Akash Sharma

Contact

akashsharma@cmu.edu

(last updated May 2025)

https://akashsharma02.github.io

EDUCATION

Carnegie Mellon University

Ph.D. candidate in Robotics, Advisor: Michael Kaess

2021 - 2026

Proposed Thesis: Self-supervised perception for tactile dexterity

Thesis Committee: Michael Kaess (CMU)
Shubham Tulsiani (CMU)

Guanya Shi (CMU)

Mustafa Mukadam (Amazon)

Jitendra Malik (UC Berkeley, Meta)

GPA: 4.11/4.33

M.S. in Robotics, Advisor: Michael Kaess

2019 - 2021

Thesis: Incorporating semantic structure in SLAM

Sri Jayachamarajendra College of Engineering

B.E. in Electronics and Communication

2013 - 2017

GPA: 9.61/10.00

RESEARCH EXPERIENCE

FAIR at Meta, Pittsburgh, PA

Visiting Researcher

2023 - 2025

Perception for dexterous manipulation: Working on self-supervised (SSL) representation learning for tactile sensors. Currently working on generative modeling of dexterous manipulation tasks using vision and touch modalities. Published at CoRL 2024 and CoRL 2025.

The Robotics Institute, CMU, Pittsburgh, PA

Graduate Researcher Assistant

2019 - 2025

Semantic SLAM with Object Landmarks: Worked on a SLAM system that reconstructs an environment as a collection of objects. The system fuses sensor data from RGBD cameras, object detection and segmentation networks in a non-linear optimization framework to estimate object shape and color, 6DoF pose and camera poses. Published at ICRA 2021

PUBLICATIONS

[In submission] Jay Karhade, N. V. Keetha, T. Gupta, Y. Zhang, **Akash Sharma**, Sebastian Scherer, Deva Ramanan. "Any4D: A Unified Model for 4D Scene Reconstruction with Flexible Conditioning on Scene and Camera Priors."

Carolina Higuera*, **Akash Sharma***, T. Fan*, C. K. Bodduluri, B. Boots, M. Kaess, M. Lambeta, T. Wu, Z. Liu, F. R. Hogan[†], M. Mukadam[†]. "Tactile Beyond Pixels: Multisensory Touch Representations for Robot Manipulation." *9th Annual Conference on Robot Learning (CoRL)*, 2025 [**Oral:** ~6% acceptance rate] (* equal contribution)

Akash Sharma, C. Higuera, C. K. Bodduluri, Z. Liu, T. Fan, T. Hellebrekers, M. Lambeta, B. Boots, M. Kaess, T. Wu, F. R. Hogan, M. Mukadam. "Self-supervised perception for tactile skin covered dexterous hands" 9th Annual Conference on Robot Learning (CoRL), 2025

Zhao-Heng Yin, C. Wang, L. Pineda, F. Hogan, C. K. Bodduluri, **Akash Sharma**, P. Lancaster, I. Prasad, M. Kalakrishnan, J. Malik, M. Lambeta, T. Wu, P. Abbeel, M. Mukadam. "DexterityGen: Foundation Controller for Unprecedented Dexterity" *Robotics: Science and Systems (RSS)*, 2025 | pdf

Carolina Higuera*, **Akash Sharma***, C. K. Bodduluri, T. Fan, M. Kalakrishnan, M. Kaess, B. Boots, M. Lambeta, T. Wu, M. Mukadam. "Sparsh: Self-supervised touch representations for vision-based tactile sensing." 8th Annual Conference on Robot Learning (CoRL), 2024 | pdf | code (* equal contribution)

Ming-Fang Chang, **Akash Sharma**, Michael Kaess, Simon Lucey. "Neural Radiance Fields with LiDAR Maps" *IEEE/CVF International Conference on Computer Vision (ICCV)*, 2023 | pdf

Ruoyang Xu, Wei Dong, **Akash Sharma**, Michael Kaess. "Learned Depth Estimation of 3D Image Radar for Indoor Mapping" *IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS) 2022* | pdf

