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From the Authors

By tradition, trigonometry is an important component
of mathematics courses at high school, and trigonometry
questions are always set at oral and written examina-
tions to those entering universities, engineering colleges,
and teacher-training institutes.

The aim of this study aid is to help the student to mas-
ter the basic techniques of solving difficult problems in
trigonometry using appropriate definitions and theorems
from the school course of mathematics. To present the
material in a smooth way, we have enriched the text
with some theoretical material from the textbook Algebra
and Fundamentals of Analysis edited by Academician
A. N. Kolmogorov and an experimental textbook of the
same title by Professors N.Ya. Vilenkin, A.G. Mordko-
vich, and V.K. Smyshlyaev, focussing our attention on
the application of theory to solution of problems. That
is why our book contains many worked competition
problems and also some problems to be solved independ-
ently (they are given at the end of each chapter, the
answers being at the end of the book).

Some of the general material is taken from Elementary
Mathematics by Professors G.V. Dorofeev, M.K. Potapov,
and N.Kh. Rozov (Mir Publishers, Moscow, 1982), which
is one of the best study aids on mathematics for pre-
college students.

We should like to note here that geometrical problems
which can be solved trigonometrically and problems
involving integrals with trigonometric functions are
not considered.

At present, there are several problem books on mathe-
matics (trigonometry included) for those preparing to
pass their entrance examinations (for instance, Problems
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at Entrance Examinations in Mathematics by Yu.V. Nes-
terenko, S.N. Olekhnik, and M.K. Potapov (Moscow,
Nauka, 1983); A Collection of Competition Problems in
Mathematics with Hints and Solutions edited by A.I. Pri-
lepko (Moscow, Nauka, 1986); 4 Collection of Problems in
Mathematics for Pre-college Students edited by A.I. Pri-
lepko (Moscow, Vysshaya Shkola, 1983); 4 Collection of
Competition Problems in Mathematics for Those Entering
Engineering Institutes edited by M.I. Skanavi (Moscow,
Vysshaya Shkola, 1980). Some problems have been bor-
rowed from these for our study aid and we are grateful
to their authors for the permission to use them.

The beginning of a solution to a worked example is
marked by the symbol « and its end by the symbol p.
The symbol p indicates the end of the proof of a state-
ment.

Our book is intended for high-school and pre-college
students. We also hope that it will be helpful for the
school children studying at the “smaller” mechanico-
mathematical faculty of Moscow State University.
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Chapter 1
Definitions and Basic Properties
of Trigonometric Functions

1.1. Radian Measure of an Are. Trigonometric Circle

1. The first thing the student should have in mind when
studying trigonometric functions consists in that the
arguments of these functions are real numbers. The pre-
college student is sometimes afraid of expressions such
as sin 1, cos 15 (but not sin 1°, cos 15°), cos (sin 1), and so
cannot answer simple questions whose answer becomes
obvious if the sense of these expressions is understood.

When teaching a school course of geometry, trigonomet-
ric functions are first introduced as functions of an angle
(even only of an acute angle). In the subsequent study,
the notion of trigonometric function is generalized when
functions of an arc are considered. Here the study is not
confined to the arcs enclosed within the limits of one
complete revolution, that is, from 0° to 360°; the student
is encountered with arcs whose measure is expressed by
any number of degrees, both positive and negative. The
next essential step consists in that the degree (or sexage-
simal) measure is converted to a more natural radian
measure. Indeed, the division of a complete revolution
into 360 parts (degrees) is done by tradition (the division
into other number of parts, say into 100 parts, is also
used). Radian measure of angles is based on measuring
the length of arcs of a circle. Here, the unit of measure-
ment is one radian which is defined as a central angle
subtended in a circle by an arc whose length is equal to
the radius of the circle. Thus, the radian measure of an
angle is the ratio of the arc it subtends to the radius of
the circle in which it is the central angle; also called
circular measure. Since the circumference of a circle of
a unit radius is equal to 2m, the length of the arc of 360°
is equal to 2m radians. Consequently, to 180° there corre-
spond n radians. To change from degrees to radians and
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vice versa, it suffices to remember that the relation be-
tween the degree and radian measures of an arc is of
proportional nature.

Example 1.1.1. How many degrees are contained in
the arc of one radian?
4We write the proportion:
If n radians = 180°,
and 1 radian = z,
then x =21 x 57.20578° or 57°17'44.8". p
Example 1.1.2. How many degrees are contained in
. 351 . .
the arc of =5 radians?

12
4 If n radians = 180°,
and % radians == x,
351

then &= 180°)/n:525°. >

12
Example 1.1.3. What is the radian measure of the arc
of 1984°?

If © radians = 180°,
and y radians = 1984°,

n198% 496 1
180 U »

2. Trigonometric Circle. When considering either the
degree or the radian measure of an arc, it is of importance
to know how to take into account the direction in which
the arc is traced from the initial point 4, to the terminal
point 4,. The direction of tracing the arc anticlockwise is
usually said to be positive (see Fig. 1a), while the direc-
tion of tracing the arc clockwise is said to be negative
(Fig. 1b).

Wé should like to recall that a circle of unit radius with
a given reference point and positive direction is called the
trigonomeiric (or coordinate) circle.

then y=
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Usually, the right-hand end point of the horizontal
diameter is chosen as the reference point. We arrange
the trigonometric circle on a coordinate plane with the

A \
A/

. 5 A

Fig. 1

rectangular Cartesian coordinate system introduced
(Fig. 2), placing the centre of the circle into the origin.
Then the reference point has the coordinates (1, 0). We
denote: A = 4 (1, 0). Also, let B, C, D denote the points
B @O, 1), C(—1, 0), g

D (0, — 1), respectively. 50

The trigonometric cir- -

cle will bhe denoted by S. \
According to the afore-
said, c(-1,0) A(h0)

S = {(z.y):a® + 2 =1). 0 g

3. Winding the Real
Axis on the Trigonometric
Circle. In the theory of 2(0,-1)
trigonometric functions
the fundamental role is Fig. 2
played by the mapping
P: R— S of the set R of recal numbers on the coordi-
nate circle which is constructed as follows:

(1) The number ¢ = O on the real axis is associated
with the point A4: 4 = P,,.

(2) If ¢ >0, then, on the trigonometric circle, we
consider the arc AP;, taking the point A = P, as the
intitial point of the arc and tracing the path of length ¢
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round the circle in the positive direction. We denote the
terminal point of this path by P, and associate the num-
ber ¢t with the point P, on the trigonometric circle. Or
in other words: the point P, is the image of the poiut
A = P, when the coordinate plane is rotated about the
origin through an angle of ¢ radians.

(3) If t << 0, then, starting from the point A round the
circle in the negative direction, we shall cover the path of
length |t |. Let P, denote the terminal point of this
path which will just be the point corresponding to the
negative number ¢.

Asisseen, the sense of the constructed mapping ’: R —
S consists in that the positive semiaxis is wound onto
S in the positive direction, while the negative semiaxis
is wound onto S in the negative direction. This mapping
is not one-to-one: if a point F € S corresponds to a num-
ber ¢ € R, that is, ¥ = P,, then this point also corre-
sponds to the numberst 4 2xn, t — 2n: F = Py, =
Py _yn. Indeed, adding to the path of length ¢ the
path of length 2n (either in the positive or in the nega-
tive direction) we shall again find ourselves at the point ¥,
since 2r is the circumference of the circle of unit radius.
Hence it also follows that all the numbers going into
the point P, under the mapping P have the form ¢ -+ 2nk,
where %k is an arbitrary integer. Or in a briefer formula-
tion: the full inverse image P-! (P,) of the point P,
coincides with the set

{t + 2nk: k € Z}.

Remark. The number ¢ is usually identificd with the
point P, corresponding io this number, however, when
solving problems, it is useful to find out what object is
under consideration.

Example 1.1.4. Find all the numbers ¢ € R correspond-
ing to the point F € S with coordinates (—} 2/2,
— V' 2/2) under the mapping P.

4 The point F actually lies on S, since

(— 2 () e drd et
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Let X, Y denote the feet W
of the perpendiculars drop-
ped from the lpoint F on
the coordinate axes Ox and
Oy (Fig. 3). Then | X0 | =
| YO | = | XF |, and X 0 A
AXFO is a right isosceles By z
triangle, £ XOF = 45° = \
n/4 radian. Therefore \ y
the magnitude of the arc L2z

AF isequal tom %=sz“,
and to the point F there Fig. 3
correspond the numbers

§Z—‘+ 2nk, k€Z, and only they. p

Example 1.1.5. Find all the numbers corresponding to
the vertices of a regnlar N-gon inscribed in the trigono-

Yy
,4,=F,’*y_r A,,=/}
g x
A2=p]+ %—-” Aé_ e’g_}{
AJ= F;f%.—-”
Fig. 4

metric circle so that one of the vertices coincides with the

point P, (see Fig. 4 in which N = j).

4 The vertices of a regular N-gon divide the trigonomet-

ric circle into N equal arcs of length 2n/N each. Con-

sequently, the vertices of the given N-gon coincide

with the points 4, = PHgm, wherel =0,1,..., N — 1.
N

Therefore the sought-for numbers ¢ € R have the form
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1 - %V—k , where & € Z. The last assertion is verified in the

following way: any integer k € Z can be uniquely written
in the form &k = Nm + [, where 0<CI<C N — 1 and m,
l € Z, | being the remainder of the division of the integer

k by N. It is now obvious that the equality 1 + =~ 2“"

1+ = 2“1 + 2nm is true since its right-hand s1de con-

K4
g ='a/3n/z
£= '0-1511/4
C A=F
g x
£ :’D—mrﬁ
D= Psnse
Fig. 5

tains the numbers which correspond to the points P1+ anl
~
on the trigonometric circle. p
Example 1.1.6. Find the points of the trigonometric
circle which correspond to the following numbers: (a) 3n/2,
(b) 13n/2, (c) —15n/4, (d) —17n/6.
«(a) 32—n=z-2n, therefore, to the number % there
corresponds the point D with coordinates (0, —1), since
the arc AD traced in the positive direction has the mea-

sure equal to3 of a complete revolution (Fig. 5).
13n

13
(b) 2

there corxesponds the point B (0, 1): starting from the
point A we can reach the point B by tracing the trigono-
metric circle in the positive direction three times and

=t _3.2n 4+ 2 5 consequently, to the number —-
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then covering a quarter of revolution (/2 radian) in the
same dircclion.

(c) Let us represent the number —15r/4 in the form
2nk - t,, where k is an integer, and ¢, is a number such
that 0<C ¢ty << 2n. To do so, it is necessary and sufficient
that the following inequalities be fulfilled:

2k < —15m/4<< 20 (k + 1).

Let us write the number —15n/4 in the form —3% n=

—4n +% , whence it is clear that k= —2, t,=n/4,

and to the number ¢ =¥—15n/4 there corresponds a
point £ = P, such that the size of the angle £0A is
n/4 (or 45°). Therefore, to construct the point P_;5x/,, we
have to trace the trigonometric circle twicein the negative
direction and then to cover the path of length n/4 corre-
sponding to the arc of 45° in the positive direction. The

point E thus obtained has the coordinates (}/2/2, |/ 2/2).

(d) Similarly, — 2% =_23 g 27 5% __3q4

% , and in order to reach the point F = P_y75 (start-

ing from A), we have to cover one and a half revolutions
(3n radians) in the negative direction (as a result, we
reach the point C (—1, 0)) and then to return tracing an
arc of length /6 in the positive direction. The point I

has the coordinates (—)/3/2, —1/2). p

Example 1.1.7. The points 4 = Py, B = Py, C =
Py, D = Pg,), divide the trigonometric circle into
four equal arcs, that is, into four quarters called quad-
rants. Find in what quadrant each of the following points
lies: (a) Pyq, (b) Pg, (c) P_s.
«qTo answer this question, one must know the approxi-
mate value of the number t which is determined as half
the circumference of unit radius. This number has been
computed to a large number of decimal places (here are the
first 24 digits: n &~ 3.141 592 653 589 793 238 462 643).

To solve similar problems, it is sufficient to use far less
accurate approximations, but they should be written in
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the form of strict inequalities of type

M <n<3.2 1.1)
344 < m < 3.5, (1.2)
3441 < m < 3.142. (1.3)

Inaccurate haudling of approximate numbers is a flagrant.
error when solving problems of this kind. Such problems
are usually reduced to a rigorous proof of some inequali-
ties. The proof of an inequality is, in turn, reduced to
a certain obviously true estimate wusing equivalent
transformations, for instance, to one of the estimates
(1.1)-(1.3) if from the hypothesis it is clear that such
an estimate is supposed to be known. In such cases, some
students carry out computations with unnecessarily
high accuracy forgetting about the logic of the proof.
Many difficulties also arise in the cases when we have to
prove some estimate for a quantity which is usually
regarded to be approximately known to some decimal
digits; for instance, to prove that n > 3 or that n << 4.
The methods for estimating the number n are connected
with approximation of the circumference of a circle with
the aid of the sum of the lengths of the sides of regular
N-gons inscribed in, and circumscribed about, the trigo-
nometric circle. This will be considered later on (in
Sec. 5.1); here we shall use inequality (1.1) to solve
the problem given in Example 1.1.7.
Let us find an integer © such that

2 <0< 2EED A.4)

Then the number of the quadrant in which the point P,, is
located will be equal to the remainder of the division of
the number k& -+ 1 by 4 since a complete revolution con-
sists of four quadrants. Making use of the upper estimate

n < 3.2, we find that 3—%§< 9.6 for k = 6; at the same

time, s >34 and D _ %7> 3.1.3.5 = 10.85.

Combining these inequalities with the obvious inequality

9.6 << 10 << 10.85,
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we get a rigorous proof of the fact that inequality (1.4)
is fulfilled for & = 6, and the point P,, lies in the third
quadrant since the remainder of the division of 7 by 4
is equal to 3.

In similar fashion, we find that the inequalities

nk t(k-+1)
5 <8< —5—

are valid for k=25, since —né—5< 3.2:5

2
3';'6 =9.3. Consequently, the point P, lies in the

=8 and ::2;6>

second quadrant, since the remainder of the division of
the number & + 1 = 6 by 4 is equal to 2. The point P_g,
symmetric to the point P, with respect to the z-axis, lies
in the third quadrant. p

Example 1.1.8. Find in which quadrant the point
P /T8 lies.

—‘ -y 7
4 Let us find an integer & such that

nk/2 <—V5—YT<am(k-+1)/2. (1.5)
To this end, we use the inequalities
22<V)Y5<2.3,
1.9< ¥V 7<2,
whose validity is ascertained by squaring and cubing both
sides of the respective inequality (let us recall that if
both sides of an inequality contain nonnegative numbers,

then raising to a positive power is a reversible transforma-
tion). Consequently,

—43<--Y5-YT<—4.1. (1.6)

Again, let us take into consideration that 3.1 <z << 3.2.
Therefore the following inequalities are fulfilled:

n (—=3)/2 < —4.65 << —4.3, 1.7

n (—=2)/2 > —3.2 > —4.1. (1.8)

From inequalities (1.6)-(1.8) it follows that (1.9)is
valid for & = —3, consequently, the point P_,/g_%ﬁ

lies in the second gquadrant, since the remainder after the
division of the number —3 + 1 by 4 is equal to 2. p

2—-01644



18 1. Properties of Trigonometric Functions

1.2. Definitions of the Basic Trigonometric Functions

1. The Sine and Cosine Defined. Here, recall that in
school textbooks the sine and cosine of a real number ¢ €
R is defined with the aid of a trigonometric mapping

P:R—S.

Definition. Let the mapping P associate a numbert € R
with the point P, on the trigonometric circle. Then the
. ordinate y of P, is called
4 the sine of the number ¢t and
7 Aleostsint) is symbolized sin ¢, and
g the abscissa x of P, iscalled
the cosine of the num-
ber ¢t and is denoted by
cos .
¢ Let us drop perpendicu-

lars from the point P, on

the coordinate axes Oz and

Oy. Let X, and Y, denote

the feet of these perpendic-

Fig. 6 ulars. Then the coordinate

of the point Y, on the

y-axis is equal to sint, and the coordinate of the
point X, on the z-axis is equal to cos t (Fig. 6).

The lengths of the line segments OY, and OX, do not
exceed 1, therefore sin ¢ and cos ¢ are functions defined
throughout the number line whose values lie in the closed
interval [— 1, 1]

D (sint) = D (cos t) = R,
E (sint) = F (cos t) = [ —1, 1].

The important property of the sine and cosine (the
fundamental trigonometric identity): for any ¢ ¢ R

sin? t 4- cos? £ = 1.

Indeed,thecoordinates(x, y) of the point P, on the trig-
onometric circle satisfy the relationship z% 4+ y?>=1,
and consequently cos®t + sin?¢ = 1.

‘Example 1.2.1. Find sin ¢ and cos ¢ if: (a) ¢t = 3n/2,
(b) t =13n/2, (¢) t = —15n/4, (d) t = —17n/6.
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4 In Example 1.1.6, it was shown that
P3nys=D (0, —1), Pisne=B(0, 1),
P_isapn=E V22, V2/2), P_yrns=F(—V 32, —1/2).

Consequently,  sin (3n/2) = —1, cos (3n/2) = 05
sin (137/2) =1, cos (13w/2)==0; sin (—157/4) = V272,
cos (—15m/4) =V 2/2; sin (—17n/6) = —1/2,

cos (—17n/6) = — VY 3/2. »

Example 1.2.2. Compare the numbers sin 1 and sin 2.
4Consider the points P, and P, on the trigonometric
circle: P, lies in the first quadrant and P, in the second
quadrant since 11/2 << 2 <<m.

Through the point P,, we 14
pass a line parallel to the A 8 r-
z-axis to intersect the cir-
cle at a point E. Then the
points E and P, have equal
ordinates. Since LAOE = , A
/. P,0C,E=P,_, (Fig.7), 7
consequently, sin 2 =

sin (n — 2) (this is a partic-

ular case of the reduction

formulas considered below).

The inequality 1 — 2 > 1

is valid, therefore sin (n — Fig. 7

2) > sin1, since both

points P, and P, _, lie in the first quadrﬁnt, and when
a movable point traces the arc of the first quadrant
from A to B the ordinate of this point increases from O
to 1 (while its abscissa decreases from 1 to 0). Conse-
quently, sin2 > sin1. p

Example 1.2.3. Compare the numbers cos 1 and cos 2.
4 The point P, lying in the second quadrant has a nega-
tive abscissa, whereas the abscissa of the point P, is
positive; consequently, cos 1 >0 > cos 2. p

Example 1.2.4. Determine the signs of the numbers

sin 10, cos 10, sin 8, cos 8.
4 It was shown in Example 1.1.7 that the point P, lies
in the third quadrant, while the point Pg is in the second
quadrant. The signs of the coordinates of a point on the
trigonometric circle are completely determined by the
2%

r-2
&
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position of a given point, that is, by the quadrant in
which the point is found. For instance, both coordinates
of any point lying in the third quadrant are negative,
while a point lying in the second quadrant has a negative
abscissa and a positive ordinate. Consequently, sin 10 <<0,
cos 10 <0, sin 8 >0, cos 8 << 0. p

Example 1.2.5. Determine the signs of the numbers
sin (V5+%7) and cos(V5+ V7).
4 From what was proved in Example 1.1.8, it follows that

n<<V5+ Y7 <3n/2.

Consequently, the point Pl/"r'; lies in the third

quadrant; therefore

sin(V5+¥7) <0, cos(V54+VY7)<<0. p

Note for further considerations that sin ¢ = 0 if and
only if the point P, has a zero ordinate, that is, P, = 4
or C, and cos t = 0 is equivalent to that P, = B or D
(see Fig. 2). Therefore all the solutions of the equation
sin ¢t = 0 are given by the formula

+y7

=nn, ne€lLt,

and all the solutions of the equation cos ¢t = 0 have the
form

t:-%‘--]-n'n, neZ. .

2. The Tangent and Cotangent Defined.

Definition. The ratio of the sine of a number ¢t € R to
the cosine of this number is called the tangent of the
number ¢ and is symbolized tan ¢. The ratio of the cosine
of the number ¢ to the sine of this number is termed the
cotangent of t and is denoted by cot ¢.

By definition,

sin ¢ cos t
= — t = -
tan cost '’ cot sin¢ °
sin ¢

has sense for all real wvalues

The expression ——
of t, except those for which cos ¢==0, that is, except
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for the values t= % + nk, y /

k€Z, and the expression 8
cot ¢t has sense for all val-
ues of £, except those for |
which sin ¢ = 0, that is, |
except for t=umk, k€ Z. o Jl
Thus, the function tan ¢ is X,
defined on the set of all /

~<
T
|
|
O

<

real numbers except the
numbers t = g— +nk,kEZ. |

The function cot ¢ is defined
on the set of all real num- .
bers except the numbers Fig. 8
t =m=nk, k€Z

Graphical representation of the numbers tan ¢t and cot ¢
with the aid of the trigonometric circle is very useful.
Draw a tangent AB’ to the trigonometric circle through
the point 4 = P,, where B’ = (1, 1). Draw a straight
line through the origin O and the point P; and denote the
point of its intersection with the tangent AB’ by Z,
(Fig. 8). The tangent AB’ can be regarded as a coordi-
nate axis with the origin A so that the point B’ has the
coordinate 1 on this axis. Then the ordinate of the point
Z, on this axis is equal to tan . This follows from the
similarity of the triangles OX,P, and OAZ, and the defini-
tion of the function tan t. Note that the point of inter-
section is absent exactly for those values of t for which

P, = B or D, that is, for ¢ =% + ain, n € Z, when the

function tan ¢ is not defined.

Now, draw a tangent BB’ to the trigonometric circle
through the point B and consider the point of intersection
W, of the line OF; and the tangent. The abscissa of W,
is equal to cott. The point of intersection W, is
absent exactly for those ¢ for which P; = A4 or C, that is,
when t = nin, n € Z, and the function cot ¢t is not defined
(Fig. 9).

In this graphical representation of tangent and cotan-
gent, the tangent linesAB’ and BB’ to the trigonometric
circle are called the line (or axis) of tangents and the line
(axis) of cotangents, respectively.
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Example 1.2.6. Determine the signs of the numbers:
tan 10, tan 8, cot 10, cot 8.

\y
8 8’
I
8" W
==X
F\1
e LYg
0 Xt x
D
Fig. 9

«In Example 1.2.4, it was shown that sin 10 <0 and
cos 10 < 0, sin 8 >0 and cos 8 <0, consequently,
tan 10 > 0, cot 10 > 0, tan 8 << 0, cot 8 < 0.

y ﬂ“/
\(57) (1 (-V3,1) V3.1,
P.
g T (] z
(4 Pur -
_%’7 L;{_ .{7, v3/3)
(=)
a AN P
Fig. 10

Example 1.2.7. Determine the sign of the number
cot (V5 + /7).
4 In Example 1.2.5,_it was shown that sin (l/g + ¥ <
9’_ and cos (V5 + ¥/ 7) <0, therefore cot (V5 +
V7)) >0. »



1.3. Basic Properties 23

Example 1.2.8. Find tan t and cot ¢ if t‘—":an’ 12“ ’
_AIn ix

6 ' 6

« As in Ttem 3 of Sec. 1.1, we locate the points P,
P17n/4 (Flg. 100)., P—i?«ﬂ/s? P“n/s (Flg 10b) on the fI'ii_I-
onometric circle and compute their coordinates:

Pani (=V2/2, V2/2), Puan(V2/2, V202), ,
P_yas(— V312, —172),  Puas(V 32, —1/2),
therefore tan (3m/4) = cot (3m/4) = —1, tan (17n/4) =
cot (17n/4) = 1, tan (—177/6) = 1/V'3 = V 3/3,
cot (—17n/6) ==V 3, tan (112/6) = —}/ 3/3, cot (117/6) =

—V3. »

1.3. Basic Properties of Trigonometric Functions

1. Periodicity. A function f with domain of definition
X = D (f) is said to be periodic if there is a nonzero num-
ber T such that for any z € X

r+TEX and z—TEX,
and the following equality is true:
fla=T)=f@ =@+ .

The number T is then called the period of the function
f (x). A periodic function has infinitely many periods
since, along with 7, any number of the form rnT, where n
is an integer, is also a period of this function. The smal-
lest positive period of the function (if such period exists)
is called the fundamental period.

Theorem 1.1. The functions { (z) = sin 2 and | (z) =
cos x are periodic with fundamental period 2mn.

Theorem 1.2. The functions f (x) = tan z and f () =
cot x are periodic with fundamental period m.

It is natural to carry out the proof of Theorems 1.1
and 1.2 using the graphical representation of sine, cosine.
tangent, and cotangent with the aid of the trigonometric
circle. To the real numbers z, « + 2n, and z — 2=,
there corresponds one and the same point P, on the
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trigonometric circle, consequently, these numbers have
the same sine and cosine. At the same time, no positive
number less than 25t can be the period of the functions
sin z and cos x. Indeed, if T is the period of cos z, then
cos T =cos (0 + T) = cos 0 = 1. Hence, to the num-
ber 7, there corresponds the point P, with coordinates
(1, 0), therefore the number 7 has the form T == 2an
(n € Z); and since it is positive, we have T' > 2n. Similar-

ly, if T is the period of the function sin z, then sin (% -+

T) = sin—g-= 1, and to the number % -+ T there

corresponds the point P,,+T with coordinates (0, 1).
z
Hence, % + T = % + 2nn (n € Z) or T = 2an, that is,

T>=2n. p

To prove Theorem 1.2, let us note that the points P,
and P,,, are symmetric with respect to the origin for
any t (the number n specifies a half-revolution of the
trigonometric circle), therefore the coordinates of the
points P, and P,,, are equal in absolute value

and have unlike signs, that is, sint = —sin (¢ + «),
cost = —cos (¢ -+ n). Consequently, tant == i:;z =
—sin (¢t m) cost  -—cos(ttm)

—cos(t+m tan (¢ + n), cot t = sint  —sin (tm)
cot (t + m). Therefore = is the period of the functions
tan ¢t and cot t. To make sure that m is the fundamental
period, note that tan 0 = 0, and the least positive value
of t for which tan t = 0 is equal to . The same rea-
soning is applicable to the function cot t. p

Example 1.3.1. Find the fundamental period ol the
function f () = cos*t - sin t.
4 The function f is periodic since

(¢ + 2n) = cos® (t + 2m) + sin (¢ + 2n)

= cos*t 4 sin t.
No positive number T, smaller than 2x, is the period
of the function f(t) since f (—%) #f(—%—~1— T)::

f(%) . Indeed, the numbers sin (——72'—) and sin ZL
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are distinct from zero and have unlike signs, the

T T ..
numbers cos — =5 and oS —- coincide, therefore

cost ( —TT) - sin (—TT) = cost 77-{— sin —72; »
Example 1.3.2. Find the fundamental period of the
function f (Vﬁx) if it is known that T is the fundamental
period of the function f ().
 First of all, let us note that the points z—¢, x,
z+t belong to the domain of definition of the func-
tion g (z)=7(Y5z) if and only if the points z}/5—
tV5, 2V5, 2V54t)/5 belong to the domain of def-
inition of the function f (x). The definition of the func-
tion g (x) implies that the equalities g (z — 1) =

g@=g@+t and f(V5—t)5) —f(:LV5
f (V' 5 -+ ¢tV 5) are cquivalent. Therefore, since 7' is the
fundamental period of the function f (2), the number
T/V'5 is a period of the function g (z); il is the funda-
mental period of g (z), since otherwise the function g (z)
would have a period t << 7/} 5, and, hence, the function
f (x) would have a period t}/ 5, strictly less than 7. p

Note that a more general stalement is valid: if a func-
tion f (x) has the fundamental period 7, then the func-
tion g (z) = f (eax 4- ) (¢ % 0) has the fundamental
period /] a |.

Example 1.3.3. Prove that the function f (x) =
sin Tz | is not periodic.
« Supposc that T is the period of the function f ().
We take a positive z satisfying the equality sin VI~ 1.
Then sin Y z4-7- sinyz=1, hence Y+ T—yz-
2an (n€Z). But Y z-FT =V «, therefore the following
inequality holds true:

Vet Tz2a4Va
Both sides of this inequality contain positive numbers,
consequently, when squared, this inequality will bev_re-
placed by an equivalent one: z - T3> 4n? -|- 4n})/ z-F
z or
T=4n2+4n ) x.
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The obtained inequality leads to a contradiction since

the number )/ z can be chosen arbitrarily large and, in
particular, so that the inequality is not valid for the
given fixed number 7. p

2. Evenness and Oddness. Recall that a function f is
said to be even if for any z from its domain of definition
—azx also belongs to this domain, and the equality
f (—z) = f (z) is valid. A function f is said to be odd if,

under the same conditions,
¥ the equality f(—zx) =
—f (z) holds true.
\ A couple of examples of
even functions: f (z) = 22,
f(x) =a* + V 522 + m.
A couple of examples of
4z odd functions: f(x)=—)/ 13,
f (@) = 22% + nad.
Note that many functions
/ are neither even nor odd.
For instance, the function
f@) =a%+ a2 + 1 is not
Fig. 11 even since f(—zx) =
(—af + (—ap + 1=
—a* + 2% +1 5~ f (x) for 250, Similarly, the function
f () is not odd since f (—z) = —f ().

Theorem 1.3. The functions sin x, tan z, cot z are odd,
and the function cos x is even.

Proof. Consider the arcs AP, and AP _,; of the trigono-
metric circle having the same length |t | but opposite
directions (Fig. 11). These arcs are symmetric with
respect to the axis of abscissas, therefore their end points

P, (cost, sint), P_;(cos (—t), sin (—t))

have equal abscissas but opposite ordinates, that is,
cos (—t) = cos t, sin (—t) = —sint.  Consequently,
the function sin ¢ is odd, and the function cos t is even.

