection of reality
in which a supply buffer is usually maintained to ensure continuity in the event of an unexpected
failure in the supply chain [30].

Figures 11 and 12 show time-dependent deployment of reactor and supporting facilities for the
EGO01-EG23 constant power demand and EG01-EG30 linearly increasing power demand transition
scenarios, respectively. d3ploy automatically deploys reactor and supporting facilities to set up
a supply chain to meet power demand during a transition from LWRs to SFRs for EG01-EG23,
and from LWRs to MOX LWRs and SFRs for EG01-EG30. EG01-EG24 and EG01-EG29 facility
deployment plots are similar to EG01-EG23 and EG01-EG30, respectively, therefore they are not

shown.

30



No. of Reactor Facilities in simulation at each time step

N
o
o

. wr
e sfr

=
~
u

150

125

100

~
w

[
o

Number of Agents in Simulation
N
w

o
o

400 600 800 1000 1200 1400
Months

(a) EG01-EG23: Reactor Deployment
No. of Supporting Facilities in simulation at each timestep

Iwr fuel fabrication plant
natural uranium source
Ilwr fuel cooling pool

lwr fuel reprocessing plant
fr fuel fabrication plant
lwr reprocessing waste
fr fuel cooling pool

fr fuel reprocessing plant
fr reprocessing waste

251

20+

154

10

Number of Agents in Simulation

400 600 800 1000
Months

1200

(b) EG01-EG23: Supporting Facility Deployment

Fig. 11. Time dependent deployment of reactor and supporting facilities in the EG01-EG23 constant
power demand transition scenario. d3ploy automatically deploys reactor and supporting facilities
to setup a supply chain to meet constant power demand of 60000 MW during a transition from
LWRs to SFRs.
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Fig. 12. Time dependent deployment of reactor and supporting facilities in the EG01-EG30 linearly
increasing power demand transition scenario. d3ploy automatically deploys reactor and supporting
facilities to setup a supply chain to meet linearly increasing power demand of 60000 + 250¢/12 MW
during a transition from LWRs to MOX LWRs and SFRs.
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Input Parameter Simulation Description
EGO01-EG23 EGO01-EG24 EGO01-EG29 EGO01-EG30
Demand Driving Power Power Power Power
Commodity
Demand 60000 60000 60000 60000
Equation [MW] +250t/12 +250t/12
Prediction POLY FFT POLY FFT
Method
Deployment Installed Installed Installed Installed
Driving Method Capacity Capacity Capacity Capacity
Fleet Share | MOX: 85% MOX: 85% MOX: 85% MOX :85%
Percentage SFR: 15% SFR: 15% SFR: 15% SFR: 15%
Buffer type Absolute
Power Buffer 0 4000 0 2000
Size [MW]
TABLE VII

d3ploy’s input parameters for EG01-EG23, EG01-EG24, EG01-EG29, and EG01-EG30 transition
scenarios that minimizes undersupply of power and minimizes the undersupply and under-capacity
of the other facilities.

IV. CONCLUSION

The present nuclear fuel cycle in the United States is a once-through fuel cycle of LWRs
with no used fuel reprocessing. This nuclear fuel cycle faces cost, safety, proliferation, and spent
nuclear fuel challenges that hinder large-scale nuclear power deployment. The U.S Department of
Energy identified future nuclear fuel cycles, involving continuous recycling of co-extracted U/Pu
or U/TRU in fast and thermal spectrum reactors, that may overcome these challenges. These
transition scenarios have been modeled previously in the following nuclear fuel cycle simulators
[10, 31]: ORION, DYMOND, VISION, MARKAL, and CycLus. However, for many nuclear fuel
cycle simulators, the user is required to define a deployment scheme for all supporting facilities to
avoid any supply chain gaps or resulting idle reactor capacity. Manually determining a deployment
scheme for a once-through fuel cycle is straightforward; however, for complex fuel cycle scenarios, it
is not. In this paper, we introduce the capability, d3ploy, in CYCLUS that automatically deploys fuel
cycle facilities to meet user-defined power demand. In this paper, we demonstrate that with careful
selection of d3ploy parameters, we can completely automate the setup of constant and linearly
increasing power demand transition scenarios for EG01-23, EG01-24, EG01-29, and EG01-30 with

minimal power undersupply. Using d3ploy to set up transition scenarios saves the user simulation
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set-up time, making it more efficient than the previous efforts that required a user to manually
calculate and use trial and error to set up the deployment scheme for the supporting fuel cycle
facilities. Transition scenario simulations set up manually are sensitive to changes in the input
parameters resulting in an arduous setup process since a slight change in one input parameter
would result in the need to recalculate the deployment scheme to ensure no undersupply of power.
Therefore, by automating this process, when the user varies input parameters in the simulation,

d3ploy automatically adjusts the deployment scheme to meet the new constraints.

V. FUTURE WORK

We simulate transition scenarios to predict the future; however, when implemented in the real
world, the transition scenario tends to deviate from the optimal scenario. Therefore, nuclear fuel
cycle simulators must be used to conduct sensitivity analysis studies to understand the subtleties of
a transition scenario better to reliably inform policy decisions. Previously it was difficult to conduct
sensitivity analysis with CYCLUS as users have to manually calculate the deployment scheme for a
single change in an input parameter. By using the d3ploy capability, sensitivity analysis studies are
more efficiently conducted as facility deployment in transition scenarios are automatically set up.
d3ploy will also be open-source and available for the forseeable future on github [28], to be used
with CycLUS for conducting any transition scenario analysis. The transition scenario simulations in
this work assumed recipe reactors, however, complexity introduced by the reprocessing plants cause
the reactor’s incoming and outgoing material composition to be dynamic. Therefore, making simple
static assumptions such as recipe method is a poor approximation [32, 33]. In future transition
scenario work with d3ploy, a CYCLUS reactor archetype that uses dynamic fuel compositions could

be used.
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