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Vehicle tracking, a core application to smart city video analytics, is becoming more widely deployed than ever before thanks to
the increasing number of traffic cameras and recent advances in computer vision and machine learning. Due to the constraints
of bandwidth, latency, and privacy concerns, tracking tasks are more preferable to run on edge devices sitting close to the
cameras. However, edge devices are provisioned with a fixed amount of computing budget, making them incompetent to
adapt to time-varying and imbalanced tracking workloads caused by traffic dynamies. In coping with this challenge, we
propose WatchDog, a real-time vehicle tracking system that fully utilizes edge nodes across the road network. WatchDog
leverages computer vision tasks with different resource-accuracy trade-offs, and decomposes and schedules tracking tasks
judiciously across edge devices based on the current workload to maximize the number of tasks while ensuring a provable
response time-bound at each edge device. Extensive evaluations have been conducted using real-world city-wide vehicle
trajectory datasets, achieving exceptional tracking performance with a real-time guarantee.

CCS Concepts: « Computer systems organization —» Embedded systems; Real-time system architecture.
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1 INTRODUCTION

Smart city traffic safety initiatives are springing up across the world as more cities embrace big data and video
analytics. A straightforward solution of smart city data analytics is to aggregate data and conduct centralized
processing in the cloud. This paradigm, however, has several downsides. First, video data uploading requires a
substantial amount of network bandwidth, especially under the increasing number of high-resolution cameras.
Second, cloud-based processing adds up latency, which could be prohibitively high for smart city applications
such as amber alerts or traffic light control. Third, privacy becomes more of an issue when public information is
uploaded and stored in the cloud.
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(a) Morning rush hour (b) Evening rush hour

Fig. 1. Snapshots of traffics during different rush hours in the city of Shenzhen, China. Red dots denote vehicles traveling in
this area.

In coping with such challenges, an increasing number of smart edge devices, such as Azure Stack Edge [1],

Argonne Waggle, and Intel Fog Reference, are being developed and deployed in cities around the world. Such
smart edge devices enable fast local computation and have benefited security surveillance systems such as
induction coil system [32], traffic surveillance system [6] and the suspicious object monitoring system [23]. The
shift in computing paradigm from the cloud to the edge has also necessitated the adoption of new programming
models, algorithms, and analytics methods to fully exploit the computing capacity of multi-core chips deployed
on the edge. Edge node manufacturers and application developers are starting to discover ways to multiplex tasks
and share resources across nodes in an edge cluster [10, 21, 25]. These advanced edge computing approaches
provide new possibilities for designing real-time video analytics systems, which leverage machine learning for
tasks like object detection and re-identification. In this paper, we focus on multi-camera vehicle tracking, a core
application of the smart city video analytics system, and study how to leverage geo-distributed edge nodes to
build a reliable real-time tracking system.
Motivation: Edge nodes are provisioned with a fixed compute budget. For instance, Azure Stack Edge [1] node
has 2 X 10 core CPUs and 128 GB memory. Even though they are beefy enough to handle computational demands
for real-time data processing in most cases, in some corner cases, when the number of vehicles appearing in the
monitored areas is too large, the corresponding data processing may not be able to complete in time, leading to a
fatal failure for the whole system. Fig. 1 shows the snapshots of traffic conditions during different rush hours
in Shenzhen. Suppose that a real-time tracking system is implemented on the edge node at each intersection
to track hit-and-run vehicles (Assuming that the hit-and-run accident is detected and reported instantly in
smart cities and the tracking system can obtain the location of the accident and the information of the Vol
immediately). As seen in Fig. 1(a), at most of the intersections, only one or two vehicles appear in the monitored
areas and hence the tracking system can run complex vision algorithms on each of the vehicles and identify
Vehicle-of-Interest (VoI) easily. However, during morning rush hours, the number of vehicles at intersection A
grows substantially. Thus, identifying Vol from all vehicles traveling through intersection A in real-time requires
far more computing resources, which may exceed the computing capacity of the edge node. If the VoI cannot be
identified at intersection A, the tracking system will lose the Vol. Similar patterns are observed at intersection
B, where the corresponding edge node falls short during evening rush hours. On the other hand, computing
budget provision on all edge nodes based on the worst-case scenario is also a non-starter due to the high upfront
investment and low resource utilization. In light of the tension between traffic variations and the fixed amount
of edge computing resources, this paper aims to answer a simple question: can we collaboratively utilize the
existing geo-distributed edge nodes deployed in the city to provide a reliable tracking system without “tracking
loss” at crowded intersections?
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Fig. 2. A road network and surveillance video at an intersection.