Further, by the definition of the tangent and cotangent,

o sin(—t) _ —sint
tan (—1)= cos(—t) = cost

= —tant
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if cos t =0 (here also cos (—t) = cost 5= 0), and

cos(—2?) _  cost
sin(—t) = —sint

if sin t 5= 0 (here also sin (—t) = —sin ¢ 55 0). Thus,
the functions tan ¢ and cot ¢{ are odd. p

Example 1.3.4. Prove that the function f(¢) =
sin® 2t cos 4t -+ tan 5¢ is odd.
<4 Note that f (—t) = (sin (—2t))® cos (—2t) +
tan (—5t) = (—sin 2t)> cos 2t — tan 5t = — f (t) for
any ¢t from the domain of
definition of the function
(that s, such  that

BVP&
cos 5t == 0). p 2,
3. Monotonicity. Recall
that a function f defined 4
in an interval X is said to 4
&

cot (—1t) = = —cott

S

be increasing in this inter-
val if for any numbers z,,
z, € X such that 'z, <u,
the inequality f (z;) <f ()
holds true; and if a weak
inequality is valid, that is,
f(z) < f (x,), then the func- Fig. 12
tion f is said to be nonde-
creasing on the interval X. The notion of a decreasing
function and a nonincreasing function is introduced in
a similar way. The properties of increasing or decreasing
of a function are also called monotonicity of the function.
The interval over which the function increases or decreases
is called the interval of monotonicity of the function.
Let us test the functions sin ¢ and cos ¢ for monotonici-
ty. As the point P, moves along the trigonometric circle
anticlockwise (that is, in the positive direction) from the
point A = P, to the point B (0, 1), it keeps rising and
displacing to the left (Fig. 12), that is, with an increase
in ¢t the ordinate of the point increases, while the abscissa
decreases. But the ordinate of P, is equal to sint¢, its
abscissa being equal Lo cost. Therefore, on the closed
interval [0, m/2], that is, in the first quadrant, the func-
tion sint increases from 0 to 1, and cos ¢ decreases
from 1 to O.
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Similarly, we can investigate the behaviour of these
functions as the point P, moves in the second, third, and
fourth quadrants. Hence, we may formulate the following
theorem.

Theorem 1.4. On the interval [0, n/2) the function
sin t increases from 0 to 1, while cos t decreases from 1 to 0.
On the interval [n/2, n) the function sin | decreases from 1
to 0, while cos t decreases from 0 to —1. On the interval
[n, 3n/2] the function sin t decreases from 0 to —1, while
cos ¢ increases from —1 to 0. On the interval [3n/2 2n)
the function sin t increases from —1 to 0, while cos t
increases from 0 to 1.
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The proof of the theorem is graphically illustrated in
Figs. 12-15, where points P,, P,, P, are such that
t,<t,<<ts P

Theorem 1.5. The function tan t increases on the interval
(—n/2, nu/2), and the function cot t decreases on the inter-
val (0, m).

Proof. Consider the function tan ¢{. We have to show
that for any numbers t,, t, such that —n/2 <t, <t, <<
n/2, the inequality tan ¢, << tan ¢, holds.

Consider three cases:

(1) 0< t, <ty < m/2. Then, by virtue of Theorem 1.4,

O0<sint, <sint,, cost; > cost, >0,
whence

sin 2, sin ¢,
cost, cos tg *
Consequently, tant, < tant,.
2 —n2<t, <0 <t,<<mn/2. In this case,

tant, << 0, and tan ¢, > 0, therefore tan t; << tan t,.
(8) —n/2 <t, <t,<<0. By virtue of Theorem 1.4,

sin t; <sin t,<{0, 0 <<cost, << cost,,

therefore
sin #, sin ¢,
Tost; ~costy
that is, tan ¢, << tan t,.
The proof for the function cot ¢ is carried out in a sim-
ilar way. p
Note that the monotonicity properties of the basic
trigonometric functions on other intervals can be obtained
from the periodicity of these functions. For example,
on the closed interval [—n/2, 0] the functions sin ¢ and
cos t increase, on the open interval (n/2, 3=/2) the func-
tion tan ¢ increases, and on the open interval (m, 2m)
the function cot ¢ decreases.
Example 1.3.5. Prove that the functions sin (cos t)
and cos (sin t) decrease on the interval [0, n/2].
«If t,, t, € [0, /2], where t, << t,, then, by Theorem 1.4,
sint, <<sint,, and cost, <<cost,. Note that the
points on the trigonometric circle, corresponding to the
real numbers sin ¢,, sin £,, cos t;, cos ,, are in the first
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quadrant since these numbers lie on the closed interval
[0,1], and 1 << n/2. Therefore, we may once again apply
Theorem 1.4 which implies that for any t,, t, € [0, /2]
such that t, <<t,, the following inequalities are valid:

sin (cos t;) > sin (cos t,), cos (sin £;) > cos (sin t,),

that is, sin (cos t) and cos (sin t) are decreasing functions
on the interval [0, n/2]. p

4. Relation Between Trigonometric Functions of One
and the Same Argument. If for a fixed value of the argu-
ment the value of a trigonometric function is known,
then, under certain conditions, we can find the values of
other trigonometric functions. Here, the most important
relationship is the principal trigonometric identity (see
Sec. 1.2, Item 1):

sin’t + cos? ¢t = 1. (1.9)

Dividing this identity by cos®t termwise (provided
cost = 0), we get

1+tan2t=ws—2t, (1.10)

where tqe-g— +ak, k€ Z. Using this identity, it is

possible to compute tan ¢ if the value of cos ¢ and the sign
of tan t are known, and, vice versa, to compute cost
given the value of tan ¢ and the sign of cos ¢. In turn,
the signs of the numbers tan ¢ and cos ¢t are completely
determined by the quadrant in which the point P,
corresponding to the real number ¢, lies.

Example 1.3.6. Compute cost if it is known that

5 3n
tan t::ﬁandte(n, —2—)
<4 From formula (1.10) we find:
otp Lt
T 4{+tan2: 169

25
147z
Consequently, |[cost | = 12/13, and therefore either
cost = 12/13 or cost = —12/13. By hypothesis,
t € (m, 3n/2), that is, the point P, lies in the third quad-

rant. In the third quadrant, cos ¢ is negative; consequent-
ly, cost = —12/13. p
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Dividing both sides of equality (1.9) by sin®t¢ (for
sin t = 0) termwise, we get

1

24— -
1 +cot2 t== ol

(1.11)

where t = nk, k € Z. Using this identity, we can com-
pute cot ¢t if the value of sin ¢ and the sign of cot ¢ are
known and compute sin ¢ knowing the value of cot ¢and
the sign of sin ¢.

Equalities (1.9)-(1.11) relate different trigonometric
functions of one and the same argument.

1.4, Solving the Simplest Trigonometric Equations.
Inverse Trigonometric Functions

1. Solving Equations of the Form sin ¢ = m. Arec. Sine.
To solve the equation of the form sin t = m, it is neces-
sary to find all real numbers ¢ such that the ordinate
of the corresponding point
P, is equal to m. To this y
end, we draw a straight line g=m\mi>1

y = m and find the points r

of its intersection with the f/ -\ g=m\mi<!
7
2

trigonometric circle. There £
are two such points if
fm | <<1 (points E and F
in Fig. 16), one point if
|m | =1, and no points
of intersection for |m | >1.
Let |m |<< 1. One of the
points of intersection lies .
necessarily in the right- Fig. 16

hand half-plane, where

z> 0. This point can be written in the form £ = P,
where t, is some number from the closed interval [—n/2,
n1/2]. Indeed, when the real axis is being wound on the
trigonometric circle, the numbers from the interval
[—n/2, n/2] go into the points of the first and fourth
quadrants on the trigonometric circle, the points B and D
included. Note that the ordinate sint, of the point
E = P, is equal to m: sin t; = m.

C A
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Definition. The arc sine of a number m is a number i,
—n/2< ty< /2, such thal sin t, = m. The following
notation is used: £, = arcsin m (or sin~! m).

Obviously, the expression arcsin m has sense only for
| m |<< 1. By definition, we have:

sin (arcsin m) = m, —n/2<C arcsin m<C n/2.
The following equality holds true:
arcsin (—m) = —arcsin m.

Note that the left-hand point F of intersection of the
line y = m with the trigonometric circle can be written in
the form /' = P, _, , therefore all the solutions of the equa-

tion sin t = m, |m |1,
14 are given by the formulas

t = arcsin m +- 2nk, k € Z,

= — aresin m | 2nk,
k€Z,

A,

X\A4
z which are usually united
y=-y2 into one formula:
£ t = (—1)" arcsin m 4 mn,
[ A
Fig. 17 Example 1.4.1. Solve the
equation sin t = —1/2,
4 Consider the points of intersection of theliney=—1/2

and the trigonometric circle S. Let X and Y be the feet of
the perpendiculars dropped from the right-hand point E
of intersection on the coordinate axes (Fig. 17). In the
right triangle XOFE, we have: | EX | =1/2, |OE | =1,
that is, £ XOFE = 30°. Consequently, / AOE is measured
by an arc of —n/6 radian, and £ = P_;,. Therefore

arcsin (—1/2) = —n/6, and the general solution of the
equation sin ¢ = —1/2 has the form ¢ = (——1)”“% +
nn, n€Z.

Example 1.4.2. What is the value of arcsin (sin 10)?
«4In Example 1.1.7 it was shown that the point P, lies
in the third quadrant. Let ¢ = arcsin (sin10), then
sint = sin10 << 0 and —n/2 <C t < n/2. Consequently, the
point P, lies in the fourth quadrant and has the same or-
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dinate as the point P,,; therefore P, = P, _,, (Fig. 18),

and the equality ¢ = i — 10 - 2xnk holds for some inte-
ger k. For the condition —mn/2 <<t << 0 to be fulfilled,

N z=m  |x=m
Y Imi<? |im|>7

—

S
b N

A S

| AF

Fig. 18 Fig. 19

it is necessary to set k = 2. Indeed,
—n/2<<3n —10 << 0

(these inequalities follow from the estimate 3.1 < m <<
3.2). Thus,

t = 3n — 10 = arcsin (sin 10). p

2. Solving the Equation cost = m. Arc Cosine. To
solve the equation cos t = m, it is necessary to find all
real numbers ¢ such that the abscissa of the point P,
is equal to m. For this purpose, we draw a straight line
z = m and find the points of its intersection with the
trigonometric circle. A point of intersection exists if
| m |<< 1. One of the points of intersection (the point E
in Fig. 19) necessarily lies in the upper half-plane, where
y>= 0, and this point can be written in the form

E = Py, where 0<t,<m.

Definition. The arc cosine of a number m is a number ¢,
lying on the closed interval [0, n], such that its cosine is
equal to m. The arc cosine of the number m is denoted by
arccos m(or cos-'m).

3-01644
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Obviously, the expression arccos m has sense only for
Im |<<1. By definition,
cos (arccos m) = m, 0 arccos m< n.
Note that the lower point of intersection coincides with
the point # = P_, . Therefore the general solution of the
. equation cos t=m, mE
Y [—1, 1] has the form

=4 arccosm -+ 2nk, k €Z.

Note also that the fol-
lowing equality holds:

=

|
l
|
) : A arccos {(—m)
0 | K3 = I — arecos m.
| Example 1.4.3. Find the
[ value of arccos (cos 9).
s Let t = arccos (cos d),
) then o<t < =, and
. cost = cos 9. The point P,
Fig. 20 lies in the fourth quadrant

(Fig. 20) since the inequal-
ities 3m/2 << 5 << 2n hold, therefore the point I°;, lying
in the upper half-plane, must coincide with the point
P_, which is symmetric to P, with respect to the axis
of abscissas, that is, t = —5 -+ 2mxk. The condition
0t will be fulfilled if we take £ = 1, therefore
arccos (cos D) = 2 — 5. P

Example 1.4.4. Prove that if 0<Cax<C1, then
arcsin x = arccos )/ 1 — a2
4 Let t = arcsin 2. Then 0<Ct<C nt/2 since sint =
7> 0. Now, from the relationship cos®t 4 sin®t =1
we get: |cost|==) 1 —2z% But, bearing in mind
that ¢ €0, n/2], we have: cost =}/ 1 — 2% whence
t = aiccos )1 — a*

3. Solving the Equation tan ¢ = m. Arc Tangent.
To solve the equation tan ¢t == m, it is necessary to find
all real numbers ¢, such that the line passing through the
origin and point P’; intersects the line AB’: z =1 at
a point Z, with ordinate equal to m (Fig. 21). The equa-
tion of the straight line passing through the origin and P,
is given by the formula y = ma. For an arbitrary real
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number m there are exactly two points of intersection of
the line y = ma with the trigonometric civcle. One of
these points lies in the right-hand half-plane and can be
represented in the form £ = P, , where ty € (—n/2, n/2).
Definition. The arc tangent of a number m is a num-
ber t,, lying on the open interval (—n/2, n/2), such
that tant, = m. It is de-
noted by arctanm (or
tan-1 m). y
The general solution of y=mr
the equation tant=m Zy(tm)
(see Fig. 21) is: 8__ )
t = arctan m + nk, k € Z. £

For all real values of m the
following equalities hold:

tan (arctanm) = m, 0

&Y

arctan (— m) = —arctan m.

Arc cotangent is intro-
duced in a similar way: for F
any m€ R the number
t = arccot m is uniquely .
defined by two conditions: Fig. 21
0<<t<<m, cot t=m.

The general solution of the equation cot t = m is

t = arccot m + nk, k€ Z.

The following identities occur:

cot (arccot m) = m, arccot (—m) = n — arccot m.

Example 1.4.5. Prove that arctan (—2/5) =
arccot (—5/2) — m. \
4Let t = arccot (—5/2), then 0 <<t<<m, cott=
—5/2, and tan t = —2/5. The point P; lies in the
second quadrant, consequently, the point P,_, lies in
the fourth quadrant, tan({ — m) = tant = —2/5,
and the condition —n/2 <<t — s < n/2 is satisfied.
Consequently, the number ¢t — s satisfies both condi-
tions defining arc tangent, i.e.

t — m = arctan (—2/5) = arccot (—5/2) — m.p
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Example 1.4.6. Prove the identity
sin (arctan z) = 2/)/ 1 + 2.
qLet ¢t = arctan z. Then tan { = 2, and —n/2 <t <<
n/2. Let us prove that sint = z/)/1 + 2% For this
purpose let us note that cos t > 0 since —n/2 <<t << n/2.

By virtue of (1.10), 1/cos®*t =1 - tan?t = 1 - 2% or
cos t =1/)1 + 22, whence sin t = tan t cost =
x'[/l + 2% p

It is clear from the above examples that when solving
problems, it is convenient to use more formal definition of
inverse trigonometric functions, for instance: t = arccos m
if (1) cos t =m, and (2) 0t n. To solve problems
on computation involving inverse trigonometric func-
tions, it suffices to remember the ahove definitions and
basic trigonometric formulas.

PROBLEMS

1.1. Locate the points by indicating the gquadrants:

(a) Py, (b) Pio_%/’ﬁs (c) Py %+ 3

1.2. Given a regular pentagon inscribed in the trigono-
metric circle with vertices Ay = Pyyp/ kb = 0,1, 2, 3, 4.
Find on which of the arcs joining two neighbouring ver-
tices the following points lie: (a) P4, (b) P4y, (¢) Py,

1.3. Given a regular heptagon inscribed in the trigono-
metric circle with vertices By, = Py onp/7, K = 0,1, 2, 3,
4, 5, 6. Find on which of the arcs joining the neighbouring
vertices the point Py, lies.

1.4. Prove that there is a regular N-gon inscribed in
the trigonometric circle such that its vertices include the
points PV'2—+1m/11’ Pl"f+7n/13' Find the least possible
number N

1.5. Prove that any two points of the form P .., Py,
where z, y are rational numbers, are vertices of a regular
N-gon inscribed in the trigonometric circle.

1.6. Find a necessary and sufficient condition for the
points P, and Pg to be vertices of one and the same regu-
lar N-gon inscribed in the trigonometric circle.

1.7. Compare the following pairs of numbers:

(a) sin 1 and sin (1+%) ,
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(b) cos (1 —}—251) and cos (1 |—45£) .
1.8. Determine the sign of the indicated number:

(a) cos(l-l— 6; ),
(b) cos(l—l-—zg—) cos(1+4Tn) cos(

)
(1435,

1.9. Can the sine of an angle be equal to:

(a) log at s (@0, a= 1),
V3—1 -t
(b)( V5i—V3 ) ?

1.10. Determine the sign of the product sin2 -sin 3 -sin 5.
1.11. Evaluate:

(a) sin 10‘(;“‘ , (b) cos 12437[ , () sin (—117n/4),

(d) cos (—205m/6).

1.12. Determine the sign of the number tan 11.
1.13. Evaluate:

(a) tan 1“?“ , (b)c

1.14. Prove that for an arbltrary real number a ¢ R and
an integer NV > 1 the following equalities are valid:

10U1n

g 2k pi 2nk

I
2 sin (a-{——ﬁ—):O, cos a+T)=O
k=0 h=0

1.15. Prove that the function f(t) = tan 131; -+ cot 13—‘

is periodic and find its fundamental period.

1.16. Is the function f (f) = sin (2z + cos (V2 z))
periodic?

1.17. Prove that the function f () = cos (z?) is not
. periodic.

1.18. Prove that the function tan (}/ 2z) + cot (}/ 3z) is
not periodic.
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1.19. Prove that the function f (f) = sin 3t |- cos 5t
is periodic and find its fundamental period.

1.20. Prove that the function f(z)=cos () |z]?) is
not periodic.

1.21. Find the fundamental period of the function:

(a) y=cos nx—l—sin% ,

. z z
(b) y =sin x+cos-§-+tan.?(_)-.

1.22, Find the fundamental period of the function y =
15 sin? 12z + 12 sin? 15z.

1.23. Prove that the function of the form f (z) =
cos (ax + sin (bx)), where a and b are real nonzero num-
bers, is periodic if and only if the number a/b is rational.

1.24. Prove that the function of the form f (z) =
cos (ax) + tan (bzx), where a and b are real nonzero num-
bers, is periodic if and only if the ratio a/b is a rational
number.

1.25. Prove that the function y = tan S5x 4 cot 3z -+
4 sin z cos 2z is odd.

1.26. Prove that the function y=cos 4z sin3 % X

tan x 4 6z2 is even.

1.27. Represent the function y = sin (z 4 1) sin® 2z—
3) as a sum of an even and an odd function.

1.28. Represent the function y = cos (x —|—%) +

sin (21:——1%) as a sum of an even and an odd function.

1.29. Find all the values of the parameters ¢ and b for
which (a) the function f (!) = asint -} bcost is even,
(b) the function f () = a cost 4 bsin tis odd.

In Problems 1.30 to 1.32, without carrying out com-
putations, determine the sign of the given difference.
1.30. (a) sin 2= —sin 2%, (b) cos 3.13—sin 3.13.

1.31. (a) sin 1 — sin 1.1, (b) sin 2 — sin 2.1,

(c) sin 131° — sin 130°, (d) sin 200° — sin 201°.
1.32. (a) cos 71° — cos 72°, (b) cos 1 — cos 0.9,

(c) cos 100° — cos 99°, (d) cos 3.4 — cos 3.5.
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1.33. Is the function cos (sin ¢) increasing or decreasing
on the closed interval [—mn/2, 0]?

1.34. Is the function sin (cos t) increasing or decreasing
on the closed interval [n, 3n/2]?

1.35. Prove that the function tan (cos ) is decreasing
on the closed interval [0, mt/2].

1.36. Is the function cos (sin (cos t)) increasing or de-
creasing on the closed interval [n/2, =]?

In Problems 1.37 to 1.40, given the value of one func-
tion, find the values of other trigonometric functions.

1.37. (a) sin ¢ = 4/5, n/2 <t <m,

(b) sin t = —5/13, n <t < 3n/2,

(c) sint = —0.6, —n/2 <t <<O.

1.38. (a) cost = 7/25, 0 <t << m/2,

(b) cos t = —24/25, n <t << 3m/2,

(¢) cos t = 15/17, 3n/2 <t < 2m.

1.39. (a) tan t = 3/4, 0<t<n/2

(b) tan t = —3/4, a2 <t<n.

1.40. (a) cot t = 12/5, n <t << 3n/2,

(b) cot t = —5M12, 3n/2 <t << 2m.

1.41. Solve the given equation:

(@) 2cos?t —Scost + 2=0, (b) 6cos®t 4 cost —
1 =0.

1.42. Find the roots of the equation cost= —1/2 be-
longing to the closed interval [—2m, 6mx].

1.43. Solve the equations: B
(a) tan t = 0, (b) tan ¢t = 1, (c) tan 2t = }/3,

(d) tan2t=—V3, (¢) tan(t—7)—1=0,

4
o T
(h) V3tan (t+5)=
1.44. Compute:
(a) arcsin O-l— arccos 0--arctan O,
V3 V3

(b) arcsin - + arccos —5— -} arctan -5

(c) arcsin VT+ arccos ( — Vz—é )—arctan ( — @-) .

In Problems 1.45 to 1.47, prove the identities.
1.45. (a) tan |arctanz | = |z |, (b) cos (arctan x) =

1Y 1+ 22
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1.46. (a) cot | arccot z | = .
(b) tan (arccot z) = 1/z if z 5= 0,
(c) sin (arccot x) =1/} 1+ 22,
(d) cos (arccot z) =z/)/ 1+ 2.

. 4
1.47. (a) arcsin x = arctan Vi and arccos 1 =
—X

for 0T << 1,

arccot ———
1/ 1

—-z
(b) arcsin z = arccoth—iz;z—z- for 0 <z,

(c) arctan ?1 = arccot &

. 1 z

= aresin ——— == arccos ————

Vit Vife '
arccot % =arctan z

— arcsin ——— — arccos ———

Vit Vita
for z > 0.
1.48. Express: (a) arcsin 2 % » (b) arccos g , (c) arctan 152,

(d) arctan—z- in terms of values of each of the three
other inverse trigonometric functxons

1.49. Express: (a) arccos( ) (b) arctan ( 24)
(¢) arccot(—%) in terms of values of each of the

three other inverse trigonometric functions.
1.50. Find sin o if tan & = 2 and ©n << o << 3n/2.



Chapter 2

Identical Transformations
of Trigonometric Expressions

2.1. Addition Formulas

There are many trigonometric formulas. Most cause
difficulties to school-pupils and those entering college.
Note that the two of them, most important formulas,
are derived geometrically. These are the fundamental
trigonometric identity sin®t¢ - cos®t = 1 and the for-
mula for the cosine of the sum (difference) of two numbers
which is considered in this section. Note that the basic
properties of trigonometric functions from Sec. 1.3
(periodicity, evenness and oddness, monotonicity) are
also obtained from geometric considerations. Any of
the remaining trigonometric formulas can be easily ob-
tained if the student well knows the relevant definitions
and the properties of the fundamental trigonometric
functions, as well as the two fundamental trigonometric
formulas. For instance, formulas (1.10) and (1.11) from
Item 4 of Sec. 1.3 relating cos ¢t and tan ¢, and also sin ¢
and cot ¢ are not fundamental; they are derived from the
fundamental trigonometric identity and the definitions
of the functions tan ¢ and cot ¢t. The possibility of deriving
a variety of trigonometric formulas from a few funda-
mental formulas is a certain convenience, but requires an
attentive approach to the logic of proofs. At the same
time, such subdivision of trigonometric formulas into
fundamental and nonfundamental (derived from the
fundamental ones) is conventional. The student should
also remember that among the derived formulas there are
certain formulas which are used most frequently, e.g.
double-argument and half-argument formulas, and also the
formulas for transforming a product into a sum. To solve
problems successfully, these formulas should be kept in
mind so that they can be put to use straight away. A good
technique to memorize such formulas consists infollow-
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ing attentively the way they are derived and solving
a certain number of problems pertaining to identical trans-
formations of trigonomelric expressions.

1. The Cosine of the Sum and Difference of Two Real
Numbers. One should not think that there arc several
basic addition formulas. We are going to derive the for-
mula for the cosine of the sum of two real numbers and

b bt tee

<

Fig. 22

then show that other addition formulas are derived from
it provided that the properties of evenness and oddness of
the basic trigonometric functions are taken into consid-
eration. .

To prove this formula, we shall need the following note.
Under the trigonometric mapping

P:. R>S

of the real axis R onto the trigonometric circle S (see
Item 3, Sec. 1.1), line segments of equal length go into
arcs of equal size. More precisely, this means the follow-
ing. Let on the number line be taken four points: ¢, t,,
i3, 14 such that the distance from ¢, to ¢, is equal to the
distance from ¢, to t,, that is, such that [ty —t | =
lts — 1,1, and let P,, P,, P, P, be points on the
coordinate circle corresponding to those points. Then the
arcs Py P, and P, P, are congruent (Fig. 22). Hence it
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follows that the chords P, P;, and P, P, are also con-
gruent: | Py Py | = | Py, Py, |

Theorem 2.1. For any real numbers t and s the following
identity is valid:

cos (t + s) = cos tcoss — sintsins. 2.1)

Proof. Consider the point P, of intersection of the unit
circle and the positive direction of the z-axis, P, = (1, 0).
Then the corresponding points Py, P4y, and P_e are im-
ages of the point P, when
the plane is rotated about

the origin through angles W
of t,t+s, and —s radians 2
(Flg 23). t

By the definition of the
sine and cosine, the coordi-
nates of the points Py, P4,
and P_; will be:

P 4
P, = (cos t, sin t), \

N

Py, = (cos (t49), Ps
sin (t—|-s))
P_; = (cos (—s), sin (—s))

= (cos s, —sin s). Fig. 23

Here we have also used the basic properties of the evenness
of cosine and oddness of sine. We noted before the proof
of the theorem that the lengths of the line segments
P,P,,s and P_,P; are equal, hence we can equate the
squares of their lengths. Thus, we get identity (2.1).
Knowing the coordinates of the points P, and Py, we
can find the square of the length of the line segment
PP,ig: |PoPiis 2 = (1—cos (t + 8))% + sin® (t + s) =
1 —2cos (t+ ) + 6os® (t + s) -} sin?(t 4-s) or, by
virtue of the fundamental trigonometric identity,

| PoPiys 2 =2 — 2cos (t + ).
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On the other hand,
| P_sP; > = (cos s — cos t)* 4 (—sin s — sin £)*
= c0s’s — 2cosscost - cos®t
+ sin®s - 2 sin s-sin ¢t 4 sin®*t
=2 — 2costcoss -+ 2sintsin s.
Here we have used the fundamental trigonometric identi-

ty (1.9) once again. Consequently, from the equality
| PoPyys P = | PPy |* we get

2 —2cos(t+s)=2—2costcoss + 2sintsins,

whence (2.1) follows. p
Corollary 1. For any real numbers t and s we have

cos (t — §) = cos t cos s |- sin ¢ sin s. (2.2)

Proof. Let us represent the number t — s as (¢ + (—s))
and apply Theorem 2.1:

cos (t — 8) = cos (t + (—s))
== ¢0s ¢ cos (—s) — sin ¢ sin (—s).

Taking advantage of the properties of the evenness of co-
sine and oddness of sine, we get:

cos ({ — s) = costcoss - sintsins. p

In connection with the proof of identities (2.1) and (2.2),
we should like to note that it is necessary to make sure
that in deriving a certain identity we do not rely on anoth-
er identity which, in turn, is obtained from the identity
under consideration. For instance, the property of the
evenness of cosine is sometimes proved as follows:

cos (—t) = cos (0 — t)=cos 0 cost - sinU sint = cos t,

that is, relying on the addition formula (2.2). When deriv-
ing formula (2.2), we use the property of the evenness
of the function cos t. Therefore the mentioned proof of
the evenness of cos £ may be recognized as correct
only provided that the student can® justify the addition
formula cos (t — s) without using this property of cosine.

Example 2.1.1. Compute cos 1%= cos 15°.
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«Since %: %———2— , we get from formula (2.2) for

t=amn/3 and s=n/4:

oS = = cos (-E—-i = c0s = cos 2 -} sin = sin >
B =C 3 4)—C0~? A—4~—|.l g ° A
_4 V2 V3 Vi Vi E
=gyt = 7 N
2. Reduction Formulas.
Corollary 2. For any real number t we have
n .
cos (7——t) ==sin t, (2.3)
kL . .
cos (?+t) == —s8in {, (2.4)
cos (n—t) = —cos ¢, (2.5)
cos (- t)=- —cost. (2.6)

Proof. Lel us use formula (2.2):
n
2
=0.co8t-}1.sint=sint,
cos (t — t) = cos m cos ¢t + sin m; sin ¢
= (—1)«cost — 0-sint = —cos ¢,
which yields identities (2.3) and (2.5). We now use (2.1):

cos (%—t) = CO0S cost+sin%sint

14 T . .
cos (Tz'"{_t) _cosicost—sm Tsmt

=0.cost—1.sin t= —sint,
cos (m - ) = cos 5 cos t —sin 7 sin ¢
= (—1)-cos t —0-sin t = —cos t.

These equalities prove identities (2.4) and (2.6). p
Corollary 3. For any real number t we have

sin (%—t) = cos t, (2.7
sin (%—l—t) =cost, (2.8)
sin (W —t) == sin t, (2.9)

sin (m-F¢) = —sint. (2.10)
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Proof. Let us use identity (2.3):

T T

. n
cos t ==cos (—2—— (?—t) ) == $ih (?+t) ,
which yields identity (2.7). From identity (2.3) and the
property of evenness of cosine there follows:
cos t = cos (—t) = cos (—;L— (%—} t) ) = sin (%—} t) )

which proves identity (2.8).
Further, by virtue of (2.8) and (2.3), we have:

sin (n—t) =sin (—g——l— (—g—-—t) ) = 0S8 (%—t) = 8in ¢,
and from identities (2.8) and (2.4) we get:
sin (1t 4 t) = sin (—3—-4— (-g——{—t))
= c0S (%—I—t) = —sint. p

Remark. Using formulas (2.3)-(2.10), we can easily
obtain reduction formulas for cos (j—;— + t) , €os (2m—1),

sin (‘Z—n + t), sin (2n —1¢). The reader is invited to do
this as an exercise.