Akash Sharma, Wei Dong, Michael Kaess. "Compositional Scalable Object SLAM" *IEEE Intl. Conf. on Robotics and Automation (ICRA) 2021* | pdf | code

Professional Experience

Reality Labs Research, Meta, Redmond, WA

Research Scientist Intern, Surreal Vision team

Summer 2022

Representation Learning for robust odometry: Proposed an end-to-end transformer that learns a 3D representation from a stream of multi-modal data (vision and IMU) to predict odometry. Predicted odometry was auto-regressively composed to estimate the trajectory of (% Project Aria) AR glasses.

Fyusion Inc., San Francisco, CA

Research Intern

Summer 2021

Free viewpoint view synthesis for car interiors: Developed a neural radiance field representation-based novel view synthesis method tuned for free viewpoint synthesis specific for 360° outward facing cameras. I experimented with multiple different methods in both image-based rendering as well as physically based rendering.

OpenCV (Google Summer of Code), Virtual / Pittsburgh, PA

Student Developer

Summer 2020

3D Spatial Hashing for Large scale dense reconstruction: Implemented and extended Kinect Fusion using spatial hashing and submap based mapping for reconstruction of large scale environments. (% blog)

Infinera, Bangalore, India

Software Engineer

2017 - 2019

Fall 2021

2024

Improved the optical device infrastructure: Developed a configurable system infrastructure software for optical amplifier devices to monitor faults and performance. Enabled fast optical traffic startup: Bypassed an auto-discovery mechanism in the optical amplifier hardware for improved laser power control and faster optical power startup. Mentored incoming undergraduate students in the optical line system team.

Press	Coverage

Advancing embodied AI through progress in touch perception, dexterity, and human-robot interaction

AI at Meta, blog %	2024
TechRadar %	2024
VentureBeat %	2024
Business Today %	2024
Interesting Engineering %	2024
Maginative %	2024
The Decoder %	2024
MarkTechPost %	2024

Teaching

Teaching Assistant: Probabilistic Graphical Models (Prof. Andrej Risteski) Fall 2022

Teaching Assistant: Geometry-based methods for Computer Vision (Prof. Michael Kaess)

, and the same of	
Teaching Assistant: Robot Localization and Mapping (Prof. Michael Kaess)	Fall 2020
"Guest lecture on algorithms for dense SLAM"	
16833 - Robot Localization and Mapping, CMU	2022
16833 - Robot Localization and Mapping, CMU	2020

Talks

"Toward multimodal tactile perception for dexterous hands".

Boston Dynamics, Research (Atlas)	2025
Foam Robotics lab, CMU (invited talk)	2025
"Self-supervised perception for tactile dexterity".	
Neuroagent lab, CMU (invited talk)	2025

Neuroagent lab, CMU (invited talk)
"Sparsh: SSL touch representations for tactile sensina"

Sparsh. SSB touch representations for tactife sensing.	
Franka Robotics, GmbH (invited talk)	2024
Conference, FAIR at Meta	2024
FAIR Embodied AI seminar	2024

"Self-supervised"	learning	in	Vision".	GUM	Reading	Group,	Meta.	
				_			_	

"ViTs for mean-teacher distillation with no labels". Misc-Reading Group at CMU.	2022
"Learning a multimodal state representation for odometry estimation". Surreal team RL-R, Meta.	2022

Mentorship

Angela Chen, RI (PhD) Peer Mentor Program	2022
Mrinal Verghese, RI (MSR) Peer Mentor Program	2020
Mary Hatfalvi, RI (MSR) Mentoring Program	2020

SERVICE	Thesis committee: Vivek Roy (Now @ Apple)	2022
	Admissions committee: MS Robotics	2021 - 2022
	Conference reviewer: CoRL, ICCV, CVPR, T-RO	2025
	Conference reviewer: CVPR, NeurIPS, RA-L	2024
	Conference reviewer: IROS, ICRA	2022
	Conference reviewer: ICRA	2021