Inspired by the idea of collaborative tracking (i.e., the tacking task will be decomposed and scheduled judiciously
across the distributed edge nodes based on real-time traffic conditions), in this paper, we propose the design of an
intelligent real-time tracking system in smart cities, named WatchDog, to track vehicles across intersections.
There are two major components in WatchDog: a real-time admission control policy and a novel dynamic Vehicle
- ReID framework. WatchDog models video analytics executed on an edge node to ReID the Vol as a real-time
system: each real-time task corresponds to a vehicle re-identification module performed on a detected vehicle.
The execution time of a real-time task depends on the vehicle re-identification module chosen from the dynamic
Vehicle - RelD framework, and whether or not each real-time task can complete in real-time is verified by the
admission control policy. The longer the tasks execute, the less chance the real-time task system has to pass
the admission control. By combining the real-time admission control policy with the dynamic Vehicle - ReID
framework together, WatchDog builds a reliable tracking system without “tracking loss” at crowded intersections.
Example: Suppose a Mercedes silver GLB SUV (which is the VoI) is involved in a hit-and-run accident. When
it enters a crowded intersection, the computation capacity on the edge node is not enough to perform the
most fine-grained re-identification method to check each vehicle and identify Vol. Then the Vehicle - ReID
module is downgraded to a coarse but more lightweight method to identify the vehicles’ colors and models,
which is determined by the admission control policy. The tracking system detects all silver SUVs at the crowded
intersection, which are traveling to different neighboring intersections. The tracking system informs the edge
nodes to RelD the VoI at corresponding intersections. When the silver SUVs enter the intersections where the
traffic is light, the VoI will be identified through advanced matching methods and the other silver SUVs will be
eliminated. Following this method, the “tracking loss” issue is solved. Our specific contributions are listed as
follows:

e We propose a simple yet effective real-time system for tracking hit-and-run vehicles in smart cities, which
for the first time enables us to collaboratively utilize the distributed edge resources in the road network to
enhance the performance of the whole tracking system.

o To the best of our knowledge, this is the first in-depth work to investigate the combined effect of video
processing latency and real-time traffic conditions, which are not discussed in the existing solutions. A
real-time admission control policy and a novel dynamic Vehicle - ReID framework are proposed to resolve
the “tracking loss” issue.

e We have extensively evaluated WatchDog using our accessible real-world vehicle system-wide datasets.
Experimental results show that WatchDog can achieve exceptional tracking performance in real-time
without “tracking loss”.
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2 RELATED WORK

Not surprisingly, a large number of works have been conducted to understand intelligent urban edge computing
with public security surveillance systems, including intelligent transportation system realization [38, 53, 59],
traffic flow analytics [3, 34, 48] and driving routes optimization [17, 32, 46]. However, in our work, we consider
building a real-time vehicle tracking system, which fully utilizes edge nodes across the road network. Since
the topic is novel, similar studies on real-time vehicle tracking with video surveillance cameras are few, but
include [7, 36, 54].

Especially, [54] designs and implements a self-adapting hit-and-run vehicle tracking algorithm with distributed
sparse video surveillance cameras and mobile taxicabs, leveraging time-varying characteristics of road traffic
flow patterns. By mining the massive trajectory dataset of taxicabs and a video dataset of surveillance cameras,
the travel time-cost of a road segment during a specific time period is modeled using a Logarithmic Normal
Distribution, which calculates the time-cost of an urban trip during a specific time period with a Log Skew Normal
Distribution approximately. This work trains the model offline and does not consider resource management
while tracking a Vol in real-time. With the emergence of vehicle-mounted GPS navigation systems and vehicular
networks, a collection of series of GPS coordinates became available for vehicle tracking. Based on the GPS records,
[36] proposes a novel global map-matching algorithm utilizing the spatial geometric/topological structures of
the road network as well as the temporal/speed constraints of the trajectories. The basic assumption that true
paths of vehicles tend to be direct rather than roundabout is used to enhance the accuracy of computing actual
vehicle trajectories. But for Vols, if they choose abnormal paths to avoid the tracking system, it will increase the
difficulty of trajectory recovery. [7] develops an efficient machine learning-based method for vehicle detection
and motion analysis in the low-altitude airborne platform. This work has not considered cooperative computing
with multiple video cameras, since the deployments of fixed video cameras are still distributed, sparse and cannot
support the seamless monitoring of the Vol in nature.

Specific to the problem investigated in this paper, existing studies on recovering detailed trajectories of vehicles
with GPS coordinates are designed for normal vehicles, which cannot be used to track Vols. Moreover, in practice,
we cannot even obtain any GPS information of VoIs and videos from the taxicabs, and the information from the
public security surveillance system and the computing capacity on the edge nodes are the only resources we can
leverage.