Example 2.1.2. Derive the reduction formula for

cos (Z—n—t) .

4 Using formulas (2.6) and (2.3), we have
cos (z—n—t) =o0S (n—{- (%—t) ) = — 0S8 (%—t)
= —sint. p

Corollary 4. The reduction formulas for tangent and
cotangent are

tan (5 —¢) —cott, tan(F+t)——cott, tstank,
cot (%——t):tant, cot(-g——{—t)—..——tant,
: t 5+ ak,
tan (m—1t) == —tant, t#%-}_nk,

cot, (m— 1) == —cott, t=z~tnk (k¢€Z).
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Proof. All these formulas can be obtained from the
definition of the functions tant and cott applying the
appropriate reduction formulas. p

Note that the reduction formulas together with the
periodicity properties of the basic trigonometric functions
make it possible to reduce the computation of the value of
a trigonometric function at any point to its compntation
at a point in the closed interval [0, m/4].

To facilitate the memorizing of the reduction formulas,
the following mnemonic rule is recommended:

(1) Assuming that ()<t<i;—, find in which quad-

rant the point P T kcZ, lies, dcetermine the sign
‘_2_'_

the given expression has in this quadrant, and put this

sign before the obtained result.

(2) When replacing the argument it 4 ¢ or 2n — ¢ by ¢,
the name of the function is retained.

(3) When replacing the argument %it or Z—n-l_—t
by ¢, the name of the function should be changed: sine for
cosine and cosine for sine, tangent for cotangent and
cotangent for tangent.

3. Sine of a Sum (a Difference).

Corollary 5. For any real numbers t and s the following
identities are valid:

sin (¢t + s) = sin t cos s +- cos ¢ sin s, (2.11)
sin (! —s) = sintcoss — costsins. (2.12)

Proof. Using the reduction formula (2.3), we reduce sine
to cosine:

sin (t - s) = cos (%—(t—l—s)) = 08 ((—;‘——t) —s) .

We now apply the formula for the cosine of a differ-
ence (2.2):
14

sin (¢ - 8) = cos (%—t) coss-l—sin( 3 t) sin s
=sintcoss-4costsins

(in the last equality, we have used the reduction formu-
las (2.3) and (2.7)). To prove formula (2.12), it suffices
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to represent the difference t — s as t -+ (—s) and use the
proved identity (2.11) and the propertics of the evenness
of cosine and oddness of sine:

sin (t — s) = sin (t 4+ (—s) = sin t cos (—s)

+ costsin (—s) = sinfcoss —costsins. p

4, Tangent of a Sum (a Difference).

Corollary G. For any real numbers t and s, except for
t:%-{- nk, s= %—I— nm, t-§== %—1— an (k, m, n€Z),
the following identity holds:

tan t4-tan s
1{—tanttans °

tan (¢ s) = (2.13)

Remark. The domains of permissible values of the
arguments ¢ and s are different for the right-hand and left-
hand sides of (2.13). Indeed, the left-hand side is defined

for all the values of ¢ and s except t + s = %—}- nn,
n € Z, while the right-hand side only for the values of ¢
and s mentioned in Corollary 6. Thus, for tzg and
—z the left-hand side is defined, while the right-hand

side is not.
Proof. Let us apply the definition of tangent and for-
mulas (2.11) and (2.1):

S =

sin (¢+4-s) _ sinzcoss—-costsins
cos(t+s) ~ costcoss—sintsins *

Since cos ¢t == 0 and cos s = 0 (by hypothesis), both the
numerator and denominator of the fraction can be divided
by cost coss, then

tan (t -} s) =

sint | sins
cos t cos s tan t-+tan s
tan (¢ --s) - - - =
( t5) sint sins 1—tanttans ° >
cost ¢oss

Corollary 7. For any real t and s, except for t=
11 11
5 -+ Tk, § =5+ aum, t—s:—-%—l—ﬂn (k, m, ncZ), the
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following identity holds:

' _ tant—tans
tan (t—s) = 1+tanttans °

(2.14)

Remark. As in (2.13), the domains of permissible values
of the arguments of the right-hand and left-hand sides
of the identity are different.

Proof. It suffices to replace s by —sin (2.13) and make
use of the oddness property of tangent. p

Example 2.1.3. Find tan (—Z——i—t) if tant:—i’-.

4qUse formula (2.13), bearing in mind that tan%=1.
We have

tan % ~+tant

n _ _ 1+-tant
tan(f-‘l—t)_ 7 T 1—tant
1—tan—4-tant
3
_ 1+7; _7
= =7 »
=7

Example 2.1.4. Evaluate tan (arcsm -+ arccos 153)

qLet ¢=aresin 3 , §=arccos 153 Then, by the def-

inition of inverse trigonometric functions (Sec. 1.4),
we. have:

sint = 3/5, 0<<t<<al2,
coss = 5/13, 0 <<s << n/2.

Let us now find tan ¢ and tan s, noting that tan ¢ > 0 and
tan s > 0:

2 sinf¢t 9 _3__)2
tan t—“l sm”t_ 16—‘(4 !
12
2 - —_1 =
tan®s = oy cosﬁs ( ) 1= ( 5 )

(we have used formulas (1.9) and (1.10)). Therefore
tant = 2 , 3_15—2; and we may use formula (2.13) for

~01644
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the tangent of a sum:

3, 12
) __ tant+tans 4 ''H
tan (£+5) = 1—tanttans 3 12
=775
_ 15448 3
T 20—-36 T 16 ° >

Example 2.1.5. Evaluate
tan (arccos( —-%) -+ arcsin (—-%) ) .

4 We use the properties of inverse trigonometric functions
(see Items 1 and 2 of Sec. 1.4)

7 7
arccos ( —2—5) = J{— arccosﬁ N
aresin ( £) = —arcsin1—2
S\ —73) = 13 °

7 .12
and set t = arccos 5=, § = arcsin 4= to get

tan (arccos ( ——2%) - arcsin (—~ %))
=tan (m —t—s) = —tan (¢ +s),
cost = 7/25, 0<<t<<m/2,
sins = 12/13, 0 < s<<a/2.

Proceeding as in the preceding example we have: tant =

VA
2 and tan s=—2

7 5
RI
N 7 75 24.5412.7 204
—tan (t--s) = — 2 12 ~ 24.12--5.7 253 ° >
7 5

5. Cotangent of a Sum (a Difference).

Corollary 8. For any real numbers t and s, except t = nk,
s=agam,t+ s=nn (k, m, n € Z), the following identity
holds true:

cottcot s—1
cot (t—'—S) :m. (2.15)
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The proof follows from the definition of cotangent and
formulas (2.1) and (2.11):

cot (¢ s) = cot (¢{Fs)  costcoss—sinisins
' " sin(t-+s) = sintcoss+tcostsins °

Since the product sin ¢ sin s is not equal to zero since t ==
nk, s 5= nm, (k, m € Z), both the numerator and denomi-
nator of the fraction may be divided by sin ¢ sin s. Then

cosi? cos s

sint  sims cot ¢ cot s—1
cot (¢ = =
bt +s) cos t cOS s cot tf-cots >
sin ¢ sin s

Corollary 9. For any real values of t and s, except t = nk,
s=umam, and t —s=mnn (k, m, n€1Z), the following
identity is valid:
cot tcot s+1

cot (t—s) = cot t—cots

(2.16)

The proof follows from identity (2.15) and oddness prop-
erty of cotangent. p

6. Formulas of the Sum and Difference of Like Trigo-
nometric Functions. The formulas to be considered here
involve the transformation of the sum and difference of
like trigonometric functions (of different arguments) into
a product of trigonometric functions. These formulas are
widely used when solving trigonometric equations to
transform the left-hand side of an equation, whose right-
hand side is zero, into a product. This done, the solution
of such equations is usually reduced to solving elementary
trigonometric equations considered in Chapter 1. All
these formulas are corollaries of Theorem 2.1 and are
frequently used.

Corollary 10. For any real numbers t and s the following
identities are valid:

sint 4 sin s = 2sin t;'s cos tz—s , (2.17)
sint——sins:Zsin%—cos t;—s . (2.18)

The proof is based on the formulas of the sine of a
sum and a difference. Let us write the number ¢ in the

Lw
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tI—

following form: t=—— —|- 2 , and the number s in

the form s = t;s ——t’z——s—, and apply formulas (2.11)
and (2.12):
. . tts t—s t+s . t—s
sin ¢ = sin —— 08 —— -+ €08 —— sin ——, (2.19)
sin s =sin t;"s cos t;s — cos t—zl_s sin tfz_s . (2.20)

Adding equalities (2.19) and (2.20) termwise, we get iden-
tity (2.17), and, subtracting (2.20) from (2.19), we get iden-
tity (2.18). p

Corollary 11. For any real numbers t and s the following
identities hold:

cos t 4 cos s == 2 cos t_zi"g cos 2 —5 (2.21)
cost—cos s = —2sin t;‘l"s sin t;s . (2.22)

The proof is very much akin to that of the preceding
corollary. First, represent the numbers ¢ and s as

¢ — t+s + t—s s t+s t—s

2 2 T2 T2
and then use formulas (2.1) and (2.2):
cos t = cos t+s cos 2 —° _sin t—_zi——ssin t'z—s ,  (2.23)
COS § = €08 t—2|-s cos ;s +sin t_2l's sin t2—s . (2.24)

Adding equalities (2.23) and (2.24) termwise, we get
identity (2.21). Identity (2.22) is obtained by subtracting
(2.24) from (2.23) termwise.

Corollary 12, For any real values of t and s, except

t——-— I ak, s_-——l—:nn (k, n€Z), the following iden-
tmes are valid:
__ sin(t4s)
tant4tans= costcoss (2.25)
sin (t—s)

tan{—tans = .
cos tcos s

(2.26)
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Proof. Let us use the definition of tangent :

) sin ¢ sin s
tan ¢ tan s =
+ cos i + CcOS §
__ sintcoss-sinscost __ sin(t4s)
- cOS t COs § T costcoss

(we have applied formula (2.11) for the sine of a sum).
Similarly (using formula (2.12)), we get:

sin ¢ sin s
tanf{—tans= _——
cos ¢ cos s
__ sintcoss—sinscost _  sin(t—s) >
costcoss T costcoss °

7. Formulas for Transforming a Product of Trigono-
metric Functions into a Sum. These formulas are helpful
in many cases, especially in finding derivatives and inte-
grals of functions containing trigonometric expressions and
in solving trigonometric inequalities and equations.

Corollary 13. For any real values of t and s the following
identity is valid:

sin £ cos s = - (sin (¢ +5) +-sin (t—5)).  (2.27)
Proof. Again, we use formulas (2.11) and (2.12):

sin (t + s) = sin £ cos s + cos ¢ sin s,

sin (! — s) = sin £ cos s — cos ¢ sin s.

Adding these equalities termwise and dividing both sides
by 2, we get formula (2.27). p

Corollary 14. For any real numbers t and s the following
identities hold true:

costcoss = % (cos (t+s) +cos (E—9)), (2.28)
SilltSiﬂS:_-:—;- (cos (¢ —s) —cos (t+8)) (2.29)

The proof of these identities becomes similar to that of
the preceding corollary if we apply the formulas for the
cosine of a difference and a sum:

cos L cos s + sin ¢ sin s = cos (! — ), (2.30)
cos t cos s — sin t sin § = cos (¢t + s). (2.31)
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Adding (2.30) and (2.31) termwise and dividing both sides
of the equality by 2, we get identity (2.28). Similarly,
identity (2.29) is obtained from the half-difference of
equalities (2.30) and (2.31). p

8. Transforming the Expression asin? + b cost by
Introducing an Auxiliary Angle.

Theorem 2.2. For any real numbers a and b such that a® +
b® 5= 0 there is a real number @ such that for any real value
of t the following identity is valid:

asint+beost ="V, a2+ bEsin (¢ 4+ ). (2.32)

For @, we may take any number such that
cos = a/V a® 1+ 12, (2.33)
sin ¢ = b/} a® + b2. (2.34)
Proof. First, let us show that there is a number ¢ which
simultaneously satisfies equalities (2.33) and (2.34). We
define the number ¢ depending on the sign of the num-

ber b in the following way:

¢ = arccos ———— for b0,

V a2 b2
¢ = —arccos m fOI' b<0

(2.35)

a . : la|
m is defined since ]/a2+b2<1
(see Item 2, Sec. 1.4). By definition, we have:

The quantity arccos

cos @ = cos (|p|) = cos (arccos 4 )= SN
V a® b2 V @@+ b
From the fundamental trigonometric identity it follows
that
a? b2

sinfgp—1—cos2@p=1— P A

[b]
Va¥et '
incides with the sign of ¢ since | ¢ |<C n. The signs of
the numbers ¢ and b also coincide, therefore

b
Vaie '

or |sin @} == Note that the sign of sin @ co-

sin ¢ =
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It remains to check that if the number ¢ satisfies the
requirements (2.33) and (2.34), then equality (2.32) is
fulfilled. Indeed, we have:

asint-+bcost

== b

a
Vb2 V a?F bt
=V a® b2 (sin t cos ¢ + cos t sin @),
and, by virtue of (2.11), we get

asint+bcost=V a2+ b2sin(t-+¢). P

sin ¢4

cos t)

2.2, Trigonometric Identities for Double, Triple,
and Half Arguments

1. Trigonometric Formulas of Double Argument.
Theorem 2.3. For any real numbers a the following
identities hold true:

sin 2 = 2 sin o cos «, (2.36)
cos 2o == cos® a — sin® a, (2.37)
cos 2a = 2 cos®? oo — 1, (2.38)
cos 2o = 1 — 2 sin® a. (2.39)

Proof. Applying formula (2.11) for the sine of the sum
of two numbers, we get

sin 2o = sin (@ 4+ a) = sin o cos @ + cos a sin &
= 2 sin o - cos .
It we apply formula (2.1) for the cosine of a sum, then
we get
cos 2o = cos (& + @) = cos & cos & — sin « sin «
= cos? a — sin® a.
Identities (2.38) and (2.39) follow from identity (2.37) we
have proved and the fundamental trigonometric identity

(1.9):
cos 200 = cos? o — sin® a

= 2 cos® & — (cos? o + sin? @) = 2 sin?a — 1,
cos 2a. = co0s® o — sin? o

= (cos? & + sin’ a) — 2sin*a =1 — 2sin®>a. p
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Corollary 1. For any real values of a the following iden-
tities are valid:

cost o — S92 (2.40)
sinZe = 1—_%0321. (2.41)

Proof. Formula (2.40) follows directly from identity
(2.38). Analogously, formula (2.41) is obtained from
identity (2.39). p

2. Expressing Trigonometric Functions in Terms of the
Tangent of Half Argument (Universal Substitution For-
mulas). The formulas considered here are of great impor-
tance since they make it possible to reduce all basic
trigonometric functions to one function, the tangent of
half argument.

Corollary 2. For any real number o, except o« = m +
2nn, n € Z, the following identities are valid:

Ztan%
sing = ———, (2.42)
1 tan? 5
1 —tan? %—
oS = ———————, (2.43)
1+ tan? -5

Remark. The domains of permissible values of the
arguments on the right-hand and left-hand sides of (2.42)
and (2.43) differ: the left-hand sides are defined for all
the values of a, while the right-hand sides only for the
a’s which are indicated in the corollary.

Proof. By virtue of (2.36) and the fundamental trigono-
metric identity (1.9), we have:

23inicosi 25inicosi

sina=sin(2-—°‘)= 2 2 _ 2 2 .
2 1 o L, O
cos’T—i—ssz

By hypothesis, cos% does not vanish, therefore both
the numerator and denominator of the fraction may be
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.. o
divided by cos?2—=-, whence
y 3
i
n & 2tan =
sin o — cos o _ 2
RPN 2 .
sin? — 1+ tan? il
1L 2 2
| cos? @
2

We now apply (2.37) and the fundamental trigonomet-
ric identity and get

o o . [¢2
COS & = COS (2.-2—) == 082 — —sin%—-

2 2
sinz%
{2
2 % ing % g & —tan2 =
ncoszsmz— cosz_itan2
cost 2. -} 8in? 2 sin® — 1 4-tan? 2
2 2 1 2 2
cosZi
2

Corollary 3. For any real numbers o, except a:%+
nk, a=n-+2nn (k, n€Z) the following identity holds:

2tan%
tan ot = ———————. (2.44)
1 —tan? —5'

Proof. Note that, by hypothesis, cos a does not vanish,
and the condition of Corollary 2 is fulfilled. Consequently,
we may use the definition of tangent and then divide
termwise identity (2.42) by identily (2.43) to get

o o
. 2 tan — 1 —tan?®
tana = S::;“ = 2a - j
cosa 14 tan? — 1+ tan? —
2 2
2tan%
= o ”

—tan? —
1tan2
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Remark. This formula can also be derived from (2.13).
Indeed,

a

2 tan —

tan oo =: tan (%—1—%) =_—ZT'
1 —tan2 5

Corollary 4. For any real numbers a, except o = nn
(n € Z), the identity
a

—_ 2
{—tan 3

Ztan%

cot & == (2.45)

is fulfilled.

Proof. The values of the number o satisfy the require-
ments of Corollary 2 and sin o does not vanish, therefore
identity (2.45) follows directly from the definition of
cotangent and identities (2.42) and (2.43):

08 & 1—tan2-%— 2tan%
cot o= sina I3 - %
1 tan? - 1--tan® —-
1=tan2-;'—
=— >
2tan-2—

Example 2.2.1. Evaluate sin (2 arctan 5).
Let us use formula (2.42). If we set @ = 2 arctan 5,
then 0 << a < n and «/2 = arctan 5, and, by virtue of
(2.42), we have

o
sino = 2any ____ 2tan(arctanb) 2.5 5 >
- 1+ tan? & ~ 1-+(tan (arctan5))? 26 13 °
2

Example 2.2.2. Evaluate cos (2 arctan (—7)).

«qLet us denote @ =2 arctan (—7), then tan % = —7
and —n <<a<<0. Using formula (2.43), we get
1--tan® —
08 0 — 2 A9 #

\pta & 1B T B
2
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Example 2.2.3. Evaluate tan (2 arctan 3).
«Setting o =2 arctan 3, we get tan%:3>1 and
—2“—<oc<n. Using formula (2.44), we get

o
2 tan —- o .
tan o == 2 E—j— 2-3 = —i. ’

o
—tan? —
1 —tan 3

3. Trigonometric Formulas of Half Argument.

Corollary 5. For any real number o. the following identi-
ties are valid:

1 .

cos %= 4 )/ Lo (2.46)
. 1—

sin &= 1 )/ 1= (2.47)

where the sign depends on the quadrant in which the point

Py, lies and coincides with the sign of the values contained

on the left-hand sides of the equalities (in that quadrant).
Proof. Applying identity (2.40), we get

o
1cos (27) __14-cosa

a2 & .
Cos™ 5 = 2 2

whence

o | 1+cosa
|C°ST|—1/T~

To get rid of the modulus sign, the expression cos >

2
should be given the sign corresponding to the quadrant

32‘— lies in; whence follows formula (2.46). Similarly

(2.41) yields equality (2.47). p

Corollary 6. For any real number a., except oo = n (2n +
1) (n € Z), the following identities are valid

o 1—cosa ‘
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(the sign before the radical depends on the quadrant the
point Py, lies in),
a  sina 9
ta"?__—H-cosa . (2.49)
Proof. ldentity (2.48) isobtained if we take into consid-
eration that cosa == 0 and divide identity (2.47) by
(2.40) termwise. Further, by virtue of (2.36) and (2.40),
we have:

S'ni 2 si .a_.c .g.
3 Sin 5~ c08 5 sina
tan — = = = . )
2 o o 1+cosa
COS? 20052—2—

Corollary 7. For any real number o, ercept oo = nn
(n €Z), the following identity is valid:

o 1—cosa
tan—2_=_sin_a' (2.50)

Proof. In this case the condition sin -%‘- # 0 is ful-
filled, therefore from (2.36) and (2.41) there follows

sin—(,7i Zsinz—(}-
2 2
tan—,)~= =
= 0s = 2 sin 2 cos =
cos3 2 2
_ 9 1—cos(2(a/2)) _ 1—cosa >
- sin (2 («/2)) ~  sina

Corollary 8. For any real value of o, except @ = 2nn,
n € Z, the following identities hold true:

/" 14cosa (2.51)

22
oty=*V T=ea

(the sign before the radical depends on the quadrant the
point Py, lies in)

' o sina
COt—-z-Zm. (252)

Proof. Since by hypothesis sin % =0, formula (2.51)
is obtained after termwise division of (2.46) by (2.47).
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From identities (2.36) and (2.41) it also follows that

o o . o a
cOS — 2sin - ¢c0S - .
o 2 2 2 sin &
cot— = = e . »
2 .a L. O 1—cosa
sin 5 2sm27

Corollary 9. For any real number a, except o = nn, n € Z,
the following identity is valid:

cot o — w
Sin o
Proof. By virtue of (2.36) and (2.40), we have:
cos . 2 cos? <
o 2 2 1{-+cosa
cot - = = = - . >
2 sin el 2sin el cos =z sina
2 2 2

Example 2.2.4. Evaluate sin ?, COS — 8 , tan-;L
qLet us first apply identities (2.46) and (2.47) with
a=-- and take the radical to be positive since —

4 2
belongs to the first quadrant. We have:
1+cos % =
no_ ‘/ _ V2+1/2
COS ?— - 2 bl
’l—cos—— 5 1/5
sm———‘/ = sz—‘ 2
Further,
sin =z vV 5 175
==
cos T 2+‘ 2
—V2)? 3
= =V2-—1.
‘/ 2+V2 (2-v2) =V
1 1
Example 2.2.5. Evaluate cos (7 arccos (_W) ) .
1 1
qLet o —=arccos (_W) , then cosa= — g 0<

o << 7 and %‘— lies in the first quadrant. Now, using
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formula (2.46) with a positive radical, we get

[ (i arccos ]/ 1fcosa —|—cos ¢

2 10
_l/. _3V5
- 20T Tt

4. Trigonometric Formulas of Triple Argument.
Theorem 2.4. For any real numbers o the following
identities are valid:

sin 3o. = 3 sin a — 4 sin® «, (2.53)
cos 3 = 4 cos® a — 3 cos a. (2.54)
Proof. From (2.11), (2.36), (2.39) and the fundamental
trigonometric identity it follows that
sin 3o = sin (@ + 2a) = sin & cos 2a + cos @ sin 2a
=sina (1 —2sin?a) + cosa (2 sin & cos a)
=sina—2sin3a + 2sina cos?a
=sina—2sinda+2sina (1 —sin?a)
=3sina—4sinda.

Further, by virtue of (2.1), (2.36), (2.38), and the funda-
mental trigonometric identity, we have

cos Jo. = cos (@ + 2a) = cos a cos 2a — sin « sin 2a
= cos a (2 cos®a — 1) — sin a (2 sin a cos o)
= 2c0s8 o — cosa — 2 sin® o cos a
= 2cosd o — cosa — 2 (1 — cos® a) cos a
=4cosa — 3cosa. p

«

Example 2.2.6. Evaluate cos (3 arccos (— %)) .

4 Let o = arccos ; , then coso = — 3— We make use
of identity (2.54) to get

cos3a =4 cosd e —3cos o
:4(_L)__3(—1)=1-—i-:§. | g
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Example 2.2.7. Evaluate sin(S arcsin -1—) .

5
qLlet a = arcsin%, then sino =—;—. We use identi-
ty (2.53); whence there follows:
. 1 1 "
Sln3@—3'g—4- m——m. »

2.3. Solution of Problems Involving
Trigonometric Transformations

1. Evaluation of Trigonometric Expressions. A number
of problems require the value of a trigonometric function
for values of the argument that have not been tabulated
nor can be reduced to tabular values by reduction or
periodicity formulas, that is, they do not have the form
nk/6 or nk/4, k € Z. Sometimes, the value of the argu-
ment can be expressed in terms of such tabular values
and then apply the addition formulas for half or multiple
arguments.

Example 2.3.1. Evaluate tan’

12°
4 Since '1322 = %—% , we may apply formula (2.14) for
the tangent of a difference:
tan l—tan—n— 1‘%
tani:tan (l——i)= 4 6 = V3
12 4 6 1+tanltan—n— ’1+1o—l—
4 - 6 3
V31 (V3—1)? =
= e = - L =2—-VY3.
V3+1  (V34+1)(V3—1) Vi.»
Example 2.3.2. Evaluate cot i—;

«4Noting that %

for the cotangent of a sum:

= % -}-—g— , we apply formula (2.15)

oot
_cot A cot 3 1

cot %-—--cot (%—|——;-[-) —

1 t
cot TJFCM' T

1.1/-5_1 (/‘.3_1)2 —
== — = -_~2"— 3. ’
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In the cases when the argument is expressed in terms of
inverse trigonometric functions, we have to transform the
given expression so as to take advantage of the definition
of inverse trigonometric functions.

Example 2.3.3. Evaluate

A —= tan (%’?—-——};arcsin (—%))

4 Using first identity (2.50) for the tangent of half argu-
ment and then the corresponding reduction formula,

we get
3n 1 . 4
1—cos (T—_f arcsin (—-—5-))
R T 9)
sin ( 2 7arcsm (—_5‘
1 4
14 sin (.5 arcsin ( "3) )
= (1 - A
— CO0S 7&1‘05[1’1 (“_5‘))
We set a:-arcsin (—i) then sinoc————[‘- LN
ot ) \ 5/ - 5 2
&2
0<<0, cos2a=1—sinza — 1 —(—?:) _—_59—. Conse-

quently, cosa=-:;’—, and, by virtue of (2.47) and (2.46)
for the sine and cosine of half argument, we get

/3

—_— 1___.
- 1—cosa ____‘/ 5
sin g — —/ A= 7=
3
— 1_{,.4_
a 1+4cos a _‘/ 5 2
COS—Z—-»]/ — =

T VE

1
Vs o

The signs before the radicals have been determined
from the condition ——-%<a<0. Finally,

1= (1=p) = (~ ) =
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Example 2.3.4. Evaluate
12
13°

4Let a = arcsin %, ﬁ—arcsm:—g Then sina=%,
I<a<<— 2 , sinf == 13 , O<[3<—-anc10<oc—l-ﬂ<m

i.e. the number a4 f lies in the domam of values of

arc cosine. Since the points P, and Pg lie in the first
quadrant,

3
arcsin — =+ arcsin

cosa ==}/ 1—sin?a =4/5,
cosf ==} 1—sin?p =5/13,
and we may apply formula (2.1) for the cosine of a sum:
cos (@ +f§) =cosa cosff —sinasin §

4 5 312 16
51375137 76

whence it follows that «-i-f =arccos ( - %g) . >

When solving such problems, a common error consists
in that the magnitude of the argument o -+ f is not
aken into account. They reason like this: by the formula
or the sine of the sum of numbers, we may write

sin (a+ f) =sin acos B+ cosa sin f§

3 4 12 63
=35 13+5 13765

tand then conclude incorrectly that o -+ f = aresin g—g,

although the number o + P does not belong to the do-

main of values of arc sine since o + P >%
Example 2.3.5. Evaluate arctan 4 —arctan 5.

4 Let o —= arctan 4, B - arctan 5, then tan o == 4,

I<a< -g—, tanf =5, 0 <fp <%and —-%< a—Pf <

%. Let us use formula (2.14):

— —5 1
tan (o0 — ) = tan o —tan f 4

{3 tanctanp  1+45 21°

5—-01644
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Consequently, a—f - arclan ("_‘1T) since the number
a—f lies in the domain of values of arc tangent. p
Example 2.3.6. Evaluate sin 10°-sin 307 -sin 50° -sin 70°,
qLet us make unse of the reduction formula (2.3) and
multiply the given expression by cos 10°; we get

cos 10° sin 10° sin 30° cos 40° cos 20°.
Now, we may apply formula (2.36) for the sine of a double
angle for three times, namely:
¢os 10° ¢in 10C «in 30,° cos 20° cos 40°

= + (2 cos 10° sin 10°) % cos 20° cos 40)°

5

S E T

3 (2sin 20° cos 20°) cos 40°

- o=~

5 (2#1140° cos 40°) = - sin 80",
Since the initial expression was multiplied by cos 10° =
sin 80°, it is now obvious that it is equal to %; 'S
Example 2.3.7. Prove the equality
1t V8 _,
sin 10° cos 101° ’

4Multiply both sides of the equality by the number
sin10° cos 10° which is not zero. This transformation
is reversible, and the equality being proved now has the

form

cos 10° — )/ 3 sin 10° = 4 sin 10° cos 10°,
or

2 (—é— cos 10° — !/23 sin 10°) = 2sin 20°,

2 sin (30° — 10°) = 2 sin 20°.

We have used formulas (2.36) and (2.12) and have shown
that both sides of the equality are equal to the same
number 2sin 20°. p

The examples considered above show that in computa-
tional problems it is often convenient first to carry out
simplifications with the aid of known trigonometric for-
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mulas. For instance, it is useful to single out the expres-
sion of the form sin® o -+ cos® & which is equal to 1 by
virtue of the fundamental trigonometric identity.
Example 2.3.8. Evaluate
n

sin‘* + cost > — T sins 2% 5 —|— cost TR

4 A long solution would be first to compute the
38 , sin —5-8“—, and cos—781 with the
aid of half-argument formulas and then to raise the
terms to the fourth power and to add them together.
However, we first use reduction formulas (2.3), (2.8), and
(2.5) according to which

n
values sin 5+ €08

%19 n . 14
cos 3 — cos (—-—%) =sin =,

8 2 8
qinﬂ-—sin i-}—i = osi——cos7—“
S —g- = ( 2 T8 )_c 8 3"

Consequently, the given expression can be rewritten as
follows:

2 (sin‘ %—l—cos‘%)

— 2 T 2 .9qin2 - cog2 T

—2(sm — -}-cos 8) 2.2sin g cos’—<
. 1 3

=2.1—sin22—9 - _2

=2.1—sin 7 2 =g -

Here, we have used the fundamental trigonometric iden-

tity, formula (2.36) for the sine of a double angle, and
V2

also the tabular value sin % =5 P

Example 2.3.9. It is known that cos ¢ + sin ¢ = a,
where ¢ and a are real numbers. Find sin® ¢ + cos® ¢.

« sindg@4-cosdg
= (sin @+ cos @) (sin2 ¢ — sin @ cos ¢ 4- cos? @)
=a (% (sin?2 @ 4-cos? @)

—% (sin2 ¢ 42 sin q;cosq>-|—cosch))
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3 1, 3 2
=a ?—*z‘(sm‘PJF"OS‘P)z):“(i—%)
__3 —_——q8
=5a a. p

Example 2.3.10. Evaluate

A — Co8 70° cos 10°+-cos 80° cos 20°
" ¢0368° cos 8°4cos 82° cos 22° °

«First use the reduction formulas and then formula (2.2)
for the cosine of the difference between two numbers:
4 — cos 70° cos 10° - cos (90° — 10°) cos (90°— 70°)

" cos 68° cos 8°+-cos (90°— 8°) cos (90°— 68°)

__ ¢0870° cos 10°+-sin 10° sin 70° cos (70°—10°)

cos 68° cos 8°+sin 8°sin 68° ~  cos (68°—8°)
cos 60°
T cos60° L»

Example 2.3.11. Find sin ﬁ;_—ﬂ and cos E% , if
sina+-sinf= —%% , coso—+cosf= —-2—%, and n<<o—
p << 3m.

It follows from the two equalities that

(cos &t + cos B)? -+ (sin @ - sin )2 = EL’(’%#‘K ,

whence we get:
(cos? o + sin’ &) + 2 (cos @ cos B + sin & sin f) +
(cos® B + sin? B) = 18/65,
14-2cos (o —B)4-1=18/65,
14 cos (& —p) = 9/65,

2 cos? a;ﬂ =9/65.

Consequently, by virtue of the inequalities %<

oa—P 3n
—z <2

_ 3
2 V130 °
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Transform the sum of two sines into a product using
formula (2.17):

sin a4 sin f= 2 sin

3V2 . a+tpB
VT sin —5—.

B

atB
2

a—
S
Cco 3

Consequently,
a+|3=(_@) ;(_ 3V2 )= 7
2 65/ ° 1/'6-5 V130 °
Similarly, by virtue of the identity (2.21), we get
-I-ﬁ a—pf
2

CoS

sin

cos o+ cos B = 2 cos —

3 !/z at-p
— —— C0S ——.
V85 2
Therefore

Ccos

ofB _(_20) . (_3V2\__9
- (-w) () v >

An interesting method of solving problems on computing
the values of trigonometric expressions consists in the

following: we first try to find and then apply an algebraic
condition which is satisfied by the given expression. Here

is an instructive example: sin %ﬂ = sin 72° = cos 18°.
Example 2.3.12. Prove that

cos 18° = ]/-E-J-I-S—VS- .

«€Consider the continued identity based on the formula
for the sine of a double argument:

cos 18° sin 18° cos 36° = i (2 sin 18° cos 18°) cos 36°
sin (2-18°) cos 36° = 5 ! sin 36° cos 36°

(2 sin 36° cos 36°) = - 8in72°

yL\|n-» u.\l» N|»a

cos (90° — 72°) =71[ cos 18°,
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which yields the equality

sin 18° cos 36° = —i— ,

since cos 18° 5= (. Using formula (2.39), we wrile cos 36°=

1 — 2 sin? 18° and, consequently, get the relationship
sin 18° (1—2 sin? 18°) = ¢

or

8sin318°—4sin 18°4-1 =0,

that is, an algebraic equation which is satisfied by the
number sin 18°. Setting sin 18° = z, we can solve the
cubic equation thus obtained

822 —4x+41=0

by factorizing its left-hand side by grouping the terms in
the following way:

828 — 4z + 1 = 2z (42 — 1) — 2 — 1)
= 2z — 1) (42 + 2z — 1).

Consequently, our cquation ‘takes the form: (2z—1)x

(4at 4 2z — 1) == 0, its roots being xi';—;- ) xz;:—lz—m !
g =1V giice 0 <18 <sin30°= (by Theo-
- : . = y (10]

rem 1.4), then z,%sin 18°, z,=sin 18°, consequently,

sin 18° == —1+'/5 . Hence (since cos 18° > 0)

S ST (V1)
cos 18° = | 1T—sin2 18 = )/ 1—%—1)—

N T LA VA ST A SN

2. Simplifying Trigonometric Expressions and Proving
Trigonometric Identities. The usual method of proving
a trigonometric identity consists in that one of its sides
is transformed with the aid of various trigonometric and
algebraic operations and also with the aid of therelation-
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ships given in the hypothesis so as to get finally the ex-
pression which represents the other side of the identity.
We can make sure that the left-hand and right-hand sides
coincide, transforming them separately so as to get
equal expressions. It is only reguired that all the trans-
formations carried out be reversible in the domain of per-
missible values of the arguments of the given equality
(that is, for all values of the arguments for which all the
expressions involved in the given identity make sense).
This means that not only from each equality obtained
during the process of transformations there follows a con-
sequent equality, but also vice versa, the preceding equa-
lity itself must follow from the consequent one. This meth-
od of reasoning, of course, seems to be rather general
and is used for solving equations and systems as well as
for proving and solving inequalities.
Example 2.3.13. Prove that if

sin(z—a) _a cos(z—a) A

sin(z—p) b’ cos(z—P) B
and aB + bA = 0, then

aA-+bB
aB+bA °

4 Using identities (2.11), (2.36), (2.17), we get

cos (a—f) =

a A sin (z—oa) cos(r—a)
aA-+bB _F'F+1 __ sin(z—PB) cos(z—B +1
aB+hA~— a A T sin(z—a)  cos(z—a)
RN sin (z—Pp) ' cos(z—Pp)

sin (z — a) cos (z --- a) +sin (z —P) cos (x—B)
sin (z—a) cos (z —f)+cos (z — a) sin (z—f)

%— (sin 2 (x —a) +sin 2 (z —B))
sin (e — @)+ (= —PB))

__ sin (2z — (¢ +B)) cos (o —B)
= sin (22— (a--B))

The last transformation consisted in dividing both the
numerator and denominator of the fraction by the num-
ber sin(2z — (2 + PB)). This transformation is reversible

=cos (a—p).
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since sin (22 — (o + p)) = ELLAINE P costz =) oy
for the values of the arguments z, a, P considered
in the problem. p

Example 2.3.14. Simplify the expression
sin® 2o cos 6o -+ cos® 2a sin 6a.

4 Applying formulas (2.53) and (2.54) for the sine and co-
'sine of a triple argument and also formula (2.11), we get

sin3 2a cos 6a + cos? 2o sin 6o
= (% sin 2a—% sin Ga) cos ba
-+ 3 cos 2o -+ 1 €os (ia) sin ba
(z z

= % sin 2a cos 6a—% sin 6o cos bo

+% cos 2a sin 6a —l—% cos 6o sin 6o
= % (sin 2a cos 6o - cos 2o sin Gar)

=-§- sin (2o 4- 6ar) = %sin 8a.

All the transformations carried out are reversible, and
any real value of o is permissible. p
Example 2.3.15. Prove that tle expression

2 (sin® z 4 cos® 2) — 3 (sin? z + cos? )
is independent of x.
qApply the fundamental trigonometric identity:
2 (sin® z 4 cos® x) — 3 (sin* z + cos? z)
= 2 ((sin? 2)® + (cos® z)?) — 3 sint 2 — Jcost z
= 2 (sin*z 4 cos®z) (sin*z — sin®x cos® x + cos?z)
— 3sintz — 3 costx
= 2 (sin*z — sin® z cos® z -+ cos' )
— 3 sin*z — 3 costx
= —(sin* z + 2 sin? z cos® x 4 cos? z)
= —(sin®z + cos®>2)? = —1. p
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One should remember that in problems on transforming
a trigonometric expression it is always supposed, although
frequently not stipulated explicitly, that the given
expression must be transformed in the domain of its
definition, that is, only for the values of the arguments
for which the suggested expression has sense.

Example 2.3.16. Prove the identity

3-+4 cos 4a+ cos 8a
3 —4cos 4o+ cos 8a

The right-hand side of the identity is defined for num-
bers a such that sin 2 == 0, but it is not yet clear whether
the domain of the right-hand side coincides with the do-
main of the left-hand side, which is defined by the condi-
tion 3 — 4 cos 4o + cos 8a == 0. It is not convenient to
begin the solution by determining the domain of the left-
hand side. One has first to carry out formal transforma-
tions using identities (2.40) and (2.41):

3+4cosda+-cosBa 244 cosda 42 cos? bo
3—4cosho+cos8a ~ 2—4cosha-2cost 4o
_ 2(1+2cosda-}cos?da)  2(1-}-cosba)?
T 2(1—2cos4otcos?ha) T 2 (1—cos 4a)?
_ 2(2cos?2a)?
T 2(2sin22a)2
As a result of these transformations, it has been cleared
up, in passing, that the denominator of the left-hand
side is equal to 2 (2 sin? 2a)?, and the domain of defini-
tion of the left-hand side coincides with that of the
right-hand side. In the given domain of definition
sin 200 5= 0, that is, a 5= %k, k € Z, and all the transforma-
tions carried out arc reversible. p
When proving identities involving inverse trigonomet-
ric functions, their domains of definition should be treated
attentively.

Example 2.3.17. Prove that if z € [0, 1], y € [0, 1],
then the following identity holds true:

=cott 2a.

==cot! 2ct.

arcsin z +arcsin y = arceos (Y 1—a22 Y T—y2—zy) .

Let oo = arcsin z, § = arcsin y, then sin « = 2> 0,
I<aCn/2, sinf=y>0, 0P /2, 0<Ca + B



74 2. Identical Transformations

1, and the number a 4 P lies in the range of arc cosine.
Further note that

cosa=}1—a>, cosp=)1—12,

since the points P, and P, lie in the first quadrant. Now,
we may apply formula (2.1) for the cosine of a sum to get

cos (a + f) = cos acdsﬁ—sina sin f§

=Y 1=z YV1—y* —ay.
Hence it follows that

a+p=arccos (Y 1—az VI—y® —ay),

since o + P € [0, n]. p

Note that the identity being proved ceased to be valid
if the condition « € [0, 1] and y € [0, 1] are not fulfilled.
For instance, for z = —1/2, y = —1/2 the left-hand
side is negative, while the right-hand side is positive.

3. Transforming Sums and Products of Trigonometric
Expressions.

Example 2,3.18. Find the product

P = cos a cos 20 cos 4o . . . cos 2"a

for a = nk, k € Z.

<Mult1ply the given product by the number sin o which
is nonzero by hypothesis (a 5 mk, k € Z). This trans-
formation is reversible, and we get

P sin o= (sin c. cos &) cos 2a . .. cos 2" a

i
=7 sin 20 cos 2cccos &t ... cos 2" o
1 .
= (2sin 2o cos 2a) cos 4da ... cos2"a
1 on
—_-—275111805 .cos2tor= ..,
=1 sin 2" 2" 1 in 2" a.
-——ZT in o, COS o= — oaTl S1
Consequently,
1 sin 2"+l g
P= 2n+1 sina ° >
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Example 2.3.19. Compute the sum
S =sina + sin 2o + . . . + sin no.

4If a = nk (k €Z), then S = sin nk + sin 2nk 4. . . +
sin nnk = 0. Let a == nk (k € Z). We multiply the sum
S by sin % # 0, and then use formula (2.29) for the

product of sines. We get

Ssin 2 = (sina +sin 20 4 . . . -+ sin na) sin —
2 2
= sin & sin —‘;—--{—sin 2a sin -02‘——|— ...-5in na sin —Z—
=1 C0S — —cos 3a —|—i cos —'3—05——cos—52
2 2 2 2 2 2
_l_ . _l_% (cos w_cos (2_71‘#)
+ %_ (cos (2n—21)a_cos (2n—|£2)a)
=% (cos %—cos w—) =sin Msin —'52?—
(we have also applied formula (2.22)), whence
sin (n—_'-znisin L;—
S = = N 4
sin 3

Example 2.3.20. Compute the sum
S =cosa -+ cos2e -+ ...+ cos na.
4 a = 2nk, k€Z, then
S = cos 2nk + cos 4nk + ... + cos nnk
=14+...4+1=n.

Let oo % 2nk, k € Z, then sin % % 0 and, using the
formulas (2.27) and (2.18), we get

. a
sin —
Ssi 5

a

= 'n
S1 D)

. a . [
COS(Z-!—SIHTCOSZOL—{-...+SlnTCOSna
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—1 sin Eg———sini) |—i sinia—sin—:”—(i)
_2( 2 2 /" 2( 2

2
toe g (sin &N gn (Zn—i)a)

2
_ Cnt+la . « (n-\—i)a
=3 (blll ——— —sin ——2—) = sin 2 cos .
Consequently,
sin o 0s (nt1)
in ——cos ——5—
2 2
= 5 S

sin -5
Example 2.3.21. Prove the identity

1 o 1 o 1 a
?tallT+Z tanT—i—...—]—z—ntan—zw
1

= 5w cot %—cota.
4 First, we prove a useful auxiliary formula:

sin z cos x
tanr—cotaa = —— — ——

cos sin z
cos? z—sin*z 9 cos 2z
sinz-cosz sin 2z
= — 2cot 2x.

Then we subtract the number—i— cot 7“,; from the left-

hand side of the identity and apply n times the formula
just derived:

1 o 1 a 1 o
?tanT+-ztanT~{— ...+—27_Ttﬂn—2—,n7
1 o
-{—2—nt nﬁﬁ 2n COt
1 o a 1 o
=?tall—2—+—4-tan—+...+—27;1-tanﬁ_—l
1 o 1 o
+ 55 57 (tan -——cot ) tan - —1-ztan T
1 o 1 o
+ oo g tan g — g cot g
1 o 1 o 1 o
=?tan—2—+-4— tan—[‘——{-...—wcotiﬁ
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=...=tan %%—%—tan—,i‘———}cot%—
=%tan %—}——i—(tan%——cot %)
~fun g o

=%(tan —g——cot—g-) = —cota.

The given identity follows from this continued equality.
Note that the domains of definition of both sides of the
given identity coincide with the set of real numbers a
such that sin a s 0, that is, o %= nk, k € Z.

PROBLEMS

In Problems 2.1 to 2.17, prove the given identities:

2.4 tan2t-|-cot3s _ tan2t

‘** cot2t+tan3s ~ tan3s°®

cos®t—cos?s
sin2¢sin? s

sin 4o c0s 20 3
2.3. 1t-cos4e ~ 1-cos2a = cot (’fn_a) d

2.4. (cosa— cosf)2—(sin a —sin §)2

2.2, cot2t—cot2s=

.

= —4 .‘;irlzi;:—'3 cos (a -+ ).

2.5 sin4 t+4-costt—1 _E
7 sin8t-f-cosbt—1 ~ 3°

2.6, cott—tant—2 tan 2t = 4 cot 4t.
2.7. tan 6t — tan 4t — tan 2¢ = tan 6¢ tan 4f tan 2¢.

Jtant—tand¢
2.8. tan 3t= T—W

2.9. sin4t=% (cot4t—40052t+%) .

2.10. cos4t=8costt—8cos2t | 1.

2.11. 3—4cos 2t}-cos 4t

— tant
344 cos2t4cos4ht tantt.
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2.12. cos t+ cos (¢4 s) +cos (£ 2s).
ns\ . n+4-1
cos (H—T) sm( 3 s)

—
Sin 3

+ ...4cos(t+ns) =

2.13. sint+sin (¢4 s) - sin (¢ +2s)

sin (t-i—%) sin (%—1 s)
. s *
sin -

2.14. 8costt-4costt—8cos2t—3cost41

+ ... +sin(t+ns) =

7 t
=2cos 5 tcos?.

2.45, sin (t + s + u) = sintcosscosu

-+ cos tsinscosu + costcosssinu
—sin ¢ sin s sin u.

2.16. cos (t + s+ u) = costcosscosu

— sin ¢ sin s cos u — sin t cos s sin u
—cos t sin ssin u.

tan2¢—tan2 s
2.47. 1 —tan2 ¢ tan2s

In Problems 2.18 to 2.23, simplify the indicated
expressions.

2.18. sin? (%—I—Zs) ——sinz(—;——Zs) .
2.19. cos? (¢ + 2s) +sin? (¢t —2s) — 1.
2.20. cos$ (t—-%) ~+ siné (t—ég-)

—% (sinz (t—l—%)—cosz(t—l—-?’zﬁ))z.
2.21. sinz(—%:i-—Zt) —sin2(7Tn—-2t)
13n iin 4t).

=tan (£ 4 s) tan (i —s).

4

—Ssin -—1—2—003 TR
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2,22, sin® 2t cos 6¢ 4 cos® 2t sin 6t.
2.23. 4 (sin* t -} cos ) — 4 (sind t -|- cos® t) — 1.
In Problems 2.24 to 2.28, transform the given expres-
sions into a product.
2.24. sin 6t — 2)/3 cos? 3t + V3.
2.25. tan*t — 4 tan®t 4 3.
sin? (¢ s) —sin2 t—sin? s
2.26 sin? (t-}-s)—cos® ¢t —cos? s
2.27. sin? (2t — s) — sin® 2t — sin?s.
2.28. cos 22t +- 3 cos 18t + 3 cos 14t 4 cos 10t.
In Problems 2.29 to 2.32, check the indicated equalities.

2.29. cot 70° + 4 cos 70° = V3.

2.30. sin2 (arctan 3 —arccot ( —%)) = % .
2.31. sin (2 arctan - ) -+ tan ( ! arcsin :?) =%—
2.32. sin (2 arctan%) — tan ( ; arcsin 13) é

In Problems 2.33. to- 2.36, compute the given expres-
sions.

2.33. arccos (cos (2 arctan (2 — 1))).

2.34. sin2? (arctan % —arctan ( — %) ) .

2.35. cos (-% arccos --2arctan (— 2))

2.36 sin 22° cos 8°+cos 158° cos 98°
sin 23° cos 7°+cos 157° cos 97° °

2.37. Find tan % if sin £ 4 cost = 1/5.

2.38. Knowing that «, B, and y are internal angles of
a triangle, prove the equality

. . . o B v
sin @+ sin f+ sin y =4 cos <-cos 5 cos 5.



Chapter 3

Trigonometric Equations
and Systems of Equations

3.1. General

Written entry examinations include, as a rule, problems
on solving trigonometric equations. This is partly ex-
plained by the fact that there is no general method which
would be applicable for solving any trigonometric equations
and in each concrete case the search for a solutionrequire,
a certain of ease in carrying out identical transformations
and the knack of finding and applying the proper trigo-
nometric formula. In most cases, the transformations
used to solve such problems are generally aimed at the
reduction of a given equation toseveral simple equations
to be solved in a regular way, as it was described in
Sec. 1.4.

It is of importance to note that the form of notation of
the roots of trigonometric equations often depends on the
method applied in solving a given equation. To prove the
fact that two different notations of the answer are equiv-
alent is sometimes an interesting problem in itself,
although the examination requires to solve the given
equation using only one method, rather than to transform
the answer into other notations.

When solving trigonometric equations and systems of
equations the student has frequently to deal with rather
complicated expressions composed of trigonometric func-
tions. Competition problems often involve expressions
that, along with trigonometric functions, contain other
types of functions (inverse trigonometric, exponential,
logarithmic, rational, fractional, etc.). The student must
remember that in most cases such expressions are not
defined for all values of the variables in the given expres-
sion. Frequently, identical transformations result in
some simplifications, however, the equation (or system)
obtained may have another domain of permissible values
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of the unknowns. This can lead to “superfluous” or
“extraneous” roots if the domain of permissible values is
broadened as a result of a certain transformation or even
to a loss of roots if as a result of some transformation the
domain of permissible values is narrowed. A good method
to avoid such troubles is to watch for the invertibility of
the identical transformations being carried out on the
domain under considertion. Whenever the transformations
are not invertible a check is required. Namely, first, find
and check the possible values of the roots which might
have disappeared as a result of the reduction of the
domain of permissible values, and, second, make sure that
there are no extraneous roots which do not belong to the
domain of permissible values of the initial expression.
Example 3.1.1. Solve the equation

sinz + Tcosz + 7 =0.

4One of the methods for solving this equation (though
not the best) consists in using the universal substitution
formulas (2.42) and (2.43):

il —tan2 =

) 2tan2 1 —tan 5
Sing= ———, csr=—-—~-—,
1+tan27 1-l—tan2—2—

As a result, we get the following equation:

2tan% . 7(1—tan2%) 720
T = y
14 tan2 % 14-tan? —;

which is equivalent to tan% = 7, and, consequently, to

xz = 2nk — 2 arctan 7, k € Z. However, the above reason-
ing is erroneous, since the universal substitution formu-

las are applicable only to the z’s for which tan % is de-

fined, that is, x 5% n 4- 2nk, k € Z. Therefore, as a result
of the transformations, the domain of definition of the
function on the left-hand side of the equation is reduced
and in order to get a correct answer, it is necessary to
check whether there are roots among the numbers which

6—-01644
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are left outside the domain of definition of the expression
obtained, that is, to check whether or not the numbers
z =aq -+ 2nk, k €Z, arc also rootls of this expression.
For these values of x we get sin x = 0, cosz = —1, and
the equation turns into an identity (we mean the original
equation), therefore the correct answer is:

= —2 arctan 7 -+ 2nk, x=an + 2nk, kELZ.

This problem can be solved in a shorter way, by using
only invertible transformations. For this purpose, it is
necessary to use the method of introducing anauxiliary
angle (Theorem 2.2). We divide both sides of the equa-
tion by the number Y12 + 7 = /50, transpose the

number 7/)/50 to the right-hand side, and then rewrite
the equation as follows

sin (z + ¢) = —7/}/ 50,
7
V50
been reduced to a simple trigonometric equation of the
form sin t = a considered in Sec. 1.4, and the general

solution is written in the following form:

z 4 @ = (—1)* aresin (=7)/Y 50) + nn, n€Z,
or

where ¢ = arcsin . Thus, the original equation has

. 7
L (—1"*"arcsin —-1-ntn, nElZ.
Thus, for an even n = 2k, k € Z, we get a series of solu-
tions

-
{

T = —arcsin —
V50

I == — 2 aresin

'/75 - 2nke,

and for an odd n = 2k 4+ 1 another series of solutions
z=gn + 2nk, k€Z

The equivalence of the two notations of the answer

now follows from the equality sin (arctan x) = x/}/ 1+ a2

(sce Example 1.4.6) or arctan z — arcsin

2
Vite’

. 7
whence arcsin —— = arctan 7.
V5o >
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Example 3.1.2. Among the roots of the equation
c0s 3nx
1+ V 3tan nz
find the one which has the least distance from the number
V'8 on the number line.

4The function tanzz is defined if nr 5= %—{—nk,

ie. x;e—;-—l—k, kecZ.

In order to find the domain of definition of the func-
tion on the left-hand side of the equation, it is necessary,
in addition, to bear in mind that the denominator must

not vanish, that is, 1 V?Ttan nz =% 0, or tan nx =%
—1/1/1?, which is equivalent to the condition nx £ — %’—I—

nk, that is, x == —% -+ k, It € Z. Thus, the domain of
cos 3nz

1-+ ]fg_tan nr

such that.r:;é% + k and x 5£ —% + k for k € Z. Inthe

given domain of permissible values the equation is equiv-
alent to the following:

the function consists of real numbers x

cos 3nz = 0
whose solution has the form:

3nx-——%—|—nn, i.e xr.%—#%, ncZ.

Let us now find out which of the obtained values of x do
not belong to the domain of definition. We have:

1 n 1

_‘T-{-?’-—_?—}—k for n=14 3k,
1 —
F+%: _%—l-/cfor n= —1+3k.

Note that n = 3k =1, k € Z, is the set of all the inte-
gers not divisible by 3. Consequently, the formula for x
describing the solutions of the given equation must con-
tain only r divisible by 3. Setting n = 3k, we get 2 —

% + k, k € Z. Further, from these solutions we choose

(3]
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the one which satisfies the additional condition of the

problem (with the least distance from the number /'8 =

2)/2). Since 1.41 <}'2 < 1.42, we have 2.82 <

12) V2 < 2.84, and it suffices to consider the two num-
ers

1 1
:c.—-:F—I—Z and x:T)""3'

which are the closest to the number }/ 8. The problem
has been reduced to comparing the two numbers

1 5 5 1
|23—2V2|=2V2—2§
and
lai—zvz— 31 _oy7
°6 l_" 6 g
The following inequality holds true:
1 5 Y 1
3s—2V2<2y2—-24.

Indeed, it is equivalent to the inequality 4)/2 > 5—;—
which is proved by squaring both members since both of
them are positive. Therefore the number xr = 3% is the

sought-for solution of the given equation. p»
If in this example the domain of permissible values is
treated inaccurately, for instance, one forgets about the

condition 1 + V3 tan iz %= 0 or that tan mx must be
defined, then a wrong answer is obtained.

Even these two examples show the importance of tak-
ing into account the domain of permissible values when
solving trigonometric equations. However, it is not al-
ways convenient to write out the domain of permissible
values in an explicit form, that is, to indicate explicitly
all the values of the unknown belonging to this domain.
It suffices to write the conditions wherefrom this domain
can be found. Thus, in.-Example 3.1.2, these conditions
were cos mr 5= 0 (i.e. tanmz is defined) and 1 4
V'3 tan nz 5= 0. Sometimes, one succeeds in solving
such conditions with respect to z in a simple way (as in
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Example 3.1.2), but in most cases this is a cumbersome
problem in itself. However, when checking individual
values of the unknown which may turn out to be roots,
one may also successfully use an implicit representation
of the domain of permissible values, checking whether
the indicated conditions are met for the values undor
consideration.
Example 3.1.3. Solve the equation

2sin (3x+-’;—) =V 1+8sin2zcos?2z .  (3.1)

4The domain of permissible values of the given equa-
tion is specified implicitly by the conditions: 1 -+

8 sin 2z cos?2z > 0, "sin'(3x—|— -Z—t) > 0. If we square

both sides of the equation, then, on the given domain,
the original equation (3.1) is equivalent to the following
equation:

4 sin2 (31:-{—%) =14 8sin 2z cos? 2z. (3.2)

However, if one does not take into account the domain of
permissible values, then, although the roots of the origi-
nal equation (3.1) are also the roots of equation (3.2),
but all the roots of (3.2) will not necessarily be the roots
of (3.1). Therefore on finding all the roots of (3.2) we
have to choose those which will be the roots of the orig-
inal equation. Applying formula (2.41), we get

1—cos (Gx-l-%)

. 1} .
sin? (3x+ —Z—) = =7(1—|—sm 6z),
using formulas (2.36), (2.27), we have
8 sin 2z cos* 2z = 4 cos 2z (2 sin 2z cos 27)
= 4 cos 2z sin 4x = 2 (sin 6z + sin 2x).
Therefore equation (3.2) may be rewritten as follows

2+ 2sin 6z =1 4 2 sin 6z - 2 sin 2z,
or

sin 2x=-%—, (3.3)
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For a further investigation, the solutions of this equation
should be conveniently written in the form of two series
of solutions (but not united, as usual, into one; see
Sec. 1.4):
51
KPR
Since equation (3.3) is equivalent to equation (3.2), we
have to check whether all of its solutions are the solu-
tions of the original equation.

Substituting the found values of z into the right-hand
side of the original equation, we get the number 2, that
is, the condition 1 + 8sin 2z cos? 2z >0 las been

fulfilled. For z = {Ez—f— nn, n € Z, the left-hand side of
the original equation is equal to

z ~—n+-nn Z -
12 ’ -

l-mn, nEL.

2 sin (3x+ —Z—) =2sin (%+2nn) =2 cos nn,

If » is an even number, then 2 cos nrn = 2, and if »n is
odd, then 2 cos nn = —2. Hence, from the first series
the solutions of the original equation are only the num-
bers

1
=+
For x=2—;—|-un, ng€Z, the left-hand side of the orig-
inal equation is equal to

z= 2nk, k¢Z.

2sin (3x+—2—) = 2sin (323——]— 3Jm) = -— 2 ¢0s n.

If »is an even number, then —2 cos i = —2, and if n
is odd, then —2 cos nn = 2. Consequently, from the sec-
ond series, the following numbers are the solutions of
the original equation:

e 4 @+ )7, KEL.

D@k, kEZ. b
When solving this problem, most errors occur owing to
incorrect understanding of the symbol }'. As in algebra,

Answer: == T’Ez__'r ok, =
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in trigonometry this radical sign means an arithmetic
square root whose value is always nonnegative. This
note is as essential as the requirement that a nonnegative
expression stand under the radical sign of an arithmetic
root. If for some values of the arguments these conditions
are not fulfilled, then the equality under consideration
has no sense.

3.2, Principal Methods of Solving Trigonometric
Equations

1. Solving Trigonometric Equations by Reducing Them
to Algebraic Ones. This widely used method consists in
transforming the original equation to the form

F (i) =0, (3:4)

where F (z) is a polynomial and f (¢) is a trigonometric
function; in other words, it is required, using trigonomet-
ric identities, to express all the trigonometric functions
in the equation being considered in terms of one trigo-
nometric function.

If z,, x5, . .., =, are roots of the polynomial F, that
is,
F)=0, F(x) =0, ..., F(zp) =0,

then the transformed equation (3.4) decomposes into m
simple equations

f@) =z, Q@) =24 .., @) = xp.

For instance, if the original equation has the form
G (sin t, cost) = 0,

where G (z, y) is a polynomial of two variables z and y,
then the given equation can be reduced to an algebraic
equation with the aid of the universal substitution for-
mulas by getting rid of the denominators during the pgocess
of transformation. As it was stressed in Sec. 3.1, such 2
reduction requires control over the invertibility of all
the transformations carried out, and in case of violation
of invertibility a check is required.
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Example 3.2.1. Solve the equation
cos 2t — 5sint — 3 = 0.

4By formula (2.39), we have 1 — 2sin®¢ — 5sint —
3 =20, or

2sin?t + 5sint + 2 = 0.

We set z == sin {; then the original equation takes the
form of an algebraic equation:

222 4+ 5 4+ 2 = 0.

Solving this equation we get z, = —1/2, z, = —2. All
the transformations carried out are invertible, therefore
the original equation is decomposed into two simple
equations:

sint = ——12— and sint=2.

The second equation has no solutions since |sin ¢t | < 1,
therefore we take sin t = —1/2, that is,

t=(— 1" +an, necZ. »
Example 3.2.2. Solve the equation
tan x - tan (%—}— x) = —2.

4By formula (2.13) for the tangent of the sum of two
angles, we have:

-
tanT-i—tana: 14tanz

“1—tangz°

k14

tan (T"" .z) = p-
1—tan Z tan z
‘Hence, tan x-l—%—: —2. Setting y=tanz, we
get an algebraic equation:

- 1

y+ 1__|_!; =—2,

or

y—yn+1+y=-201—y, y==V3,
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consequently, tan z = =+}/3, that is,

w:i—g—-{—nn, neZ.

Both series of solutions belong to the domain of permis-
sible values of the original equation which was not re-
duced under transformation.

Example 3.2.3. Solve the equation

(1 — tan z) (1 4 sin 22) = 1 + tan z — cos 2z.

4Note that the numbers z = ; -+ nk, k € Z, are not

solutions of the given equation, therefore we may con-
sider the given equation on a smaller domain of per-

missible values specified by the condition z == % +- nk,

k € Z, and use the universal substitution formulas (2.42)
and (2.43) which are reversible transformations in the
given domain:

2tanz 1 —tan? z
coS 2 =

sin 2z = 1+4tan2z °’ 1-4tan2z °*

We set y = tan x, then the given equation is reduced to
an algebraic one:
2y _ 1—y?
1=y (1 + 135 ) =141 =
Since 1 + y® 5= 0, this equation is equivalent to
t—=—ypt+ty+2=0+pnd+y)—1+4,
whence, by successive invertible transformations, we get:
= 4+ =+t +¥PHN+E—-—DF+1),
=+ =00+t +y¥+y—1,
A=y A+ y =017y,
1+ y>*@1—2y =0

The roots of the obtained equation are: y, = —1 and
Y,= 1/2. Consequently, the original equation is broken
into two simple equations: tan z = —1 and tan 2 = 1/2

in the sense that the set of solutions of the original equa-
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tion is a union of the sets of solutions of the obtained
equations, and we get

&L == —% + nn, w::arctan-—;- 4-nn, ncZ.p

Example 3.2.4. Solve the equation

2sin 4x + 16 sin® z cos x + 3 cos 2x — 5 = 0.

4Note that, by, virtue of formulas (2.36) and (2.38),
2 sin 4z = 8 sin x cos z cos 2z
= 8 sin z cos £ — 16 sin® z cos «,
and the equation takes the form
8sinxcosxz + 3cos 2z —H =0,

or
4 sin 2z + 3 cos 2z = 5. (3.5)
Let us make use of the universal substitution formula
sin 2z = 20T o0 S tANT
T A4-tan2zx O’ T 1+4tan?z

and designate y = tan z. Then the equation is trans-
formed into an algebraic one:

8y 3—3y*
T T agy =

or 8y + 3 — 3y = 5 + 5y?, whence
1
y¥—y+5=0.
Consequently, y = 1/2 or tanz = 1/2, whence z =

arctan%—l— nn, n € Z. It remains to check that no roots

are lost during the process of solution. Indeed, only those
z’s might be lost for which tan z has no sense, that is,

z = ; + nk, k € Z. Substituting these values into the

left-hand side of (3.5), which is equivalent to the origi-
nal one, we get

4 sin (n + 2mk) + 3 cos (n + 2nk) = —3.

Consequently, besides x = arctan % + nn, n€Z, the
equation has no other roots. p
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2. Other Methods of Reducing Trigonometric Equations
to Several Simple Equations. Basically, we mean here
application of the formulas for transforming the sum or
difference of trigonometric functions into a product (see
Sec. 2.1, [tem 6). However, it is often necessary first to
carry out additional identical transformations. In parti-
cular, the left-hand sides of formulas (2.17), (2.18), (2.21),
(2.22), (2.25), (2.26) contain the basic trigonometric
functions (in the first power), therefore to use them, it is,
for instance, useful to ?pply formulas (2.40), (2.41) which
reduce the power of trigonometric functions in the given
expression.

Example 3.2.5. Solve the equation

sin? x + cos? 3z = 1.
4 Applying identities (2.40) and (2.41), we get

1 1 1 1
—2——'2—0052x+7+'§'(30$6$=— 1,
or —;— (cos 6z — cos 2x) = 0, whence, by virtue of iden-
tity (2.22) we get
—sin 4z sin 2x = 0.

The original equation has been broken into two equa-
tions:

sin4x = 0 and sin 2z = 0.

Note that the solutions of the equation sin 2z = 0 (x =
nk/2, k € Z) are solutions of the equation sin 4z = 0
(since sin 4 (nk/2) = sin 2nk = 0, k € Z), therefore it
suffices to find the roots of the equation sin 4z = 0. Con=
sequently, 4z = nn or:
x=mnnl4, n€Z p
Example 3.2.6. Solve the equation
sin £ 4+ sin 2z - 2 sin z sin 22 = 2 cos x + cos 2.

4By virtue of identity (2.29) for the product of sines,
we have

sin & 4 sin 2z 4+ cos & — cos 3 = 2 cos & + cos 2.1,
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or
sin x -+ sin 2 — cos x — cos 2xr — cos 3x = (.
sin x 4 sin 2z — (cos x - cos 3x) — cos 2x = 0.
Applying formulas (2.21) and (2.306), we get
sinx -+ 2 sin x cos £ — 2 cos 2r cos £ — cos 2xr = 0,
or
sinz (1 4+ 2cosx) —cos2xz (1 + 2cosz) =0,
(sin z — cos2z) (4 4- 2 cos 2) = 0.

Thus, the original equation has been decomposed into two
equations:

(1)1 4+2cosz=0 or cosz= —1/2,
for which z = iz—;‘- -+ 2nn, n €2,
(2) sinx — cos 2z = 0.

By formula (2.39), we transform this equation to the
form
sinr —1 4+ 2sin?2 =0
and set y = sin z:
20 +y—1=0.

The quadratic equation thus obtained has two roots:
vy, = —1, y, = 1/2. In the first case

sinz= —1, or x:——Z——|—2nn, neZ.

1In the second case
sinz==1/2, that is, x:(—1)“%+ nn, ngZ.

Thus, the solutions of the original equalion are written
in the form of three series

a::-j;—%;—,Znn, m:—%—]—Zﬂn,

x:(-l)"%—!—»nn, ncz. p
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Example 3.2.7. Solve the equation

1
sin x

- cotx+ 1

tan 2z 4 sin 5z °

4 Transform the given equation:
sin 2z cos 1 1

c0s2z  sinz | smx  smar =0,
or
sin 2z sinx—cos2zcosz |, sindz—sinx 0
sin z cos 27 F sinzsinoz "

Applying identities (2.1) and (2.18), we get

—cos 3z + 2cos3dxsin2z
sin z cos 2z sinzsinbz

or
cos 3z (sin 5z —2sin 2z cos 2r) 0
sin z cos 2z sin bz -

cos 3z (sin 5z —sin 4x)
sin z cos 2z sin bz

)

and, again by formula (2.18),

. X 9z
c08 3z-2sin 5 cos - _

sin z cos 2z sin bz

Note that if sin z = 0 (i.e. z = znin, n € Z), then also
sin 5z = 0, and the equality sin % = 0 means that

sinz =0 (sin 2nn = 0, n € Z). Consequently, the do-
main of permissible values of the given equation can be
specified by two conditions:

cos 2¢ =0 and sin bz =% 0,

and on this domain the original equation is decomposed
into two equations:

(1) cos 3z = 0,
(2) cos —‘2—1:0.
Let us solve equation (1). We have 3z = —725 + nn

(n€Z), or x =% + ™ and we have to check whether
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the constraints specifying the domain of permissible
values are met. For n = 3k, k€ Z, the expression

cos (2% + phicd )= cos ﬂﬂsj——“ takes on values equal to

1/2, for n = 3k + 1, k € Z, values equal to —1/2, and for
n = 3k + 2, k € Z, values equal to —1, that is, cos 2z 5
0 for all these values of z. Further, for n = 6k or

N . T an
n =6k 4 2, k € Z, the expression sin (5(—6- + -3.—)) =
sin (ST:[—I— ?) takes on values equal to 1/2, lor n = 6k +
1,k € Z, valuesequal to 1, forn = 6k 4 3orn = 6k 5,
k € Z, values equal to —1/2, and for n = 6k + 4, k € Z,
values equal to —1, that is, sin 5z = 0 for the indicated
values of z, and all of them belong to the domain of
permissible values.
Consider now equation (2). We have:

9

L n 27tn
fz——z——}-nn, or x—T—i-

g ,
and check whether the constraints cos 2r %= 0 and

sin 5z = 0 are met. Note that the expression cos (2(7?— -+

2’;—")) takes on one of the following nine values: cos

1 10m 14n
— 35 Ccos

cos 3%‘“, none of them being zero. Similarly, we check to
[T 2nn

see that the expression sin (5('5 —+ T) ) does not vanish

either for any integral values of n. Thus, we have found

all the solutions of the original equation: z = % + %n-,

xr = -;—‘ -+ —2%, neZ p
Example 3.2.8. Solve the equation

ncZ,

2n
9,

0
—, cos —, 1, cos 2n cos gﬁ_n’ cos s
9 9> 9’ 9 3

)

9cos 3z 4+ 3 cos z = 3 sin 4a.

«Let us first note that if we apply twice formula (2.30) for
the sine of a double angle, we shall get the identity sin 4z =
2 sin 2z cos 2z = 4 sin z cos z cos 2x. Using this iden-
tity and (2.54), we rewrite the given equation in the form

S5(hcos®x — 3 cosx)+ 3cosx = 12sin z cos x cos 2z,
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or
cos & (20 cos*x — 15 + 3 — 12sin e (1 — 2sin)) = 0,
cos z (20 (1 — sin%) —12 — 12 sin 2 (1 — 2sin%r)) = 0,
cos x (20 — 20 sin® »x — 12 — 12 sin # + 24 sin%z) = 0,
cosx (6sin®z — Hsin®x — 3sinz + 2) =0,

cos x (6 sin® z (sin £ — 1) + sin z (sin z — 1)

— 2 (sinz — 1)) =0,
cos z (sinz — 1) (6 sin* z 4+ sinx — 2) = 0.
Thus, the given equation decomposes into the following

three equations:

(1) cosxr=0, zr=-—+mnn, necZ,

+2nan, neEZ

oa o

(2) sinz=1, =z=

(we see that the solutions of equation (2) are at the same
time solutions of equation (1)),
3) 6sin?z 4 sinz — 2 = 0.

Setting y = sin z we get an algebraic equation
6y2 + y — 2 = Ov

whose roots are y; = —2/3 and y, = 1/2, and it remains
to consider two cases:
(@) sinz = —% , £=(—1)"* arcsin %-}-nn, necZ,

(b) sinx:%—, x:(—1)"%—i—nn, ngZ.

Thus, all the solutions of the original equation are
described by the formulas

z —% +an, x=(—1)"!arcsin %-}- nn,

xvt‘-("“"%‘i’ﬂnv neZ. »
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Example 3.2.9. Solve the equation

cot 2z + 3 tan 3z =2tan x4+ sufﬁ .

<« Let us represent the given equation in the form
(cot 2z 4 tan x) 4+ 3 (tan 3z — tan ) ==

sin 4x
and use the following identity:
cos 2z sin
cot 2z +-ta sin2r | cosz
__cos2rcosz-+tsin2zsinz ~ coszx 1
- sin 2z cos x " sin2rcosx  sin2z '’

whose domain of permissible values is specified by the
condition sin 2z 5= 0, since in this case also cos z 5= 0.
Applying this equality and formula (2.26) for the dif-
ference of tangents, we get

1 3 sin 2z 2
sin 2z - cos3zcosx  sin4x °
The domain of permissible values for the given equation
can be specified by the following two conditions: sin 4x %
0, that is, x <= nn/4, n € Z, and cos 3z =0, that is,

x#—g- - %ﬁ, n € Z. We transform the obtained equation

on the given domain:

3 sin 2z _ 2 1
cos 3z cos x sin 4z sin 2z '
9 sin 2z _ 1 _ 1
"~ cos3zcosa sin 2x cos 2z sin2z ’
o sin2xz  1—coslr

cos3zrcosz  sin2rcos2z ’
6 sin x cos 2s8in? z

cos3zrcosr  2sinxcoszcos2r *

Since sin 40 and cosz =40, we have

Gcosz 1

cos3r  cos2z "

Thus, in the domain of permissible values the original
equation is equivalent to

6 cos x cos 2x = cos 3z,
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and, by virtue of identity (2.54) for the cosine of a triple
angle, we have

6 cos z cos 2z = 4 cos® x — 3 cos z,

whence
6 cos 22 = 4 cos® x — 3 (cos z == 0),
6 cos 2z = 2 (1 + cos 2z) — 3,
6 cos 2z = 2 cos 2z — 1,
4 cos 2z = —1, cos 2z = —1/4,
whence z =+ %arccos ( —%) +mnn, ncZ.

It is easy to check that the found values of z satisfy the
conditions specifying the domain of permissible values

in which all the transformations carried out were inver-
tible. p

Example 3.2.10. Solve the equation
%-—I—cosx—{— cos 2z -+ cos 3z + cos 4x = 0.

4Note that =z = 2nn, n € Z, are not solutions of the
given equation, therefore we may assume that z == 2an.

Then sin % = 0, and the following equalities hold:

€08 z -+ ¢0s 2z + cos 3z 4 cos 4x

=———1—(2cosxsin%+2cos2xsin%
2sin —
2
. X . x
+2cos3xs1n—2-+2cos4xsm7)
1 .3 .z ) .3
=;;—i-(sm7x—sm7+sm—2—x—51n—2-a:
2
.7 -] .9 1
—|—sm—2-x—sm§-x+sm7x—sm§a:)
i d
| .9 .o SivgpE g
=——lsin - z—sin 5 )= —"— — .
. T ( 2 2) .z 2
25m7 Zsma

T—-01644
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Consequently, the original equation can be transformed to
the form

9
sin &5 r
2 .9
=0 or sin4-x=0,
.oz 2
2 sin -5
2k ; . 5 . .
whence = 7 L€Z, provided z=£2nn which is

equivalent to —2'11;—";;x‘:2nn or k£=9n (r€Z). p

3. Solving Trigonometric Equations Using the Proper-
ties of Trigonometric Funclions. Frequently, we have to
deal with equations of the form f (t) = g (t), where f
and g are some functions containing trigonometric expres-
sions such that enable us to investigate the domains of
values F (f) and £ (g) and to prove that these domains
either do not intersect or have few points in common. In
such cases, the solutions of the equation f (t) = g (¢)
should be sought for among such ¢’s which satisfy (sim-
pler) equations f (¢) = a, g () = a, wherea is a real num-
ber such thate € E (f) and a € I (g), thatis, a € E (f) N
E (g).

Example 3.2.11. Solve the equation

sin® 4z -+ cos® z = 2 sin 4x cos? z.
qLet us write the given equation in the form
sin® 4r — 2 sin 4z cost z = —cos? z.
Adding cos® z to both sides of the equation, we get

sin? 4r — 2 sin 4z cos* z + cos® z = cos® z — cos? z

or
(sin 4z — cos* ) = —cos® z (1 — cos® z).

The left-hand side of the equation is nonnegative, while
the right-hand side is nonpositive (cos’z >0, 1 —
cos® x > 0), consequently, the equality will be valid only
whfinn the following conditions are fulfilled simultane-
ously:
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{ —cos? z (1 —cos® x) =0,
(sin 4z —cost )2 = 0.

The first equation decomposes in to two:
1) cos®>z = 0 or cosz = 0,

whence x=%+nn, nE€Z. The obtained values also
satisfy the second equation since

sin (4 (12‘--}- nn) ) = s8in (25 4 4an) = 0.
(2) 1 —cos®x =0 or cosz = 1,

whence z = nn, n € Z. Substituting these values of z
into the second equation, we get (sin 4nr — cos* nin)? = 0
or (0 — 1) = 0 which is wrong.
Thus, the solution of the original equation consists
of the numbers x=—’2’—+nn, neZ. p
Example 3.2.12, Solve the equation
sin® x + cos® x = p,

where p is an arbitrary real number.
4 Note that

sin®z 4-cost
= (sin® z + cos? z) (sin® x — sin? x cos? = -+ cos? z)
=sin* x —sin?x cos?x-|-cost x
= (sint z 4 2 sin? 2 cos® x4 cost ) — 3 sin® z cos? z

= (sin? x4 cos? r)2 — % (2 sin x cos z)?

=1 —%sinzz:c:i—%a—coslw)

3

5
= 5 C0s 4x+? .

and the given equation takes the form
3

5 __ 8p—5
?cos4x+?—p or cos4:c———3—.
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The equation has the solution z-= -+ %arccos 813_—54—

I n€Z, for —1<(Bp—5)3<1 or 1/4<p<t. p

Example 3.2.13. Solve the equation
(cos % —2sin x)_sinx+ (1 +sin —Z——2cosx) cosx==0.

4Remove the parentheses and then use the fundamen-
tal trigonometric identity and formula (2.11) for the sine
of the sum of two numbers. We get

T . . o x
cos—-sin w—2s1n2x—|-cosz-|-smTcos z—2costz=0,
that is,
. x .
sin (x + T) + cos z— 2 (sin? z +cos? z) =0,
or

sin 5Tx-}—cosrzv=2.

Note that the sum in the left-hand side of the obtained
equation will equal 2 only if sin %f— =1 and cosx =1

simultaneously, that is, our equation is equivalent to the
system of equations:

{ sin—541=’l,
cosr=1,

whence

5z n
{-4—3—1?—[—2“”, nEZ,
x=2nk, kecZ,

and the equality 2nk=—25-“—+ STnn must hold, whence

k=2t Since kCZ, we have n=5m+1, mEZ
(since for the remaining integral n’s, that is, n = 5m,
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n=5m-+ 2, n=5m-+ 3, n=>5m + 4, it is obvious
that k ¢ Z), and then z = 2rn 4 8mm, m € Z, that is,
z = 2n (4m + 1), m € Z.

»

3.3. Solving Trigonometric Equations and Systems of
Equations in Several Unknowns

The presence of two or more unknowns involve certa-
in difficulties in solving trigonometric equations and
systems. The solution of such an equation or system is
defined as a set of values of the variables which turn the
given equation or each of the equations of a system into
a true numerical equality. To solve a given equation or
system is to find all such sets. Therefore, answering a
problem of this type by giving the values taken on by
each unknown is senseless. One of the difficulties en-
countered in solving such problems is also that the set of
solutions for these equations and systems, is, as a rule,
infinite. Therefore, to write the answer in a correct way
and to choose desired solutions, one has to consider dif-
ferent cases, to check the validity of auxiliary inequali-
ties, etc. In some cases, when solving systems of equa-
tions we can eliminate one of the unknowns rather easily
by expressing it in terms of other unknowns from one of
the equations of the system. Another widely used method
is to try to reduce a trigonometric system to a system of
algebraic equations involving some trigonometric func-
tions as new unknowns. As in solving trigonometric
equations in one unknown, we can try to carry out iden-
tical transformations to decompose one or more of
the equations to the simple equations of the type
sin (x + 2y) = —1, tan (x —y) = V3, and so forth.

Example 3.3.1. Solve the system of equations

[ Vsinzcosy =0,
2sin2z—cos 2y—2=0.

«It follows from the first equation thatsin 2> 0, two
cases are possible here: if sin £ = 0, then the equation
turns into an identity, and if sin z > 0, then the equation
implies that cos y = 0. Consequently, the system is equiv-
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alent to the collection of two systems:

[ sinz =0,

2sin2x—cos2y—2=0
and
cosy=0,

[ 2sin2z—cos2y—2=0, sinz>0.
The first system has no solutions (cos 2y -+ 2 5= 0),

while the second is equivalent to the system of two simple
equations

cos y=0,
[ sin z =}/ 2/2.

Consequently, the set of all solutions of the original sys-
tem consists of pairs of numbers (z, y) of the kind

(=1 F+nk, 5 +wl), kICZ »
Example 3.3.2. Solve the equation

3+2co§(1:—y) :Vm—zcosz z;y 4 sinz(zz—y) )
qUsing formula (2.40) for reducing the power of co-
sine, we get
3+2cos(z—y)
2

zvm 1 +co;(z-y) + sm“(za:——y) ,

or
1—sin2(z—y)+ 2 —V 3+ 22— 2?) cos (x — y)
+2—V3+2z—a%=0,
cos? (x—y) + (2— Y 3+ 22— 2?) cos (x — y) + 2
—V3F2z—22=0. (3.6)

Let us set ¢ = cos (x — y) and @ = 2 — V'3 -+ 2z — a2,
then equation (3.6) can be rewritten as follows:

2+ at +a=0.
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The given equality can be regarded as a quadratic equa-
tion with respect to ¢t which has solutions only if its dis-
criminant is nonnegative, hence,

a® —4a >0 or a(a— 4) >0,
whence a << 0 or ¢ > 4. However, according to the in-
troduced  notation, =2-—VY3+2uw—22=2—
V4 = (x — 1% and therefore 0 =2 — V4 <a<2.
Consequently, a = 0, whence 2 — V4 — (z — 1)2 =0

or £ = 1. Then equation (3.6) takes the form cos? (1 — y)
=0 or cos (y —1) = 0, whence

y—1=%+nn, ngZ.
Thus, all the solutions of the original equation are

pairs of numbers (x, y) of the form (1, 1—}—%—1— :rm) y

neZ. p
Example 3.3.3. Solve the system of equations

{ cot z-|- sin 2y = sin 2z,
2sin y sin (z + y) = cos z.

4qUsing formula (2.29), we can represent the second
equation as follows:

cos * — cos (x -+ 2y) = cos .
Consequently, cos(z -+ 2y)=0, whence =2y ::—g-—{—ﬂk,
T = %——23/--]- nk, k€Z. Note that cot z == cot(-‘;i—2y) ==

tan 2y and sin 22 = sin (1 — 4y) = sin 4y. Therefore the
substitution of x into the first equation yields:

tan 2y + sin 2y = sin 4y,
or
sin 2y (1 4+ cos 2y — 2 cos? 2y) = 0,

sin 2y (cos 2y — 1) (cos 2y +%) —=0.
The last equation decomposes into three equations:

sin 2y = 0, cos 2y = 1 and cos 2y = —1/2.



104 3. Trigonometric Equations and Systems

From the equation sin2y-=-0 we get y= —21 , neZ,

and therefore x=—§-+nl, l€Z. From the equation
cos2y =1 we find 2y=2nn, y=nn, n€Z; hence, r=
—g———Znn—'r :rtk-—-—g——i-nl, 1€Z. We see that the set of

solutions of the second equation belongs to the set
of solutions of the first equation. Finally, from the

equation cos2y= —-—1— it follows that 2y = + 2—3“—|-2rm,
and therefore y:= + +:rm, n€Z; hence, x:—;——_l—
—-—2nn+nk-_~—g— 2“—!— 1, L€ Z. The final answer:
19 s U
(—2-+nl ——) <7iT+“l =+ 5 —I-nn) ,
n, lcZ. p
Example 3.3.4. Solve the system of equations
{ lz] + ly] =3,
nx?
5— =1

<Fr0m the second equation it follows directly that

nx?

5= 2 +2nk, that is, 22==1 14k, k€ Z, whence T, =

—V4k+1, z,=V%+1. By virtue of the first

equation of the system, we have | 2 | <C 3. Consequently,
k may take on only the values 0, 1, 2. Thus, there are six
values of z, namely: 1, +}/'5, +3. If z = =1, then
ly | =2, that is, y = +2; if z = /5, then |y | =
3 — Vg, that is, y = (3 — VET), finally, if x = +3,
then |y | = 0, that is, y = 0.

Answer: (1, =£2), (&5, =3 — V5), (£3, 0), all
combinations of sign being possible, that is, the system
has ten solutions. p

Example 3.3.5. Find out for what values of a the
system of equations

sin x cos 2y = (a2 —1)2 41,
{ coszsin 2y =a-++1
has a solution. Find all the solutions.
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4Since the left-hand sides of the equations do not,
obviously, exceed 1, the given system may have a solu-
tion only for the a’s such that

[ (a2—1)2+1<11
la 1] <<1.

Solving the first inequality, we get ¢ = +1, the second
inequality being satisfied for a = —1.

Thus, the original system of equations has a solution
only for a = —1 and, consequently, takes the form

[ sinzcos 2y =1,
cos z sin 2y =0.

Adding and subtracting the equations of the system
termwise, we get the system

[ sin z cos 2y 4 cos z sin 2y =1,
sin z cos 2y —cos x sin 2y =1,

which is equivalent to the given system, whence (by for-
mulas (2.11) and (2.12))

l sin (z 4-2y) =1,
sin (r —2y)=1.
Obviously, the last system yields an algebraic system

x+2y=%—{—2nk, keZ,
x—2y_—_%—l—2:m, ncZ.

Solving this system, we get

b —
a:-—:—g——]—(k—{-n) T, y-——-—n(z—n).

Thus, (—g--}-(k—l-n)n, %—(k—n)), k, n¢Z, are all

the solutions of the original system. p
Example 3.3.6. Find all the solutions of the system

[ |sin z| siny = —1/4,
cos (z 4 y) +cos (z —y) = 3/2,
such that 0 <z <2m, n <y <<2m.
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4Consider the case when sin x >0, then, by hypothe-
sis, 0 <z < m, and

|sin z| sin y =sin zsiny = % (cos (x—y) —cos (x +y)).
Then the system takes the form

cos(z—y)—cos(r+y)=—1/2,
{ cos (2 -+ y) +-cos (x —y) = 3/2,
whence
cos (z —y) = 1/2,
[ cos (z4+y)=1.
By subtracting and adding the inequalities 0 < x < n

and n <<y <<2n we get —2n <<z —y<<0 and n <<
z + y << 3mn. Thus, we have two systems of equations

b4 51
{ T—y=—3, { Z-y=—g
4+ y=2m, T4y =2m,
whose solutions are (57/6, 7r/6) and (n/6, 117/6), respec-
tively.
Similarly, if sin z << 0 we get
[ €os (r— y) —cos (z 4 y) == 1/2,
cos (z+y) +cos (x—y) =3/2
and n << z << 2n, whence
cos(z—y) =1, : 0 4
{cos(x+y):1/2’ —ﬂ<x—y<ﬂy J.';<x-'-y< ,
whence
{ z—y=:0, r—y=:0,
z4+y="7n/3, z+y=11n/3.
The solutions of these systems are (7n/6, 7x/6) and

(117/6, 117/6), respectively. Finally, the original system
has the following solutions:

(5a/6, Tn/6), (n/6, 11n/6),
(Tn/6, Tn/6), (111/6, 117/6). p

and l
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Example 3.3.7. Find all the values of a for which the
indicated system of equations has a solution:

ny Ty
l12 l/cos ———5 l—l 12 ]/cos - 7 '
+]241 oos B 413 = - [t1— )/ sin ZESH=D,
. 3
24 y—a)—1=2) 24 (y—ap—
«qThe left-hand side of the first equation has the form
F() cos ZL), where F ()= [122—5| —|122—7] +
|24z 13|. Bearing in mind that z-——-]/cos ﬂ2j =0,

we test the function F (2) for z >> 0 using the method of
intervals. For this purpose, it is necessary to mark on
the number line all the points at which the expressions
inside the modulus sign change sign and to consider our
function separately on each of the intervals thus obtained,
thus getting rid of the modulus sign. Then, we get:

1) 0<<z2<5/12, F(2) = (b —122) 4 (122 — 7)
- (242 -I- 13) = 11 + 24z,
(2) SM2<Lz2<CTM2, F (2) = (122 — 5) + (122 — 7)
+ (24z + 13) = 48z + 1,
B) z=>712, F(z) = (122 —5) — (122 — 7)
+ (24z 4 13) = 24z + 15.
Thus, F(z) is an increasing function for z>=0, its
least value being F (0)=11. The right-hand side

of the first equation takes on values <11 (since

‘/sin n—(‘t;f":ﬂ- = 0) . Cousequently. the first equa-

tion of the original system is equivalent to the system

cos ﬂTy:O,
Sinn_(z:;y_—1)_~.': O,
z—2y—1=23v,

or
t, veZ. (3.7)
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Consider now the second equation of the original
system. We substitute u = ]/xz—i—(y—a)z-—-;z-, and get

2 (uz—!--z—)—1=2u or uz—u-l——i-:O, whence u=:1/2,

that is, x2+(y—a)2——z’—=% , or
24-(y—a)=1. (3.8)

Since z is an integer, only the cases x = +1, z = 0 are
possible. Let us consider them separately.
Case (a) x = —1. From system (3.7), it follows that

2y =—-3v—2, y=2t+1, v, t€L

Rewriting these equalities in the form 2 (y + 1) = —3v,
y+1=2t+ 2, we conclude that y 4 1 is divisible
by 6. In addition, from (3.8) for z = —1 we have
y —a)* =0, hence y =a =6k —1, k€Z

Case (b) z = 1. Here again from (3.8) and (3.7): y = a,
2y = —3v, y = 2t + 1 for some integers v and ¢, whence
2(a@a—3)=—-3@w+2), a—3=2(—1). Hence,
a — 3 is divisible by 6. In this case a = 6k - 3, k& € Z.

Case (c) x = 0. Here, according to (3.8), (y — a)® = 1,
y = a % 1, and system (3.7) takes the form

2p = —3v —1, y=2t 41, or

20 —1)=—-=3@w-+1), y—1=2 v, tel
Consequently, y — 1 is divisible by 6, and since a =
y == 1, we have a = 6k or a = 6k + 2, k € Z. Putting
together all the results, we get the final answer: the sys-
tem has a solution if a takes on the values 6k — 1, 6k,
6k -2, 6k +3, kEZp

Example 3.3.8. Find all the solutions of the equation

V2 =Ty (5sin®*z — 6 sin z cos £ — 9 cos® z -+ 3y 33)
— in2 2 5 2
= arcsin® r -} arccos® z — z0

4 Let us prove that the left-hand side of the equation is

always nonnegative, while the right-hand side is non-

positive. Indeed, V2 — |y | > 0. Now, we transform
the expression in the parentheses:

SSinzx—Gsinxcosx—Qcoszx—!—3:/@
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= 6 sin® z — (sin® z + 6 sin z cos z 4 9 cos® z) + 3y/33
= 6 sin® z — (sin z + 3 cos )* - 333
= 6 sin? z + 3;’/33 — 10 sin? (z 4 @),

where @ = arcsin 3/}/10 by Theorem 2.2. We then note
that 3y/33 > 10 (this is checked by cubing the positive
right-hand and left-hand sides) and also that 10 sin? (z -
¢) << 10, therefore the expression in the parentheses is
always positive, that is, the left-hand side of the equation
is nonnegative and vanishes only in the case /2 — [y |=
0, that is, y = 2.
As to”the right-hand side, we use the identity

arcsin x -+ arccos r = m/2.

(If we rewrite this identity in the form arccosz=
%—arcsinz, then its validity follows from the fact
that cos (%—arcsin x) =sin (arcsinz) = z and that

%—arcsian[O, n], that is, belongs to the range of

values of arc cosine since z¢€[—m/2, 71/2].) Let us set
t=arcsin z. Then the right-hand side of the equation
takes the form 2+ %——t z——i—nz = 2% — nt — n2,
where t € [—n/2, n/2]. The greatest value of this quadra-
tic function is attained at the end point ¢ = —mn/2 of the
closed interval [—n/2, n/2] and equals zero: 2 (—n/2)* —
n (—n/2) — 72 = 0. Thus, the right-hand side of the
original equation is nonpositive and vanishes for
arcsin x = —mn/2, that is, for z = —1.

Consequently, the equation has two solutions: (—1, —2)
and (—1, 2). p

PROBLEMS

In Problems 3.1 to 3.36, solve equations.
3.1. sin (i;- + 2z) cot 3z -+ sin (51 4 22) — J/ 2 cos 5z=0.

3.2. sin zcos 2z 4 cos z cos 4x = sin (—T[:— +2a:)

X sin (—2-—3::) .
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. x . X
3.3. sin 2z = cost 5= sin4 5 -

3.4. (14 cos4zx) sin 2z = cos? 2.

3.5. sin? 2z + sin® 3z -+ sin® 4z 4 sin? 5z = 2.

3.6. sin 2z sin 62 — cos 2z cos 6z = /2 sin 3z cos 8z.
3.7. sin 3z cos 3z = sin 2z.

3.8. cos 2r — Hsinz — 3 = 0,

3.9. 3 sin 22 + 2 cos 2z = 3.

3.10. cot (3Tn — :v) +c0t2x+—1;:i(:2’+21=0.

3.141. 6sin®z + sin z cos z — cos? z = 2.

3.12. cos 7z + sin 82 = cos 3z — sin 2z.

3.13. sin? z — 2 sin z cos z = 3 cos? .

3.14. cos 5z 4- cos 7x = cos (n - 6z).

3.15. 4sin zcos (—g— — x) +4sin(n4z)cosz

+2sin (%n- — :::) cos (n+z) = 1.

3.16. sin z — sin 2z + sin 5z + sin 8z = 0.
3.17. 2 sin z — cos z = 2/5.

3.18. cos (—g——i— Sx) +sin z=2cos 3.

3.19. (1-+sinz)tan (—Z—— i) =-————C0S T,

coszT

3.20. cos £ — V/ 3 sin z = cos 3z.
3.21. sin 2z + 5 (sinz + cos z) + 1 = 0.

3.22. sind2¢ -+ cos® 2t + % sin 4t =1.

3.23. tan z tan 2z = tan z + tan 2z.
sin3 z-}cos3 z

3.24. 2cos t——sin z

: cot 4t cot ¢

325 Sqoer + s = O

3.26. tan* z = 36 cos? 2z.

3.27. cot x — tan z — 2 tan 2z — 4 tan 4z - 8 = 0.

3.28. 4 sin® z cos 3z + 4 cos® z sin 3z = 3 sin 2z.

3.29. 2 coszsind (37“—7,) — 5sin2zcos? 2z

= Co0s 2x.

+ sin z cos? (ST“+z) =cos 2z.
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3.30. sin 2z sin 6z cos 4z -+ % cos 12z = 0.
3.31. cos® & + sin® & = 1.

3.32. log osx sin z = 1.

3.33. cot (sin z) = 1.

3.34. tan bz — 2 tan 3z = tan 5z tan?® 3z.

: cos 2z
3.35. cotx—1= m.

3.36. cos?® 3z + %cos2 z = cos 3z cos? z.
3.37. Find all the solutions of the equation
1 + cos z + cos 2x + sin z 4 sin 2z 4 sin 3z,

which satisfy the condition —’;—<|3x—%]<n.
3.38. Find all the solutions of the equation
2 — V§ cos 2x -+ sin 2x = 4 cos? 3z,
which satisfy the inequality cos (2,@—-%) >0.
3.39. Solve the equation

1—4cos?4x '—coq(2.1: _n_)
2n)" ' —6 /-

8 cos (2::-—— 5

3.40. Find all the solutions of the equation

3 /5 .. 3 .o T
2—|—cos-—2— z+4V 3sin —2—x=4sm T

z

satisfying the condition sin ( 5 —{—77:) > 0.

3.41. Show that the equation

1
sin z sin 2z sin 3z

cot 2z +cot 3z + =0

has no roots. '
3.42. Find all the solutions of the equation

4 (3V4x—.z2sin2 (#) -+ 2 cos (x-|-y))
=13+ 4cos?2(z+y)

in two unknowns z and y.
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3.43. Find all the solutions of the equation
V 22—4 (3 sin%z 4 10 sin x cos z + 11 cosz x —2 / 301)
= 5n2—4 aresin2 y—4 arccos? y.

In Problems 3.44 to 3.50, solve the given systems of
equations.

{ cos x Y cos 22 =0,

3.44.
2 sin? x —-cos (2y———g—) =0.

z+y=n/6,
3.45. I . .
5 (sin 2z -+ sin 2y) = 2 (1 -+ cos? (z — y)).
3.6, | Ty
sinz =2siny.
sinz cos y = 1/4,
gz, | e
sin y cos x = 3/4.
3.48. c0s? nx — sin2 nx = 1/2.
x|y - n/4,
3.49. tan z tan y == 1/6.

3.50. { V:?._- sinz — sin_y,
V2cos x=} 3cosy.

3.51. Find all the values of a for which the system of
equations

|6 l/cos——-‘il——'i——Gl/

—}—|12|/cos —{—1'— sinzﬂyi—;—zi,

10—9 (22 +(y—a)2= 3‘/12_|_(y_a)2_'_g_

has a solution.




Chapter 4

Investigating Trigonometric Functions

4.1, Graphs of Basic Trigonometric Functions

To construct graphs of functions, one must know how to
use all basic properties of these functions, such as peri-
odicity, evenness or oddness, increase or decrease of a
function on an interval, as well as the arrangement of
points of extremum. However, constructing the graph of
a function cannot be a substitute for a rigorous proof of
the properties of the function. Nevertheless, a graph
illustrates vividly the properties of a function. At an
examination the student is usually asked to construct
graphs of functions composed of elementary functions,
and most often such a graph is constructed by translating
or changing the graphs of elementary functions.

This section deals with the construction of graphs of
basic trigonometric functions using the properties of
these functions which were considered in Chapter 1. Using
the formulas introduced in Chapter 2, it is possible to
construct similar graphs for many other trigonometric
functions.

First of all, let us recall that the graph of a function f
with domain D (f) is defined as a set of points on the
coordinate plane with coordinates (z, y) such that y =
f (z). This definition should be always referred to when
proving the properties of graphs of functions and when
considering operations with graphs.

1. Properties and Graph of the Function f (z) = sin z.

(1) The domain of definition D (f) = R, the range of
values E (f) = [—1, 1].

(2) sin z is a periodic function. Any number of the
form 2nk, k € Z, is a period of this function, 2n being
its fundamental period (see Sec. 1.3, Item 1). Consequent-
ly, when constructing the graph we can first confine our-
selves to the construction of it for the closed interval

8-01644
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[—mn, n] of length 2;, and then translate this section by
2nk, k € Z, along the z-axis. This is because all points
of the form (z 4 2=nk, sin z) = (x -+ 2nk, sin (x - 2nk))
have the same values as the value of the point (z, sin z)
on the graph.

(3) sin z is an odd function, therefore its graph is sym-
metric with respect to the origin. Indeed, for any point
(z, sin z) of the graph the point (—z, —sin z) = (—az,
sin (—z)), which is obtained by the application of cen-
tral symmetry to the point (x, sin z), also lies on this
graph (see Sec. 1.3, Item 2). Consequently, to construct
the graph of the function on [-—mn, n], it suffices to con-
struct it on [0, n], and then to map it central-symmetri-
cally with respect to the origin.

(4) On the interval [0, n] the graph has two points
(0, 0) and (=, 0) in common with the z-axis. In general,
the equality sinz = 0 is equivalent to that z = mk,
k€Z.

(5) The function sin z increases on the interval [0,
n/2] and decreases on [n/2, n], this means that if 0 <C
xy, < z, << /2, then sin z; < sin z,, and if 7/2 <
x, << z, << @, then sin z; > sin z, (see Sec. 1.3, Item 3).
Hence it follows that (n/2, 1) is a point of maximum of
the function sin z.

The graph of the function sin z is constructed now in
several steps. Firstly, we construct the graph on the in-
terval [0, n]. This can be done by compiling a table of
values of the function sin x for some points of the inter-
val [0, =], for instance,

gl | x| & | 2n | 3n | Sn
(2) 6 | Z 3| 2| 3|2 5| 7
sinz] 0 | —{YZ|V3l (VB lve| L,
2 2 2 2 2 2

and, on plotting on the coordinate plane points of the
form (z, sin z), where z are numbers from the table, we
join these points with a smooth line. By mapping cen-
tral-symmetrically the constructed section of the graph
with respect to the point 0 and then applying a series
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of translations along the z-axis by 2nk, k € Z, we get the
graph of the function sin x which is called the sinusoid
or sine curve (Fig. 24).

Another method of construction of the graph which
does not require the computation of individual values of
the function sin z consists in using the trigonometric
circle. For this purpose, we mark the interval [0, n/2]

f?f?::::— Z3= y=sinzx
2k == ~4- =
Vol AETH—A= =k
Vi

\r -

-_——— N|§

=L

Fig. 24

on the z-axis and on the same drawing construct a circle
of unit radius centred on the extension of the z-axis. To
construct the graph of the function sin z, we shall “un-
wind” the circle on the number line marking the ordi-
nates of points P, corresponding to real numbers t. To
construct sufficiently many points belonging to the graph,
we may bisect the interval [0, n/2] and the subintervals
thus obtained, as well as the corresponding arcs on the
trigonometric circle. Note that after marking the point
z = n/2 on the z-axis, all further constructions are car-
ried out with the aid of a pair of compasses and a ruler
(Fig. 25).

Note that the function sin x increases from —1 to 1 on

any interval of the form [—% + 20k, L 4 2nlc], k €Z,
and decreases from 1 to —1 on any interval of the form
[g- + 2nk, % + 2nk:|, k € Z. The maximal value

sinx = 1 is attained at points z = % + 2nk, k € Z,
while the minimal value sin x = —1 at points z =
— 5 + 20k, k€Z.

8
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2. Properties and Graph of the Function f (z) = cos x.
The graph of cos x is best of all constructed by usiug the
identity sin {(x + % = cos z (the reduction formu-

la (2.28)). It follows from this identity that the graph of
the function cos z is obtained from the graph of the func-
tion sin z by translating the latter leftwards along the

z-axis by n/2. Indeed, for every point (z, sin z) of the

graph of sin z the point (x — g, sin x) lies on the graph
. n . n s .
of cos z, since cos (x—?) = sin (:1:——7 -+ 5) = sin z.

The converse is also true: for any point (z, cos z) of the
graph of cos z, the point (x + %, cos :c) lies on the

graph of sin z since sin (z -+ %) = co0S Z.

Practically, it is more convenient first to construct the
sine curve y = sin z, and then to translate the y-axis to
the right by n/2 (see Fig. 26, where the old y-axis is drawn
in a dashed line and the new axis in a continuous line).

Consider the properties of the function cos z = f (z).

(2) cos z is a periodic function. Any number of the
form 2nk is a period of the function (k € Z), 2n being its
fundamental period (see Sec. 1.3, Item 1).

(3) cos z is an even function, and its graph is symmetric
about the axis of ordinates: if a point (z, cos z) lies on
the graph of cos z, then the point (—=z, cos z) = (—u=,
cos (—z)) also lies on this graph.
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(4) cosx =0 for xzle—}—nk, kecZ.

(5) cos x decreases from 1 to —1 on any interval of the
form [2nk, n 4- 2nk], k € Z, and increases from —1 to 1
on any interval of the form [—n + 2nk, 2nk]. For 2 =
n -+ 2ak, k € Z, the function cos z takes on the minimal

value —1, while for z = 2nk, &k € Z, the maximal
value 1.

Example 4.1.1. Find the least and greatest values of

the function f (z) = sin (cos (sin z)) on the closed inter-
val [n/2, =].
4 Let ) < <z, < :n then 0 < sin z, << sin z, <<
1, and the points Py, x,, Pyn «, lie in the first quadrant
since 1 < m/2. Since the function cos z decreases on the
interval [0, n/2], we have

0 << cos (sin z;) << cos (sin z,) << 1

But the points P oen xo) 8Nd Peggem ) also lie in
the first quadrant and the function sin z increases on
the interval [0, n/2], therefore

0 << sin (cos (sin ,)) << sin (cos (sin z,)) << 1,

that is, the function f () = sin (cos (sin z)) is increasing
on the interval [n/2, nl, consequently, the minimal value
of f (x) on this interval is equal to ! (n/2) = sin (cos 1),
while the maximal value to f (1) = sin (cos 0) = sin 1.p

Example 4.1.2. Compare the numbers sin (cos 1) and
cos (sin 1).
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qAccording to the reduction formula (2.7), cos (sin 1) =

sin (%-—sin 1) , and it suffices to compare the num-

bers cos1 and —Z——sini from the interval [0, m/2]

(by virtue of the monotonicity of the function sin z on
this interval). Note that

cos 1 4sin1=}2sin (1 + %) ,
consequently, the inequality
cos1 +sinl < V2 < n/2
is true, whence, since the function sin z increases on the
interval [0, n/2], we have
sin (cos 1) << sin (%— sin 1) =cos (sin1). p

3. Properties and Graph of the Function f (x) = tan x.
(1) The domian of definition is the set of real numbers

except for the numbers of the form -’—2‘- + ntk, k € Z, the

range of values £ (f) = R.

(2) tan z is a periodic function. Any number of the
form nk, k € Z, may be a period of tan z, m being its
fundamental period (see Sec. 1.3, Item 1).

(3) tan z is an odd function, and, consequently, its
graph is symmetric with respect to the origin (see Sec.1.3,
Item 2).

(4) tanz = 0 for z = nk, k€ Z.

(5) On any interval of the form ( — 12‘-—1— nk, %—Jr- nk) ,

k € Z, the function tan z increases from —oo to -+ oco.
The graph y = tan = (tangent curve) can also be con-
structed using a table of values, for instance,

: 24 k14 21

z l 0 ‘ 5 | By 3
’y =

tan z 0 l l;’. l 1 V3
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which was compiled only for the values x € [0, n/2) by
virtue of Properties (2) and (3) (Fig. 27).

Another method of constructing the graph (with the aid
of the trigonometric circle and the line of tangents)
makes it possible to plot arbitrarily many points for the
tangent curve without computing individual values of
the function tan z (Fig. 28).

Example 4.1.3. Find the greatest and least values of
the function tan (cosz) on the interval [n/2, =].

dLlet /2 < 7, < 2, < m, then —%< <

cos z, << cos z; << 0, since the function cos z decreases
from 0 to —1 on the interval [n/2, al. Therefore the
points Peosx, and Peosy, lie in the fourth quadrant, and

—tan 1 <C tan (cos z,) << tan (cos x;) << 0,

since tan x increases in the fourth quadrant. Consequently,
the function f (z) = tan (cos z) decreases on the interval
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[n/2, n], its greatest value is f (n/2) = tan (0) = 0, the
least value being f (n) = tan (—1) = —tan 1. p

4. The Graph of Harmonic Oscillations. Harmonic
oscillations are defined as rectilinear motions of a point
governed by the rule s = A4 sin (ot 4 o), where 4 > 0,
® > 0, and ¢ denotes the time coordinate. Consider the
method of constructing graphs of such oscillations.

Example 4.1.4. Construct the graph of the function
f () = sin 4z.
4We first represent the graph of the function sin z. If
the point M (a, b) lies on this graph, that is, b = sin a,
then the point N (a/4, b) lies on the graph of the function
f () = sin 4z since b = sin (4.%), Thus, if we take
a point on the graph of sin z, then a point having the
same ordinate and whose abscissa equals one-fourth of the
abscissa of that point will lie on the graph of the function
sin 4z. Consequently, the graph of sin 4z is obtained from
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the graph of sin z by contracting the latter along the axis
of abscissas four-fold (Fig. 29).

To construct the graph of the function y = sin 4ur, -it
suffices to do the following. From the equation sin 4z = 0
we find the points of intersection of the graph with the

\y
/._

\

y=sin4x

a
[LL a

Fig. 29

z-axis: x = mk/4, k € Z. Further, sin 4x =1 for z =
S+ 5 k€Z, and sindr = —1 for z = 5+ 5

k € Z. In addition, the fundamental period of the func-
tion f (z) = sin 4z is equal to m/2:

f(:ci%)zsin (4' (xi—g—)):sin@xj:Zn):f(x)

(see Sec. 1.3, Item 1). Now we can construct the graph:
mark the points (0, 0), (n/4, 0), (7/2, 0) and also (/8, 1),
(3n/8, —1), join them with a curve resembling the sine
curve (on the interval [0, n/2]), and then apply transla-
tions along the axis of abscissas, the origin going into the
points of the form (nk/2, 0). p

In the same way, we can construct the graph of any
function of the form sin wx, where o > 0. To this effect,
we have to draw the graph of the function sin z and
then to contract it o times along the axis of abscissas,
that is, to replace each point M (a, b) of this graph by
the point N (a/w, b). The following is of importance: if
0 << w << 1, then, instead of contracting, the graph is
stretched 1/w times: the points will move away from the
axis of ordinates.

It is not difficult now to construct the graph of any
function of the form 4 sin (oz + a), 4 > 0. Using the
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equality Adsin (ox + a) = A4 sin (m(z —}—%)), we are
able to construct a graph in several steps.

(1) Construct the graph of the function sin oz using
the method described above.

(2) The graph of the function sin (m(:c 4 g))is ob-

tained from the graph of the function sin wx by translat-
ing the latter along the axis of abscissas by —a/w. In-
deed, for every point (z, sin wz) of the graph of sin ez

the point (z —-:—)-, sin (oa:) lies on the graph of the
function sin (m(a: —{—%) ), since sin ((o(:c —%— + :—)—) ) =
sin oz. Usually, the graph of the function sin oz is

constructed in a simpler way, the line z = a/®w being
taken for the new axis of ordinates.

(3) To obtain the graph of the function sin( m(w +%—) )
from the graph of the function 4 sin (m(x + %) ) it re-

mains to multiply the ordinate of each point of the
graph by A, that is, to stretch this graph 4 times along
the axis of ordinates (if 0 << A << 1, then, instead of
being stretched, the graph is contracted 1/4 times).

In practice, we may proceed as follows: to find the
points of intersection of the graph of the function
4 sin (ozx 4+ a) with the axis of abscissas by solving the
equation sin (ox + a) = 0, and, from the equations
sin (ox + a) = 1 and sin (wz + a) = —1, to find the
points of extremum of the function 4 sin (oz + a) (at the
points of maximum the function takes on the value 4,
at the points of minimum the value —A); then join the
found points to obtain a curve of sinusoid type. Note
that the function y = 4 sin (oz + ) is periodic with

the fundamental period 2/ since A4 sin (m( z+ %) +

a) = A4 sin (oz + a + 21) = A4 sin (0z + ).

Example 4.1.5. Construct the graph of the function
4 sin (3x — —’21)
4 The fundamental period of the function is 2n/3. Find
the points of intersection of this graph with the axis of
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abscissas: sin (3x — -g-) =0, that is, 3z — % = nk,

2
kE€EZ, or r= % -+ nTk, k € Z. Further, solving the
equation sin (ic — -3-) =1, weget 3z — % = % + 2nk,

Yy
4+
! !
| [
! |
' |
{ | y.—.4sin(3x-g)
i |
' |
:
| |
[ |
| |
1 1 S
aAf_zx_a\ O |rxalz [sr =
2’ 376 6372 3} 6
|
|
|
|
|
|
|
|
(
|
-4
Fig. 30
2nk

that is, =z = % —]——3—, k € Z. At these points /‘m. func-

tion takes on the maximal value equal to 4/
equation sin (3x — _nz_) = —1 we find 3z — ,/;'
2nk, that is, z = _2;'—", k € Z. At these py /

/o
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tion 4 sin (3x — 1‘2_) takes on theininimal value equal

to —4. Mark the found points on the coordinate plane
and join them with a smooth line to get the required
graph (Fig. 30). p

Example 4.1.6. Graph the function sin 2z + }/ 3 cos 2.
4The most convenient technique here is to reduce this

AY
2_-
| |
| |
! |
| |
a_xf | \z z l
72 "6 ' \g » !
' 0| = N
| 72 | 5 72
} : y=sin2a+V3cos2x
| |
! |
_ZJ[
Fig. 31

function to the function A4 sin (0z + @) using the meth-
od of introducing an auxiliary angle (see Theorem 2.2):

sin2x+V§cos2z=2 (% sin 2z 4 ’23 cosZz)

=2 sin (29:—}—%) .

The fundamental period of this function is m.
(1) The points of intersection of the graph with the
axis of abscissas:

. . k

sin (2x+—§—)=0, that is, x——-'——gﬁl—%—» keZ.
(2) The points of maximum of the function:
sin(Zx—l-—g—):L that is, z=-+ak, k€Z,

therefore the points of the form (%—i—nk, 2) , kEZ,
lie on the graph of the function.
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(3) The points of minimum of the function:

sin (2:::—{—-%—):—1, that is, xz—%—}-nk, kcZ,

therefore the points (—i’—g—{—nk, —2), k ¢Z, lie on

the graph. )
The graph of the function y = sin 2z + }/3 cos 2z is
shown in Fig. 31. p

y:‘g sin2a+2cos2x

Moo

Fig. 32

Example 4.1.7. Graph the function
3 . .
f(x):?s1n2z—|—2cos2x. /

«4Using Theorem 2.2, we get f(z
. ,

where ¢ = aresin 5 0<o<wm/2.

qualities are valid: }/2/2<<4/5< Sa

the function sinz increases o’ N N S

we get m/4<<arcsin % < :rt/.: @s@&,&%ere
Note that the fundament/ QQ\.'.@

equals . / Sz|<e.
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(1) The points of intersection of the graph with the
axis of abscissas:

sin (2z+ @) =0, that is, 2= —+ 4 2% kecZ
(2) The points of maximum of the function:

sin 2z +¢)=1, that is, x—:%—%—-%nk. kcZ.
(3) The points of minimum of the function:

sin Qr—¢)= —1, that is, == ——%—%—i—ﬂlc, keZ.

With the aid of these points we construct the required
graph as in the preceding example (Fig. 32). p

4.2, Computing Limits

The theory of limits underlies the important notions of
the continuity and differentiability of a function and
the finding of derivatives and integrals. We confine
ourselves to solving problems on finding limits at certain
points of functions represented- by trigonometric expres-
sions. To solve these problems, one should know well the
definition of the limit of a function at a point ¢ € R, ba-
sic properties of limits (the limit of a sum, product, and
ratio, as well as Theorem 4.2 on the first remarkable
limit.

Definition. Let a function f (2) be defined on the set
D (f) = R, and let a point a be such that any of its
neighbourhoods contains infinitely many points of D ()
(an accumulation or limit point of the set D (f)). Then
the number b is said to be the limit of the function f(z) at
the point a if for any positive number & there is a posi-
tive nurmmber 8, dependent on &, such that for any point
z €D (f) satisfying the condition 0 << |z —a| < §
there holds the inequality | f () — b | << e. Written:

b==1lim f (x).
x>

Definition. A function f (z) is said to be continuous at a
point a €D (f) if lim [ (z) = { (a).

x—=a

A function is continuous on a set X =< D (f) if it is con-
tinuous at each point of this set. The sum, difference, and
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product of two functions continuous on one and the same
set are also conlinuous on this sct. If the denominator of
a fraction does not vanish on a set, then the quotient of
two functions continuous on this set is also continuous.

The following statement plays a key role in testing
trigonometric functions for continuity and computing
various limits:

For all real numbers z, satisfying the condition0 << | x | <<
n/2, there hold the inequalities

|sinz |<< |z |<<|tanz |. 4.1)

The proof will be given later on (see Example 5.1.1),
and now we are going to deduce the continuity of basic
trigonometric functions.

Theorem 4.1. The functions sin z, cos z, tan x, cot z
are continuous in the domains of their definition.

Proof. Let us prove, for instance, that cosine is contin-
uous throughout the number line, that is, show that
for any z, € R e

lim cos x = cos x,.

x—>x0
Indeed,
. Tog—ZT . ' of I
|cos:t—cos:co|=,2sm 5— sin °'2*'
. XTyg—7T . Totz
=2|sm °2 “sm °2'
. Tog—2x
ngsm °2 |
| Zo—2z
<2 ) le“xo]’

Therefore, setting 6 = e, for any ¢ >0 for 0 << |2 —
zy | << 8 we have

fecosz —coszy | << |a—ap | <e.

The continuity of sine is proved in similar fashion
and that of tangent and cotangent follows from the prop-
erty of continuity of the guotient of two continuous
functions. p
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Example 4.2.1. Find out whether the function

| .
zsin— if x50, z€R.
is continuous on R.
4 For z 5= 0 the given function has the form of the prod-
uct f, (z)+f, () of two functions f; (z) = z and f, (x) =
sin ; The function f; (z) iscontinuous and the function

fo (x) = sin% can be represented in the form of the com-
position

f2 (@) = {4 (f5 ()
of the functionsf, (z) = %, z %~ 0, and f, (y) = sin y. By

Theorem 4.1 the function f, (y) is continuous on R and
the function f, (z) is continuous for x = 0 by virtue of the
remark on the continuity of a fraction. Consequently, the
function f, (z) is continuous on whe set { € R: = 5= 0}; it
remains only to check whether it is continuous for z = 0,
that is, whether the equality

. o1
lim z sin - =0-: f ()

x>0
is fulfilled.
For e > Oweset § = g, then for 0 << |z | << 6 we have

|:xsin%——0lsz ]x|,sin%l<]x]<a=6. >

Recall that the 8-neighbourhood of a point a € R is
defined as an interval of the form (a — 8, a 4 8), where
6 >0.

Example 4.2.2. Find out whether the function

o1 .
sin— if x=£0, z€R,

0 if z==0,
is continuous on R.

Note that on the set {x € R: z = 0} the given function
coincides with the function f, (z) from Example 4.2.1
and therefore it is continuous on this set. Let us show
that f (z) is not continuous (discontinuous) at the point
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z, = 0, that is, that the equality

lim sm—1— =0
x=0

is violated. To this end, let us take ¢ = 1/2 and consider
the sequence of points

2
x"—_n(_im’ n—1~1 21 3,
which satisfy the condition f (x,) = 1. Then |f (z,) —
f(0) ] =1>1/2=¢, and any §-neighbourhood of the
point z, = O contains infinitely many such points z,,
that is, the condition of the continuity of the function at
the point z, = 0 is violated. Thus, the function f (z) is
discontinuous at the point z, = 0. (Similarly, we can
show that no real number & is the limit of the function

sin% at the point z, = 0.) p

The computation of many limits is based on the fol-
lowing theorem.

Theorem 4.2 (on the first remarkable limit):

. Ssinz
lim =1.

x>0

Proof. Let 0<C|z|<<m/2. Then the inequality
|sinz| <<z < |tanz| holds (see Equation (4.1)). Divid-
ing both 31des of this inequality by |[sinz|=5£0, we

get 1<l < [cos 2] Taking into account that

snz >0, cosz>0 for O<|x|<—, we have 1<

z < 1

sin z cos T
Hence we get

0<1—

sinz

sin z

and, consequently, 1>

> cosZ.

) x
N2 1 cosz=cos0—cos z.

Since cosine is a continuous function, for any &€ > 0, there
is a 8 > 0 such that

0<|0—2z|<<d=]cosO—cosz|<e.
9-01644
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Therefore for the numbers 2 5= 0, satisfying the inequali-
ty 0 < |z | <<§6, we have:

sin z
-1 —

< cosQ—cosz

sinz
1=
x

= |cosO—cos z| <e.
sin z

This means that lim—— =1.p
x>0
Example 4.2.3. Compute (a) hmsn3 (b) limm;sx ,
x>0
tan 2z tan 2z
(©) }cl_)o » (d) 1 g Sindz °
.2 1
<(3) alcﬂl; sin 3x —iin;?- sin 3z
3z
2t 24_2
=73 lim sin3z 3 = 3
i
3x—>0 3z
. sinbz . sin 5z . sinbz
(b) lim =lim 5.——— =5 lim —/—— =35,
x>0 x>0 v Hax~>0 oz
©) lim tan 2z — lim 2. 51121 2z . 1
x>0 %0 z cos 2z
=2lim S22 iy L __—2.4.4=2,
2> 2T gy_nq €082z
. tan2z 2 , tan 2z 3z
(d) iLO sin 3z i_,o 3" 72z "sin3z
-—liml sin 2z 1 . 1
T is0 3 2z " cos2z sin3az
3z
_ 2 gy Sin2e g 4 1
T8 a0 2 2x_,00032z 1 sin 3z
3x—0 3z
2 1 2
=3 1 1.—1—_?.}
1—cosz

-0
«4Note that, by virtue of formula (2.41),

. x
1——cosx=2s1n27,
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Consequently, by the property of the limit of a product,

. _ . 1 sm—z— 1 Sln?

llm_i._ioizllmz.—z— .-2—0

x=0 z x=>0 2z, =z

2 2

in = sin

sin 5- 1n -5
-4 lim LI lim 2 =i-.}
2 x/2+0 % x/20 _‘2_ 2

. in2 z inz—

Example 4.2.5. Compute xll,ff‘s 225;35 —-‘-gl:ufr-l: .
4Note that for £ = n/6 both the numerator and de-
nominator of the given fraction vanish, therefore, in this
case, it is impossible to use directly the theorem on the
limit of a ratio. In similar problems we may proceed as
follows: we single out in the numerator and denominator
of the fraction a common factor which vanishes at the
given limit point, but does not vanish in the neighbour-
hood of this point, and such that after cancelling this
factor the denominator of the given fraction no longer
vanishes at the point under consideration. Then we can
use the property of the limit of a ratio.

In our case:

2sin?z + sinz — 1 = (2sinz — 1) (sin ¢ + 1),
2sinf2 —3sinz + 1 = (2sinz — 1) (sinax — 1),
and, consequently,

. (2 sin z —1) (sin z+1)
x—l:;‘)lﬁ (2 sin 2 —1) (sin z— 1)

lim (sin 21
lim sinz+41 x—»n/ﬁ( +h

xonyg SIRZ—1 " lim (sinz—1)
x—>7/6
n
sinT—l—i
=—g =3
sm-;;——%

(in addition to the theorems on the limits of a quotient
and a sum, we have used the fact that the function sin «
is continuous). p

Qe
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4.3. Investigating Trigonometric Functions
with the Aid of a Derivative

1. The basic properties of many functions can be suc-
cessfully studied without the aid of the derivative, and
the properties of the derivative are a good illustration of
the properties of the function itself. However, in many
problems points of extremum, intervals of increase or
decrease cannot be determined by elementary means, such
problems must be solved using derivatives. Besides,
when graphing some functions, one must know more
about the behaviour of the function, for instance, whether
its graph touches the axis of abscissas at a certain point
of intersection with this axis or intersects it and what
angle is formed. Such questions can be answered only by
considering the derivative.

Let us first consider the rules for finding the derivatives
of basic trigonometric functions.
 Definition. The derivative of a function f (z) at a point
z, is defined as the number

f(2) = lim L (EotR) =1 (@)
I (%) =lim W

A function having a derivative at a certain point is
differentiable at this point. Let D; be a set of points at
which the function f is differentiable. Associating each
number z € D, with the number f'(x), we get a function
defined on the set D,. This function is called the deriva-
tive of the function f and is symbolized as f'(z).

Example 4.3.1. Show that the function

1
zsin — if x50, zcR,
if =0,

is not differentiable at the point z = 0.

Recall that in Example 4.2.1 we proved the continuity
of the given function throughout the number line.
gLet us prove that this function is not differentiable
at the point z = 0, that is, that no real number b can be
equal to
[(R)—f (V)

lim 7

h—>0



4.3. Derivatives of Trigonometric Functions 133

Consider the numbers z, = W—%—?T)’ n=1, 2, ...

(such that f (z,) = z,) and z, = 1/an, n=1, 2, ...
(such that condition f (z,) = 0). If b = 0, then for e =
1/2 we set h = z,. Then

'f(xn);f(“)_0|=1>-;—=e,

and the inequality
f(h)—1()

does not hold for all the numbers h = z, (any &-neigh-
bourhood of the point A = 0 contains infinitely many
such points). Analogously, if b 5= 0, then we take e =
| & 1/2 and set h = z,. Then

f(zn)z:f(o) — b — lbl >8

for infinitely many numbers of the form %z = z, lying in
any §-neighbourhood of the point o~ = 0. p

Recall that if a function f has a derivative at a point
zy, then a tangent line to the graph of f is defined, its
slope being equal to f'(x,). The equation of the tangent
line is:

y =1 (o) + ['(zg) ( — 7). (4.2)
Example 4.3.2. Prove that the function
o4
|z|32sin — if x50, z¢R,
if =0,

is differentiable at the point x = 0, and f'(0) = 0.
4For agiven positive number ¢ we set 6 = €2 Then

h)—f (0
l-f()_hf(.)|<|hli/z<g,

if 0 << |h |<<$b. Consequently,

. B)—f (O ,
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Note that in this case the tangent line to the graph of
f(x) at £ = 0 coincides with the axis of abscissas. p
Theorem 4.3. On the domains of definition of the func-

tions sin z, cos x, tanz, cot z the following equalities
hold true:

(sin x)" = cos , (cos )’ = —sin z,
(tan x)! = 1/cos?x  (cot z)’ = — 1/sin%zx.
Proof. For the function sin z this theorem is deduced
from the first remarkable limit (Theorem 4.2). Indeed, if

f (x) = sin z, then, by virtue of identity (2.18) for the
sine of two real numbers, we have:

[(x+h)—[(x) _ sin(z-+h)—sinz
h - h

=(2cos z-Q——h— sin - (h.
(2008 (24 5-) sin

Now, using the properties of limits, we get

R
sin ——
lim M = lim cos (x_*_._h_.) __2
h=0 h >0 2 _h
2
. h
h . Sm_ﬁ-
= lim cos(a:+-§—) lim —= =cos z.
hI2->0 nz>o P

Here, we have also taken advantage of the continuity of
the function cos z.

For the function cos x the theorem can be proved using
the reduction formulas (2.7) and the following rule for
differentiation of a composite function:

If a function g has a derivative at a point y, = f (z,),
and a function f at a point z,, then the composite function
h (x) = g (f (2)) also has a derivative at x,, and

R (o) = &' (yo) ['(zo) = &'(f () [ (%0)- (4.3)



4.3. Derivatives of Trigonometric Functions 135

Let us now represent the function cosz in the form

sin (5-— z)=g(f(z) and apply the rule (4.3) for

g(y) =siny, f(@@)=—5—=

(sin (—g——x ) )’ =g'(f (2)) f' (x) = —cos (—g——x)

= —sinz.

In order to prove the theorem for tan x and cot z, it suf-
fices to use the rule for differentiating the quotient of two
functions. Let us also recall some other differentiation
rules. If the functions f (z) and g (z) are differentiable,
then:

(f @ + g @) =1 + €@, (4.4)
(Cf (z))’ = Cf'(z), C is a constant, (4.5)
(@) =f@e@+1@e@, &)

(f (@)/g (@) = L@ LD ) (4.7)

for points z such that g (z) = 0.
Using the rule (4.7) and the aforeproved, we get

tan’ z— ( sin = )’ __ sin’ zcosz—cos’ rsinzx
“\ecosz /] T cos? x
_ cos’z4sin’z 1
- cos? z " cos?z ’
cot! = ( COS T )’ __cos’ zsinz—sin’ zcos
“ \sinz sin? z
—sin?z—cos?z 1 >
- sin? x ~  sin®z°

Example 4.3.3. Find the derivative of the function
sinz—zcosz
Y= Cosztzsinz
4 Using the rules (4.7), (4.4), (4.6), and the formulas of
Theorem 4.3, we get
sinz—zcosz \' uv—uw
( cosrt+zsinz ) = v?

?
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where
u=sinxr —zxcosz, v=cosx -+ xsin z,
u' = sin’ z — (z cos z)’
= cos £ — (cos £ — z sin z) = z sin
V'=cos’ z 4+ (zsin z)’
= —sin z + (sin z 4 z cos z) = x cos z,
u'v — w'’ = z sin z (cos £ 4 z sin z)
— (sinz — z cos x) x cos x
= 22 sin® z + 2% cos? z = 2,
whence

, z2
Y =(coszFzsinap’

the derivative exists everywhere in the domain of the
given function, thatis, for 2’ssuch thatfcos z + z sin x 5=
0.p»
Example 4.3.4. Compute the derivative of the indicated
functions:

(a) y = sin (sin (sin x)),

(b) y = sin (cos? (tan® (2* -+ 1))).
«q(a) By the rule (4.3) for differentiating a composite
function applied twice, we get

Yy’ = cos (sin (sin x))-cos (sin ). cos z.

(b) Let us write the function in the form of a composite

function:
y = fo (fs (fa (s (F2 (F1 (@))))),

where f, (@) =2t 41, f,(x) = tan z, f, () = 28,
fa(@) =cosz, f;(x) = 2%, fo(x)=sinz, and we get
fi @) = 42, f; (x) = 1/cos?z, f; (z) = 32, f, () =
—sin z, f, () = 2z, f; (r) = cosz. Consequently, by
applying the rule (4.3) several times, we get

y' (x) = cos (cos? (tan® (z*4-1)))- 2 cos (tan® (x4 4- 1))
X (—sin (tan3 (z¢-1)))- 3 tan2 (z¢ 4 1) 'msz—(ii—T—T) 43
= — 1223 cos (cos? (tan? (x4 1)))

x sin (2 tan® (e 4- 1)) S
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Example 4.3.5. Prove the following formulas for deriv-

atives of inverse trigonometric functions:
1
Vi—z2 '’
z \’ 1

(h) (aI‘CCOS T) = —_l/ﬁ 9

a
a?+z2°
«qLet us prove, for instance, formula (a). By the defini-
tion of arc sine, for z € [—1, 1] there holds the identity

(a) (arcsinz) =

(c) (arctan % ) g

sin (arcsin ) = 2.

Computing the derivatives of both sides, we get for
|z | << 1:
cos (arcsin z) -(arcsin )’ = 1.

But cos (arcsin z) =}/ 1— a2, since if a=arcsinz, then
sinoa=2, —n/2<a<n/2, therefore cosa is nonnega-
tive and cosa =7 1—az2 Consequently,

(arcsin z)’ =1/} 1—a2.

Equalities (b) and (c) are proved in a similar way by
applying Theorem 4.3, the rule (4.3), and identities
(1.9), (1.10). p

2. Applying the Derivative to Investigation of Trigo-
nometric Functions. Let us consider some essential
things needed for solving problems with the aid of the
derivative.

Sufficient condition of monotonicity. If a function
f (z) is differentiable on the interval (a, b) andf (z) >0
(f' () << 0) on (a, b), then f (x) increases (decreases) on this
interval.

Remember that the converse is not always true; for
instance, the function f (z) = 2® increases monotonically
on the interval (—1, 1), and its derivative f'(z) = 2a?
is not positive everywhere, f'(0) = 0.

A point z, € D (f) is called the point of (local) maxi-
mum (minimum) of the function f if for all z € D(f) from
some neighbourhood of z, the inequality f (z) << f (zy)
(f (z) = f (@) is fulfilled. The points of maximum and
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minimum are also called the points of extremum of a func-
tion. One should remember that if a function f (z) is
defined on a certain set X, and z, is a point of maximum
of f, zo € X, then the value f (z,) is not necessarily the
greatest value of the function f (z) on the set X. Consider
an example. Figure 33 represents the graph of a function
having on the interval X == (—1, 3) three points of max-
imum z;, z,, x5, however. none of them is the greatest

4
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value of the function f on the set X. Moreover, the given
function does not attain the greatest value on X since all
the values of the function are less than the number 2, but
no number a << 2 is the greatest value. Indeed, we can
choose a point z, such that a << f (z,) << 2 (see Fig. 33).
The same note refers to the points of minimum and least
values.

Let us note (without proof) that if a function f (z) is de-
fined and continuous on an interval [a, b], then this func-
tion takes on the least and greatest values on this inter-
val. This is one of the fundamental theorems in the course
of mathematical analysis. Also note that on an open
interval, half-open interval or throughout the number
line, the function may not take on the greatest or the
least value. This is exemplified by the function whose
graph is shown in Fig. 33.

A critical point of a function is a point from the domain
of the function at which the derivative is zero or does
not exist at all,
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A necessary condition of an extremum. If a function
f differentiable at a point z, has an extremum at this
point, then f'(z,) = 0.

A sufficient condition of an extremum. [/f, when passing
through a critical point z,, the derivative of the function
changes sign from plus to minus, then z, is a point of max-
imum; and if the derivative changes sign from minus to
plus, then z4 is a point of minimum of this function; if the
derivative does not change sign, then z, is not a point of
extremum.

We often come across problems on finding the greatest
or the least value of a continuous function on a closed
interval [a, b]. When solving such problems, it is not
sufficient to find the greatest local maximum of the func-
tion (the least minimum), we have also to compare these
numbers with the values of the function attained at the
end points x = a and = b of the interval. The greatest
(least) value is frequently attained at the end points.

In practice, to find the greatest or the least value of a
(continuous) function on a given interval, one finds all the
critical points inside the interval and compares the val-
ues of the function at the critical points with each other
and with the values at the end points of the interval,
without further investigating the critical points.

Consider several examples.

Example 4.3.6. Graph the function

f(x):-g—sin 2z + 2|cos 2z |

and find its greatest and least values on the closed inter-
val [0, =].

«4In solving problems with functions involving a modu-
lus sign, we have always to consider two cases since

[ a if a>=0,
lel=1 _, it a<o.

The function cos2x vanishes if 2z = —;—‘-—l—nk, keZ,

that is, xz%—i—ﬂ, kcZ, and if the number % is

even, then cos 2z changes sign from plus to minus, and if
k is odd, the sign changes from minus to plus. Conse-
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quently, the inequality cos 2z > 0 is equivalent to that
-——g——‘—nmgazg%—{—nm, me¢Z, (4.8)

and cos 2x <Z 0 is equivalent to that
—Z—-{-nm<x<-§2—+nm, me¢Z. (4.9

Case 1: z satisfies the condition (4.8). Then cos 2z > 0,
| cos 2z | = cos 2z, and, by Theorem 2.2,

f(x)- -—sm2x—1 2|cos 2x| —:—5—8111 (2z+9),

where ¢ = arcsin % , % < <—g— (see Example 4.1.7).

Case 2: z satisfies the condition (4.9). Then cos 2z < 0,
| cos 2z | = —cos 2z and

T =isiu 2x—2cos 2z == iSin 2z —9),
P 2

Where = arcsin —g-

Consequently, to construct the graph of a given func-
tion, it is first necessary Lo graph the functions (see
Sec. 4.1)

2 sin (224 ¢) (4.10)
and 1248
> sin (2z — ¢) (4.11)

using dashed lines, and then for the values of z lying on
the intervals (4.8) to outline the graph of (4.10) using
continuous lines, and on the intervals (4.9) the graph
of (4.11); as a result, we get the graph of the function
under consideration (the continuous line in Fig. 34).

To find the critical points, note first that on the inter-
val (0, =) f'(2) =5cos 2z + @) if O<<az<<m/d or
3nlh <<z <<m, and f'(z) = 5cos 2z — @) if n/hd <<
x << 3n/4. At the points z = n/4 and 2 = 3n/4 the func-
tion is not differentiable. This is proved exactly in the
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same manner as in Example 4.3.1 by determining the de-
rivative, and geometrically the absence of the derivative
means that it is impossible to draw a tangent line to the
graph of the given function at these points.

Thus, f'(z)=0 (on (0, m)) at the points z, = —:Z- —%’- ,

Ty = —Z-—l——gl (both of them are points of maximum
since at these points the derivative changes sign from

y:% s5in2x+2|cos 2x|

)
5

|

Fig. 34

plus to minus). The derivative is not existent at the
points 3 = n/4 and z, = 3n/4 (both of them are points of
minimum since the derivative changes sign from minus to
plus when passing through these points). Evaluating the
function at the critical points

faey=1(F—2) =5 f@=f(F+L) =+,
fa)=1 ()=, t@=1(%)=-%,

and also the values f (0) = f () = 2 at the cnd points of the
interval [0, =], we see that the greatest value of the func-
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tion is equal to 5/2, and the least value to —3/2. Note
that, by virtue of the periodicity of the function (its
period being equal to x), these values are the greatest and
least values on the entire number, line.p

Example 4.3.7. Graph the function

y =2 — cos 2z

and find its points of extremum.

4To construct the graph of the given function, we apply
the method of “adding the graphs” of two functions. Let
us construct the graphs of the functions f, (z) = = and
fs () = —cos 2z, on one drawing using dashed lines
(Fig. 35). Now, the ordinate of any point of the graph
of the function £ — cos 2z is equal to the sum of the ordi-
nates of the points on the graphs of auxiliary functions
(for an arbitrary value of z). By adding the ordinates of
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points, it is possible to construct a sufficient number of
points belonging to the graph of the function 2 — cos 2z,
and then to join them with a continuous line. Prior to
finding the critical points, let us note that the given
function is differentiable everywhere and that y' =
1 -} 2 sin 2z. The derivative vanishes at the points where

1 -k 2 sin 2z = 0, that is, at the points z = (—1)’"“%—}-
n

-5 (n € Z). Note that if n = 2m + 1, m € Z, then z =
Z—{f + mm. At these points, the derivative changes sign

from plus to minus, and therefore z = ?—2‘ + nam (m € Z)
are points of maximum. If n=2m, m¢cZ, then a=
—%+nnz (m€Z), and, when passing through these

points, the derivative changes sign from minus to plus,
therefore these points are points of minimum. p
Example 4.3.8. Find the greatest and least values of
the function f(z)=x-—cos2z on the closed interval
[—n/2, n/12].
4qWe use the investigation of the critical points
of the given function (from Example 4.3.7), and see
that the interval (—m/2, nt/12) contains both the point
of maximum z= —5n/12 and the point of minimum
z= —m/12. Consequently, to find the greatest value
of the function on the closed interval [ —m/2, m/12],
we have to compare the value f(—5n/12) attained by
the function at the point of maximum with the values
reached at the end points f(—n/2) and f(n/12).

We have f(—%) = ——i’—g—-cos(—%) =L2§_%,
[(~5) -~ 51, 1 () = 575, i

following inequalities hold:

V3 5n 1 T ﬁ 51 T _V_—

T TR ol T T TR o g

which are derived from the estimate 3<<m<<3.2.
Therefore the greatest value of the function on the
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given interval is equal to f ( —%) :-1/2—3——%. Simi-
larly, we find that the least value of the function on
ny x V3
(—f)=—m—"7 »
Example 4.3.9. Find all the values of the parameter a
for each of which the function

f(@) =sin2z —8(a+ 1)sinz + (4a® + 8a — 14) z

the given interval is f

increases throughout the number line and has no critical
points.

4For any fixed a the given function is differentiable at
every point of the number line. If the function f (z) in-
creases, then the inequality f' (z) >0 holds at every
point. If, in addition, f (z) has no critical points, the re-
lationship f' (z) = 0 is true for any z, and, consequently,
f" (z) > 0. On the other hand, if for all 2’s the inequality
f’ () > 0 holds, then, obviously, the function has no
critical points and increases.

In view of the fact that

f () = 2cos 2z — 8 (a + 1) cos z + (4a® + 8a — 14),

the problem can now be reformulated as follows: find all
the values of the parameter a for each of which the ine-
quality

cos 2z — 4 (a + 1) cosz + (2a2 + 4a — 7) >0
holds for any z € R. Since cos 2z = 2cos? 2 — 1, by
setting cos x = ¢, we reformulate the problem as follows:

find all the values of the parameter a for each of which
the least value of the function

2 —1 —4d(a@a+ 1)t + (2a® + 4a —7),
or the function
g@®) =t* —2(a+1)t+ a® 4 2a — 4,

on the closed interval [—1, 1] is positive. The derivative
g (t) = 2t — 2 (@ + 1) vanishes at the pointt, = a + 1.
Therefore the least value m of the quadratic function
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g (t) on the closed interval [—1, 1] is equal to

g(—1)=a2+4a—-1 if af1—1,
m={g(a—|—1)_—_—-5 if —l<<at1<i,
g(1)y=a2—5 if at+1>1.

Since the least value of the function g () on [—1, 1] must
be positive, the values of the parameter a satisfying the
conditions of the problem lie in two intervals: a < —2
and a > 0. If a << —2, then the least value of g (f) on
the closed interval [—1, 1] is equal to a® 4 4a — 1, and
the desired values of the parameter a satisfy the inequal-
ity a®> + 4a — 1 > 0. If a >0, then the least value of
g (t) on [—1, 1] equals a* — 5, and the sought-for values
of the parameter satisfy the inequality > — 5 > 0. Thus,
the set of the sought-for values of a is the union of solu-
tions of two systems of inequalities

[ < —2 { a>0,
a?+44a—1>0, az—5>0.

The set of solutions of the first system is the interval
a<—2—V5 and the set of solutions of the second
system is a> V5. Hence the required set of values
of ais (—oo, —2—V35)U(V5, +). >

Example 4.3.10. Construct the graph of the function

f () = arcsin (sin z)

and find all of its critical points.
<« The given function is defined throughout the number
line R. By virtue of the periodicity of the function sin z,
the function f (z) is also periodic with period 2m, and it
suffices to analyze it, say, on the closed interval [—/2,
3n/2]. By the definition of arc sine, on the closed interval
[—=n/2, 7/2] we have arcsin (sin z) = z (see Sec. 1.4,
Item 1), therefore for these values of x there holds the
equality f(z) ==z If z €[n/2, 3n/2], then n —z €
—an/2, /2], and the equality sin (n — z) = sinz im-
Plies that arcsin (sin ) = s — z. The final graph is repre-
Sented in Fig. 36. In order to find the critical points of
; the given function, it suffices to investigate only those
[ 10~01644
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values of z for which |sinz | = 1, that is, z = % +

nk, k € Z. Using the definition of the derivative, we can
show that the derivative is nonexistent at these points,

the points ofj the form 2 = g- + 2mm, m € Z, being points

of maximum, and the points of the form z = g +
n(2m — 1) = —-;l + 2nim, m €Z, being points of
minimum.

PROBLEMS

In Problems 4.1 to 4.10, graph the given functions.
41. y = |sin 2z | + V3 cos 2z.

4.2. y = |sin2z | + V'3 |cos 2z |.

4.3. y = arcsin (cos z). 4.4. y = arccos (cos z).
45, y =sinz — z. 4.6. y = |z | — cos 2z.

{ sin—%— , x5£0,
y:

4.7.
0, z=0.
: . 1
‘48, y:.{ zsin —, 2540,
0, xz=0.
. 2z
4.9. y=arcsin T

410, y = 4sin*z + 4 cos* x.
In Problems 4.11 to 4.14, compute the indicated limits.

4.11. lim (24 1) sin % 4.12. lim (I2+i:—_|-_;ltanm'

x~—>00 x—>0
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4.13. lim (22— 4z 4 3) sin (z—1)
x—>1 (:lt—— 1)2 )

4 . sin z -+ sin 5z

414 hmn cos £} cos bz *
x> —

4

In Problems 4.15 to 4.20, find the derivatives of the
given functions.

1--cos 2z . .
4.15. y::ﬁﬁ. 4.16. y=(sin2x+1)e*.

447, y=tan2zx—cot2x. 4.18. y:xzcos%.

4.19. y = z 4 sin z cos .

4.20. (a) y = tansinz; (b) y = tandz.

In Problems 4.21 to 4.24, find the critical points and
compute the least and greatest values of the given func-
tions.

4.21. y= [sin 2z| 4V 3 cos 2x.
4.22, y = |sin2z|-+V 3 |cos 2z|.
4.23. y = arcsin (cos z). 4.24. y = arccos (cos z).

In Problems 4.25 and 4.26, find the intervals of increase
and decrease of the given functions.

. 1
sin — x50,

0, z=0.
4.27. Find all the values of z for each of which the
tangent lines to the graphs of the functions

4.25. y-—=|x|—cos2z. 4.26. yz{

Yy (x) = 3 cos dx and y (x) = Scos Jr + 2

at points with abscissa z are parallel.
4.28. Find all the values of the parameter b for each
of which the function

f(x) = sin 2z — 8 (b + 2) cos z — (4b® - 16b + 6) =

decreases throughout the number line and has no critical
Points.
4.29. Find the greatest value of the expression

oo [ 15m s o  1n .
sin (T w)—sm (—7——41) for O0<la<{m/8.
10»
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4.30. Find the least value of the expression

cot 2z— tan 2z

1+sin (57"—8;)

for 0<xz < m/8.

In Problems 4.31 to 4.35, find the greatest and least
values of the given functions on the indicated intervals.

4.31. f () = z + cos? z, z €10, n/2].

4.32. f () = tan x + cot 2z, z € [n/6, n/3).

4.33. f(x) =% cos 2z +sinzx, z€[0, n/2].
4.34. f(z)= % — 2 sin 2x—|——;— cos® r —cos z,

4
TE€[—mn/2, n/2).
4.35. f(x)=cos*zx+sinz, x€][0, n/4].



Chapter 5 -
Trigonometric Inequalities

5.1. Proving Inequalities Involving Trigonometric
Functions

Problems on proving trigonometric inequalities fall into
several types. Some problems require to prove a numeri-
cal inequality which is satisfied by some value of a tri-
gonometric function or an expression composed of values
of trigonometric functions; while other problems require
to prove that an inequality is satisfied for all values of
the arguments of a given trigonometric expression or
for the permissible values of the arguments that satisfy
an additional constraint of the hypothesis. However, in
any case the solution is reduced to investigating the val-
ues of a trigonometric function on some interval from
its domain of definition or on the entire domain. In sim-
ple cases, we succeed in transforming a trigonometric
expression in similar problems so that it is then possible
to directly apply an inequality of the form |sinz | <1
or |cosz |<C 1. In other cases, we can transform the
trigonometric expression under consideration so that, as
a result, it takes the form of a function F (z) in which the
argument z is represented by some other, simpler trigon-
ometric function or trigonometric expression. In such
a case, the solution of the problem is reduced to investi-
gating the function F (z), bearing in mind that z can
meet the additional conditions connected with properties
of trigonometric functions. In this case the function ¥ (2)
can be analyzed using either the derivative or elementary
considerations such as, for instance, the inequality be-
tween an arithmetic and a geometric mean of two non-
negative numbers a and b:

Vab< 2, (5.1)
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in which the equality sign occurs only for a = b. An
important class of problems comprise inequalities whose
proof is reduced to comparison of the size of an acute
angle, its sine and tangent (see equation (4.1)). We begin
to consider some examples with this inequality.

Example 5.1.1. Prove that for 0 <<t << x/2 the fol-
lowing inequalities hold:

sint<<t<tant

sin ¢

cos b << :

<1.

« Consider the trigonometric circle and mark the point
P, in the first quadrant
|/ W corresponding to a real
number ¢. Then L AOP,=t
(radians). The first inequal-
£ ity is obtained from the
comparison of the areas of
the triangle OAP,, the sec-
. tor OAEP,, and the trian-
g z gle OAW,, where W, is a
point on the line of tangents
(that is, on the tangent to
the trigonometric circle at
the point A) corresponding
Fig. 37 to the point P, (sec Fig. 37
and Sec. 1.2, Ttem 3). It is
known from geometry that the following equalities hold
true:

~Q

84 0ap,= 5 |0A|-|OP,| sint =—sint,

1 1
Sa 0AW, == 5~ |0A|-| AW = tan
Soagp, —t/2

(the last formula follows from the fact that the area of a
complete circle of unit radius, equal to nr® = m, may be
considered as the area of a sector of 2m radians, and,
consequently, the area of a sector of ¢ radians is found
from an obvious proportion and equals t/2).
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Since A OAP, is contained entirely in the sector
OAEP,, and the latter is contained in A OAW,, we
have Sa oap, <<Soapp, <<Sa oaw, whence

sin t <<t <C tan t. (5.2)

Dividing the terms of (5.2) by sint >0, we get 1 <
t 1 sint

sint ~oost’ °F COSt<_7_<1' >

Example 5.1.2. Prove that sin 1 > n/4.
4 Using the reduction formula (2.7), we pass to cosine
and make use of formula (2.39) for cosine of double argument:

sin 1 = cos (%— 1) = 1 — 2sin? (%—%) .

We now use inequality (5.2), which implies that
. 1 1 T 1
sin (T_T) <5 therefore

1—2sin? (%—L) ~1-2 (—“——_‘-)2,

and, to prove the inequality, it suffices to ascertain

that 1-—2(%—%)2>—4l or n—2—~§-——L<O or

n2—2n—4<<0. Note that all the solutions of the
inequality x2—2x—4 <0 are specified by the condi-
tion 1—V5<x<1+'1/5. Using the estimates
V5>22 and n<3.2, we get n<<3.2<1+V5,
n>0>1—YV5. Consequently, together with the ine-
quality n?—2mx—4 <0, the original inequality is also
true. p

Note that inequality (5.2) enables us to calculate ap-
proximately the number m. Indeed, it follows from (5.2)
that for n > 2 the following inequalities hold true:

. I 14
nsin —7l—<ﬂ<ntan—;—,

Note that the number 2n sin% is the perimeter of a

regular n-gon inscribed in the trigonometric circle,
. . .
while the number 2n tan— is the perimeter of » regu-
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lar n-gon circumscribed about this circle (see Fig. 38,
where n=2>5). It follows from Theorem 4.2 that

- - sin% 1
lim n (sin——tan —-) = lim
ne " " neo L) f_cos -
n n
=n.1(1—1)=0,
which makes it possible to approximate the number =
by numbers of the form =nsin %, n tan_’rf_
¥

Fig. 38

with an arbitrarily high accuracy For instance, if

2h , tan 2h can be found

from formulas (2.47) and (2.49) for half-argument func-

= 2%, then the numbers sin —

-
tions. Thus, if k=2, then sin —;:-:t—zz, tan-;‘— =1,
— - 9
therefore 212 < n <C4. If k=3, then sin %f = V_ZT_Z ’
cos %:— _‘/i'g_‘_g , —g—= V2—1, consequently:
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I VZ——VZ—I— V2 Lo
Té= 5 ) COS ——

For k=4 we get sin

T 16
ey ————] - _
l/2+1£2+1/2 , tan2 -2 VVZ2+1—VY3—1, there-

fore 8 Va—Vaory2<a<t6(2VYIri—y3i—1).

In addition, the following estimates hold true:

8Vo_Varyassi,
16(2VYV2+1—V2~1 <32,

which are proved by squaring both sides several times.
Hence, in particular, we get the inequality 3.1 << n << 3.2,
which we used repeatedly when solving problems.

Example 5.1.3. Prove that for 0 <<t<<xn/2 the in-
equality t—% < sint holds.
«Let us use inequality (5.2) which implies that

¢ t
- <tan—-. (5.3)

Multiplying both sides of (5.3) by the positive number

2 b 0 2 L Locosz b —

2 cos 5 we get  tcos 5 << 2tan 5 C08% = =
2sin —f,-cos%:-.-. sin t, or

t (1—sin2 —%)<sin t. (2.4)

Since sin %<—;— , by replacing in the left-hand side

12

2 ain b 1 o . e
of (5.4) sin 5 by 5 » We get t(1 7 )<smt, that is,

t—t4—3<sin t. p
Example 5.1.4. Prove the inequality

sin o sin 2 sin 3o << 3/4.
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4We have

. . . . cos 20, — cos 4
sin & sin 2a sin 3ot = sin 20 —— " "~

2
__ 2sin 20 cos 2a — 2 sin 2o cos 4a
o 4
__ sin4a-sin 2a—sin 6a < 3
- 4 =75

since |sint | << 1. But an equality would occur only if
sin 4o == sin 2o = —sin 6ac = 1. Let us show that this
is impossible. To this end, it suffices to show that sin 4o
and sin 2a are not equal to 1 simultaneously. Indeed, let
sin 2 = 1, then cos 2o = 0, therefore sin 4o =
2sin2acos 20 =2:0=0=%1. p

Example 5.1.5. Prove that for 0 <z <Cmn/4 the ine-

cosx

sin? z (cos z—sin z
«4Since cos r =0, by dividing the numerator and
denominator of the left-hand side by cos® z, we get

quality

) > 8 takes place.

1
cos? z . 1-tan?
sin? z (cos z sin x ) tan? r ({1 —tan )
cos2z \coszx cos &

_ (I—tanz)2+4-2tan=
T tan?z (1—tanx)

{—tanz + 2
tan? z tanz (1 —tanz)°

Since tanx+(1—tanx)=1 (a constant quantity), and
the numbers a=tanz, b=1—tanx are nonnegative
by hypothesis, inequality (5.1) implies that for
tan x = 1/2 the expression tan x (1 —tanx) takes on the
greatest value. Consequently, the least value of the

expression is equal to 8. But since for

tan z (1 — tan z)
1—tan z
tan® z

0<z<< -—Z— the expression > 0, we have

1—tanx ) 2
tan2 x F tan z (1 —tan z)

>8. p
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Example 5.1.6. Prove the inequality
sin® o + cos® a > 1/8.
For what values of a does the equality occur?
4We have sin? a + cos?a = 1,
(sin*a -+ cos’a)? = sin*a + costa -+ 2 sin’o cos?a = 1,
but since, according to (5.1), sin*a + costo >
2 sin? o cos? a, we havesin* o -} cos® o > 1/2, the equal-
ity occurring when sin & = =cos a. Further,
(sint* a + cost a)?
= sinf o + cos® a + 2 sint a cost a > 1/4,
and since, according to (5.1), sin® o + cos® a >
2 sin! a cos? o, we have sin® a 4 cos® o > 1/8. As before,
the equality occurs when sin o = —cos a, that is, for
o=%+5 kezZ »
Example 5.1.7. Prove the inequality
@+y)(@+y+ 2cosz)+ 2> 2sin?x.

For what values of x and y does the equality occur?

4Let us rewrite the given inequality as follows:
@+ yP+2@+y)cosz+ 21 —sin?2) >0,

or (x+ y)?+ 2@+ y)cosx + cos® x + cos?z >0,

that is,
((x + y)* + cos 2)? + cos?z > 0.

In other words, the inequality has been reduced to an
obvious one, since both terms are nonnegative. For the
equality to occur, it is necessary and sufficient that

l z+y-cosz=0, { z4+y=0,
or

cos?z =0, cosx=0.
Consequently, the equality holds when z = % 2k+1)
[TES [—-g— (2k4-1), k€Z. For any other values of z,

y we have a strict inequality. p
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Example 5.1.8. Prove that there occurs the in-
equality —4<Ty<<2 % , where y=cos2z-}-3sinz.
4We have y=cos2z+3sinz= —2sin?x+-Isinz 1.
Let sinz =z, where — 1<z, then y= — 2224 3z 1.

Y= 32) 3 the function y(z) takes on the

greatest value equal to _2'T€+3'T+1=

For z=

To find the least value of y(z) on the closed interval

[—1, 1], it suffices (by virtue of the properties of the
quadratic function) to compare its values at the end
points of the interval. We have: y (—1) = —2 — 3 +
1=—4,y{1)=—2+4 3+ 1 = 2. Thus, for the num-
bers z belongmg to the closed interval [—1 1] the least

value of y is —4, the greatest value is zg. >
Example 5.1.9. Prove the inequality

0 <<sin® x - cos z <L 1.

«Since sin®z <1 and cos®>z<C1 for any z € R, we
have: sin® z < sin® z and cos'* 2 < cos? z. Adding these
inequalities termwise, we get sin® z 4 cos'® z <C 1. Since
sin® z > 0 and cos'* x > 0, we have sin® z + cos'* z > 0,
an equality being satisfied only if sin® z and cos' z are
both equal to zero which is impossible, that is, sin® & |-
costzr>0. p

5.2, Solving Trigonometric Inequalities

For some time trigonometric inequalities have not
been set at entrance exams, although some problems
involve the comparison of values of trigonometric func-
tions. For instance, when solving equations and systems
of equations containing, along with trigonometric func-
tions, logarithms or radicals, the domain of permissible
values of unknowns is given by conditions having the
form of trigonometric inequalities. In such problems,
however, the only thing required is, from the set of roots
obtained, to choose those which belong to the domain of
permissible values without finding this domain itself.
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But the ability to solve simple trigonometric inequalities
may turn out to be useful, for instance, when it is re-
quired to find the intervals of increase and decrease of a
function using its derivative, and the function and its
derivative are given with the aid of trigonometric expres-
sions. In this section, we

consider some examples on y
solving trigonometric ine- Q
qualities.

The technique of solving
simple trigonometric ine-
qualities is, in many re- g '
spects, the same as that of 4 AW
solving corresponding tri-
gonometric equations. For
instance, let there be re-
quired to solve the inequal- 0
ity tan ¢ <Ca. The num-
ber tan ¢ is the ordinate of
the point W, on the line
of tangents corresponding 5
to the point P, (see Sec. 2
1.4, Item 3 and Fig. 39).

Therefore in order to solve

this inequality, we have

first to find all points P, Fig. 39
on the trigonometric circle

such that the ordinates of the corresponding points
on the line of tangents are less than, or equal to, a.
The set of such points is shown in Fig. 39; in the
given case, it consists of two parts, one part being
obtained from the other when rotated about the point O
through an angle of n (radians). Then we have to pass
from the points on the circle to the corresponding real
numbers. Since the function tan ¢ is periodic with period
7, it suffices to find all the solutions of the inequality in
question belonging  to a definite interval of length m,
since all the remaining solutions will differ from the found
ones by a shift to the right or left by numbers multiple
of m. To get the shortest possible answer, it is desired
that the initial interval of length n be chosen so that the
solutions belonging to that interval, in turn, constitute

&Y
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a continuous interval. In our case, we may take, for in-
stance, (—n/2, n/2) as such an interval. If ¢t € (—n/2,
n/2), then the found set of points contains on the circle
points P, such that —mn/2 <<t < arctan a (in Fig. 39
the points P,; and P,,, for example). Therefore, the set
of solutions of the inequality tan x# <C a is a union of an
infinite number of intervals

_22‘_ +4- tn << x < arctan a -+ ain, n € Z.

Other simplest trigonometric inequalities are solved in

a similar way. For the sake of convenience, we give a
list of solutions of simple trigonometric inequalities:
1) sinz<a. If |a]<1, then

—aresin @ + nt (2n — 1) < 2 < aresin a + 2nn, n € Z.

If @ >= 1, then z is an arbitrary real number. If a << —1,
then there is no solution.

(2) sin z > a. If |a|<1, then
arcsin a 4 2nn < ax < —arcsin a + (2n + 1), n€Z.

If a > 1, then there is no solution. If ¢ < —1, then z
is an arbitrary real number.

3) cosz<Ca. If |a]|<1, then

arccos a - 2nn < & <L —arccos a + 2n (n + 1), n€Z.

If a >> 1, then z is an arbitrary real number. If a << —1,
then there is no solution.
(4) cosz=a. If |a|<1, then

—arccos @ + 2nn < x < arccos a + 2nn, n€Z.

If a > 1, then there is no solution. 1f ¢ < —1, then z is
an arbitrary real number.

(5) tan zr<a. —-%»]—nn<x<arctana+nn, ncZ.

(6) tan z>=a. arctan a-- nn<x<——g—+ﬂn, ngZ.

(7y cotr<Ca.arccota +nn<La<<m(n+ 1), n€Z
8) cot x = a. nin << x < arccot a + nn, n € Z.
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In most cases, solution of trigonometric inequalities
can be reduced to solution of one or several simple ine-
qualities using identical trigonometric transformations
and an auxiliary unknown. Consider some examples.

Example 5.2.1. Solve the inequality

* Z sin2 x+ ——sin2 2z > cos 2z.
4 Using the half-angle formula for sine, we rewrite our
inequality in the form 5 (1 — cos 2z) + 2 (1 — cos?2z) >
8 cos 2z, or
2cos® 2z + 13 cos 22 — 7 << O.

Setting y=-cos2z, we get the quadratic inequality
2y24+13y—7<<0 whose solution is the interval
—7<<y<<1/2. Thus, the problem has been reduced to
solving the inequality — 7 <<cos2z << 1/2. The inequal-
ity —7<Ccos2zx 1is satisfied for any z. Solving the

inequality cos2x << 1/2, we get %4— 2nn < 2z <%‘—7'-

2an, n€Z, that is, —g—+-:tn<x<—5él+ﬂn, ncZ. p
Example 5.2.2. Solve the inequality
54 2cos2x<C 3 |2sinax — 1|

4qUsing the double-argument formula for cosine, we
reduce the given inequality to the form

7 —4sin?z< 3 |2sinz—1|
Setting y = sin z, we get .
7T —4y2 <3 |2y — 1|

(a) Let y>1/2, then 7 — 4y* << 3 2y — 1) or 2y® +
3y —5>=0. Solvmg this 1nequallt},, we get y > 1 and
y << 5/2 but from the condition y > 1/2 we have
y > 1.

(b) Let y << 1/2. Then the inequality is rewrltten as
follows: 7 — 4y> <C —3 2y — 1) or 2y* — 3y — 2> 0.
Solving the last mequahty, we get y > 2 and y << —1/2
or, by hypothesis, y << —1/2.

Thus, all z’s satisfying the inequalities sin x > 1 and
sin z < —1/2 are solutions of the original inequality.
The first inequality holds true only for z’s satisfying the
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equation sin z = 1, that is,
z =—g——{—2nn, ncZ.

Solving the second inequality, we get
——5; + 2an<Lar -——%—}-Znn, néZ.
Thus, z— —g--{-2nn, ncZ, and ——% + 2nn<lxr <
-——g——i—Znn, neZ. p
Example 5.2.3. Solve the inequality
sin® z + cosé z > 13/16.

4 Transforming the left-hand side, we have
sinfz-+cosbz
== (sin2 x -|- cos? x) (sin* £ —sin? x cos? z + cost z)
=(sin%?z 4 cos?z)>— 3 sin2 x cos2 x

N 3 90, 4__ 3 M1—cosbxr__ 5 3 cos 4z
=1—gsin®lz=t— =g | —5—.
Hence, the problem has been reduced to solving the

. . 5 3cos 4z 13
inequality < -} — > OF cos 4x>1/2. Hence,

— % - 2nn < bda < % +2nn, ncZ, whence

n o an @, an

Example 5.2.4. Solve the inequality

sin 2z -}~ tan x > 2.
«The left-hand side is defined for xq&—;i—l—nn, neZ,

. . . 2ta
and for the same z's the substitution sin 2z . _atanz
1+4tan? z

leads to the equivalent inequality

2tan

m—i—tan .’E’—2>0.
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Setting y= tan z, we have %yyz +y—22>0, or (since

y¥?+1>0) 2y +(y —2) (y* + 1) > 0. Removing the
parentheses, we get y® — 2y> + 3y — 2 >0 which can
be rewritten as follows:

Py—1)—y@y—-1)+2@F—1)=0,
or
V¥ —y+2)@y—1)=0.

The quadratic function y*> — y + 2 is positive for any y
(since the discriminant is negative), therefore the last
inequality is equivalent to the inequality y — 1 >0, or
tanxz — 1 >0, tan z > 1. Hence

T +am<z <4-+an, neZ B

Example 5.2.5. Solve the inequality cos? z << 3/4.
«qThe given inequality is equivalent to the inequalities

—V'3/2 <<cosz <<}V 3/2 or to the system of inequali-
ties

{ cosz> —13/2,
cosz < V3/2.

The set representing the solution of this system is the
intersection of the sets which are the solutions of two
simple trigonometric inequalities. In order to find this
intersection, it is convenient to consider the closed inter-
val [—mx, =] and mark on it separately the solutions of
the first and second inequalities. Then we get two subin-
tervals

5 s n 5n
—<r<— and << 5.

Noting that one interval can be obtained from the other
by shifting the latter by n and taking into account that
cos z is a periodic function with period 2w, we may write
the answer in the following form:

-g—+nn<x<5—g+un, neZ. p

11-01644
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PROBLEMS

In Problems 5.1 to 5.18, solve the given inequalities.
5.1. cos z >1/2. 5.2. sin 2z << }/2/2.
5.3. sin % > —1/2. 5.4. tan 3z — 1) < 1/V3.

5.5. |[tanz | =>V3. 5.6. |cosz | <<1/2.
5.7. sin? x << 1/4. 5.8. tan®z > 1/3.

5.9. 2sin? z <Csin 2. 5.10. 2 cos® z + cos z < 1.
5.11. |smx|<lcosx| 912, |sinz |>|cosz |
513, |sinz |cosz > 1.4.

5.14. |sinz |+ |cosz | > 1.

5.15. 4 (sin? z — | cos z |) < 1.

5.16. sin z-}-cos z >V3

sin x—cosz

5.17. 5—4 (sin? z-}-cos z) <0.

cos

sin r—cos
A8, | /—/———M—— (<1
5 sinz4coszx |

5.19. Which is greater: tan 1 or arctan 1?
5.20. Which is smaller: (a) —2— or arctan %4—

5 7 .2 2
arctan —=—?  (b) —— or arcsin —-+-arccos - ?

5.21. Which is greater: sin (tan 1) or tan (sin 1)?

In Problems 5.22 to 5.25, prove the indicated inequali-
ties.

5.22, —i<sin z sin (—g— — z) sin (% + x)g%

5.23. 0 <C cos? a + cos? (@ + P)

— 2cosacos Beos (a + B) <1

5.24, (cot? o — 1) B cot? @ — 1) (cot 3 tan 200 — 1

< —1.

sinz—1 2—sinz
5.25. sin z — 2+ 3-—sin:c'
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CHAPTER 1

1.4. (a) In the fourth quadrant, (b) in the second quadrant,
(¢c) in the third quadrant. 1.2. (a) ,4’;43, (b) A’;«lz, (c) J:Ao.
1.3. B,B,. 1.4. N=2-11.13=286. 1.6. The number (¢ —B)/n must
be rational. 1.7. (a) sin 1> sin (1+—251) , (b) cos (1+2T“) >

cos (1+4_n) . 1.8. (a) The plus sign, (b) the plus. 1.9. (a) No,

(b) yes. 1.10. The minus. 1.11. (a) 1/2, (b) —V'2/2, (¢) V' 2/2,
(d) ¥/3/2. 1.12. The minus. 1.13. (a) —1, (b) —V 3. 1.14. Hint.

—
Consider the coordinates of the sum of vectors OP ,;, and
a+ ——

prove that this sum is zero since it remains unchanged under
the rotation through an angle of 2m/N. 1.15. 918n. 1.16. No.
1.19. 27, 1.24. (a) 6, (b) 30m. 1.22. =/3. 1.27. y=fo+f1,
where fo=(sin (z+1) sin? (22 —3)+sin (z— 1)sm3(2:c—|-3))/2 fi=
(sin (z 1) sin® (22— 3) —sin (z—1) sin3 (2z4-3))/2. 1.28. y fo-+ 71,

b1 4
where fo=cos 35 cos z—sin e cos 2z, f1= —sin ? sin z |+

12 sin 2z, 1.29. (a) a=0, b is arbitrary, (b) b=0, a is arbi-
trary. 1.30. (a) The plus sign, (b) the minus. 1.31. (a) The minus,
(b) the plus, (c) the plus, d) the plus. 1.32. (a) The plus, (b) the
minus, (¢) the minus, e minus. 1.33. Increasing. 1.34. In-

creasing. 1.36. Decreasmg 1.37. (a) cos t= —3/5, tan t= —4/3,
cott=—3/4, (b) cost= —12/13, tant=05/12, cott=12/5,
(c) cost=4/5, tant= —3/4, cot t= —4/3. 1.38. (a) sin £=24/25,
tan ¢t=24/7, cot t=7/24, (b) sint=—7/25, tan ¢t="7/24, cott=
24/7, (c) sint= —8/17, tant = —8/15, cott = —15/8.
1.39.. (a) sin t=3/5, cost=4/5, cott=4/3, (b) sin t=3/5,
cost= —4/5, cott=—4/3. 1.40. (a) sint= —5/13, cost=
—12/13, tant=5/12, (b) sint= —12/13, cos t=5/13, tan t=

* The letters k, I, m, n symbolize any integers if otherwise
is not stated.

11+
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—12/5. 1.41. (a) ii—l-an (b) +2—n+2nk 4+ arccos -1—+2ﬂ'.k
1.42, ()—4n/3 —21/3 2n/3 4m/3, 8n/3 10m/3, 14n/3 16m/3.
1.43. (c) —6-+ 2 @5 >4k, () nk. 144 (a) 72, (b) /2,

(c) 4m/3. 1.48. (a) arccos-é-, arctan 3 arccoti , (b) aresin 5

5 o 5 45’ 3 13~
12 12
arctan PR arccotT , (c) arcsm—3 , arccos —— 13 arccotT ,
s
(d) arcsini , arccos3 , arctan é— 1.49. (a) m—arcsin 2ve ,
5 5 3 N 3
nm—arctan 2 V2, arccot (——l/l;—z-) , 7T —arccos —;— ,
(b) arcsin (—i) —arccos%— —arccot—zé- arctanL
25/ 25" 7’ 247
(c) m— arcsmﬁ reco! L Tt—.e\rctan2—4 —arcco: I
25’3”(“25)" 7’ reeoS g5
7 2 V5
n—arccotﬁ. 1.50. — B
CHAPTER 2
2.18. sin ¢ sin 4s. 2.19. —sin 2¢sin4s. 2.20. 1/4. 2.21. sin 4t.
2.22. %sin 8. 2.23. —cos?2t. 224 2sin ( 6t-——g—) )
i (¢ ) sin (¢4 ) sin (= 5-) sin (145 ) fcos
2.25. Ssm(t 4)sm(t, 5 ) sin t 3 ) sin t+3 cos? t.

2.26. —tan ¢ tan s. 2.27. —2 sin 2¢ sin s cos (2t —s). 2.28. 8cos16¢ X

cos3 2¢. 2.33. m/4. 2.34. 1/2. 2.35. —2 17 5/5. 2.36. 1. 2.37. 1 or
—1/6.

CHAPTER 3

34, w(@kAHDA,  (—Dr g ’g‘ 3.2,  m(4k—1)/12.
3.3. w (2k+1)/2, (—1)k——|—:rtk. 3.4 1 (2k+1)/4, (—1) k%Jriz’i.
3.5. 71 (2k+-1)/4, 7 (2k+1)/14. 3.6. 7 (2k+1)/16, (—1)h*1 “J-Eg_"_

3.7. nk/2, (6k = 1)/12. 3.8. (——1)h+1-3(:—+nk. 3.9. wu(4k+1)/4,

3
arctan 5-+ . 3.10. m (4k—+3)/4. 3.11. ——i[:——}—nk, arctan - + k.

342, mk/5, m (4k—1)/2, n (4k—+1)/10. 3.13. —%+nk, arctan 34
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2
k. 344 7 (2k-H1)/12, =50 42k, 345, 4, arctan %4. k.

3.46. nk/3, m (2k--1)/7. 3.17. 2arctan 3--2nk, —2arctan 7-}-2nk.
3.48. m(2k+1)/6, m(4k—1)/4. 3.49. n(2k+1)/4. 3.20. nk,

(—1)r %+“T’° 3.21. n (hk—1)/4. 3.22. 7k, 7 (4k—+1)/4. 3.23. nk,
mk—arctan3. 3.24. m(4k—1)/4, m(2k--1)/2. 3.25. m(2Kk--1)/6,
k= 314+1, =ak/5, k~51. 3.26. -+ % al'ccos—’?z_—7—l-nk,
+ %—I—nk, i%arccos(—l/fi)—l—ﬂk. 3.27. « (4k+3)/32. 3.28. =ik,
n(2k+1)/6. 3.29. m(3k = 1)/3. 3.30. m(2k--1)/8, = (6k == 1)/12.

3.31. nk/2. 3.32. %+2nk. 3.33. (—1)k arcsin%—l—nk. 3.34. nik.

3.35. m(4k-+1)/4. 3.36. %—I—nk. 3.37. m/2. 3.38. =k,

17n 7n 2n 4m
—ZS_+“,C’ 2—4+ﬂk. 3.39. =mk. 3.40. —3—-|—4nk, T+4Rk,

—1;—“+4nk. 3.42, (2, iﬁ—2+2nk). 3.43. {2, —1), (—2,

—1)}. 344 (u(2k-+1)/4, m(61-1)/6). 3.45. (m (4k-+1)/4,
— 5 (12k4+1)/12), (n (12k—1)/12, m (1 —4&k)/4). 3.46. (m (2k--3)/2,

n (6k—1)/6). 3.47. (%—I—n(k—l), -%—l—n(k—l—l)), (—%-‘T

w (k—1), 23—“+n(k+z)). 3.48.  ((6k—1)/6), (6k--1)/6).
3.49. (arctan —;—+nk, arctan%——nk) . 3.50. (i%—l—nk,

i%-p nl) , l—k=2m. 3.51. —2-12k, 212k

CHAPTER 4

4.1, See Fig. 40. 4.2, See Fig. 41. 4.3. See Fig. 42. 4.4. See
Fig. 43. 4.5. See Fig. 44. 4.6. Sec Fig. 45. 4.7. See Fig. 46.
4.8. See Fig. 47. 4.9. See Fig. 48. Hint.

—mn—2arctanz, z€(—o0, —1],
y={23rctanz, ze[—1, 1],
n—2 arctan z, z€[1, Ho0)

4.10. See Fig. 49. Hint. y=3-fcos4zr. 4.41. 4. 4.12. —0.5.
4.13. —2. 444. 1. 4.15. 2 (tan z{tand z). 4.16. (sin®z-sin 2z
1) ex. 4.17. 8/sin24z. 4.18. 2zcos%—|—sin%. 4.19. 2cos?az.

4.20. (a) cos z/cos? sin z, (b) 3 (tan2 z 4 tan4 z). 4.21. Critical points:
z=mn (12k = 1)/12 (y' =0 points of maximum), z=mnk/2 (y is
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-z/4 O /9 72 ¥4 x
Fig. 49
nonexistent, points of minimum), ma\{ y(z)=2, miny (z)= — V3.
xER

4.22. Critical points: a:_n(6k+1)/12 (y' =0, points of maxunum).
z=mk/4 (y' is nonexistent, points of mlmmum), max y (z) =
xER

mll{ly(w)=1. 4.23. Critical points: z=umk (the derlvatwe is non-
x€

existent), max y (z)= ; , min y () = — 2. 4.24. Critical points:
xER

z=nk (the derivative is nonexistent) meaz( y(z)=m, mmy(z)—
4.25., Intervals of increase [0, |—ﬂ (2k+1)~% s
n(2k+1)+£] k<0, [n(22+1)+%’ 2l+3)_%:|
1>0, intervals of decrease [ 12 , 01, il (2l+1 4——“— )
7 (21+3) __i] . 1<0, I’"t(2k+1)___:rl ’ n(2k—|—1) ]
4 6 .4 6 4 %
k> 0. 4.26. Intervals of increase [n(4k+3) s n(4k—]—1):l , inter-
vals of decrease (—00, —?—‘, [—th—, +°°). T@ETD)
sz—T)]’ k0. 427. nk, n(2k—+1)/8. 4.28. b<—3—V'3,

b>—1+V3. 429. 1/V2. 430. 2. 431, ypax=7/2, ymin=1.
4.32. ymax=2V3/3, ymin=1. 4.33. ymax=23/4, Ymin=0.5.
4.34. Yymax="/4, Yymin= — /4. 4.35. ypax=1.25, ymin =
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CHAPTER 5
5.1. [—1+2nn, i+2nn]. 5.2. (—%
5.3. [——+10 ﬂ_i-mnn] 5.4. (% S+ ;+

14
E_I-_?.—) . 3.5, (—T-I—nn —-—+nn] [3 +ain, ——-I—nn.)
5.6. (-g-—l-nn, l;—-l—nn) . 8.7, (—%—l—nn, —6——|—:rm),
14 14 14 I

5.8. (—-T—Hm, —-—6——{—nn] , [—B——l-nn, 7+nn) . 5.9, [Znn,
-g—+2nn], [%—l—Znn, mot-2nm | . 5.10. (—-n-I—Znn, —-g—A;-
Znn) . (—g—+2nn, :c+23m). 5.11. (—-%—i—nn, —Z——I-:nn).
5.12. (%—l—nn, E[il—i—nn). 5.13. (—f;——l—Znn, %+2nn),
(——?—g+2nn, —%4— 2nn) . 544 1+~ ’;" 5.15. (—%—i—nn,
T nn) . 5.16. (%—I—nn, —f-’z‘—+nn) 547, & = 2, (%4-
27in, —3—~+2nn) 5.18. Ir ,%—I—un].&w. tan . 5.20. (a) 7/,
(b) =m/4. 5.21. tan (sin1).

I
—+ mn, T —+ :rm) .
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Addition formulas, 41
Arc cosine, 33

Arc cotangent, 35
Arc sine, 32

Arc tangent, 35

Basic properties of trigonomet-
ric functions, 23
Basic trigonometric functions,

Computing limits, 126-131
Coordinate circle, 10
Cosine, 18
of sum (difference) of two
real numbers, 42-45
Cotangent, 20
of a difference, 50
of a sum, 50
Degree(s), 9
Derivative(s), 132

Evaluation of trigonometric
expressions, 63-70

Even function, 26

Extremum,
a necessary condition of, 139
a sufficient condition of, 139

Formulags),
addition of, 41
of double argument, 55
of half argument, 59

reduction, 45

of sum and difference of like
trigonometric functions,
51

for transforming a product of

trigonometric functions

into a sum, 53

of triples argument, 62
Functiongs),

continuous at a point, 126

decreasing, 27

differentiable, 132

discontinuous, 129

even, 26

increasing, 27

nondecreasing, 27

nonincreasing, 27

odd, 23

periodic, 23
Fundamental

trigonometric
identity, 18

Graph of harmonic oscillations,
120-126

Graphs of basic trigonometric
functions, 113

Half-angle (argument) formu-
las, 5¢
Harmonic oscillations, 120

Intervals of monotonicity, 27

Inverse trigonometric functions,
31

Investigating
functions with
derivative, 132

trigonometric
the aid of
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Limit(s), 126
first remarkable, 129
of a function, 126
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interval of, 27
sufficient condition of, 137

Nondecreasing function, 27
Nonincreasing function, 27

0dd function, 26
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Period(s)
fundamental, 23
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accumulation, 126
critical, 138
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limit, 126
of maximum, 137
of minimum, 137
Principal methods of solving
trigonometric equations,
87-90
Properties and graph of the
functions:
f (z) = cos z, 116-118
f (z) = sin z, 113-115
f (z) = tan z, 118-120

Quadrant(s), 17

Radian, 9
Reduction formulas, 45

Relation between trigonomet-
ric functions, 30

Root(s),
arithmetic square, 87

Simplifying trigonometric ex-
pressions, 70

Sine, 18
of a difference, 47
of a sum, 47

Sine line, 115

Sinusoid, 115

Solving
the equation cos ¢ = m, 33
simplest trigonometric func-
tions, 31
trigonometric equations and
systems of equations in se-
veral unknowns, 101-109

Tangent, 20
of a difference, 48
of a sum, 48
Transforming
the expression « sin ¢4 b,

sums and products of trigon-

ometric expressions, 74
Trigonometric

circle, 10

equations and systems of equa-

tions, 80

inequalities, 149-160

Unit of measurement, 9
Universal substitution formu-
las, 56

Vertices of a regular N-gon, 13

Winding the real axis on the
trigonometric circle, 11
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