3 BASIC SETUP AND SYSTEM MODEL
3.1 Basic Setup

Given the road network in the urban area of a smart city, this paper aims to find a method to track the VoI (e.g.,
hit-and-run vehicles) by combining the information from fixed video surveillance cameras and the road network,
thereby helping the tracking system track the Vol in real-time using minimum edge resources. The basic settings
of this paper are outlined as follows:

e Road Network: Fig. 2 shows a road network in the urban area of Shenzhen with intersections and road
segments. Surveillance cameras are deployed at the intersections to capture real-time traffic information.

e Edge nodes: Consistent with existing deployments, our focus is on “edge” computation of video analytics.
In our setup, one edge node is deployed at each intersection, which consists of a surveillance camera and a
computing platform. A video captured by the camera is streamed to this edge box and the pipeline modules
including object detection and re-identification algorithms are run on this edge node.

o Cloud: Each edge node only captures and processes local information at the intersections. In order to get a
global view of the entire monitored area, the cloud collects the processing results from all the edge nodes.
Hence the tracking system includes both edge nodes and the cloud.
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Fig. 3. An example of vehicle real-time tracking

3.2 System Model

In this subsection, we define the road network and vehicle trajectory used in our system model.

Definition 1. (Road Network) The road network consists of intersections and road segments between inter-
sections, which can be modeled as a graph G(V, E) where the vertex set V denotes all intersections and the
edge set E corresponds to all road segments. Intersection I; € V and e; ; € E if there exists a road segment from
intersection [; to intersection I;.

Definition 2. (Vehicle Trajectory) For an arbitrary vehicle, which travels in the road network, its trajectory in
one specific day d can be formulated by T = {I,(t1,t2), Lo+1(t3,t4)s - - - - - . ,Ie (tx, tx+1)}, which means this vehicle
is firstly detected at intersection I,, then ends at intersection I,. For one element I, (tx, t11) in this trajectory, #
is the time instant that the vehicle enters intersection I, and time instant t;; corresponds to the time it leaves
this intersection.

Definition 3. (The Tracking System) The tracking system includes both the edge nodes and the cloud. The
object recognition algorithms are implemented on the edge nodes. At the very beginning, when a hit-and-run
accident is reported to the tracking system, the first edge node is activated instantly according to the location of
the accident. During the active period of the edge node, it identifies the VoI and the next intersection on the VoI’s
trajectory based on real-time video analytics. The analysis results are uploaded to the cloud to activate the edge
node deployed at the next intersection and stop the previous one. From then on, the next activated edge node
and its active period depend on the analysis results performed at the previous intersection and the historical
traffic information (which will be discussed in section 7). The communication between edge nodes is enabled
through the cloud.

Intuitively, if the tracking system knows when the VoI will arrive at which intersections in advance, the
corresponding edge nodes can be activated during specific periods to track the Vol in real-time. However, in
practice, the implementation of real-time tracking is very challenging.

3.3 Tracking Loss Issue

Fig. 3 shows an example of a road network consisting of 16 intersections. Suppose a hit-and-run vehicle has
a trajectory of T = {Il(tl, tz),[g(tg,, t4),16(t5, t6),17(t7, tg),Ill(t9, tlo), Ilz(tll, tlz)} in the monitored area. Then,
the edge nodes deployed at I, I3, Iy, I, I1, I12 are involved in tracking the Vol. If we ignore the time periods
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taken by the vehicle at the intersections, the trajectory T can be considered as a path in the road network, i.e.,
I, » I - Iy » I; - I;; — I;. In this paper, the tracking system aims to track the Vol in real-time: if the Vol
enters I; at time instant , then

e the edge node at I; must be activated before t,. Otherwise, the VoI may not be captured by the camera and
get lost at I;.

e the Vol and the next intersection I; on the VoI’s trajectory must be identified before the time instant ¢,
when the Vol enters I;. Otherwise, the tracking system cannot activate the edge node at I; before .

Example 1. For the example in Fig. 3, a Mercedes silver GLB SUV (the Vol) is reported to be involved in a
hit-and-run accident at intersection I; at time instant ¢; and it arrives at I, at t3. The edge node at [ is activated
at t;: the camera captures videos from I; and the videos are processed frame-by-frame to identify the VoI and the
next intersection on the VoI’s trajectory. The processing results must be obtained and sent to the cloud before t3.
Then, the tracking system can activate the edge node at I, before t3; otherwise, the Vol may already depart from
I, before the edge node starts tracking.

Note that the next intersection on the VoI’s trajectory can be easily determined by the VoI’s position and the
road network based on a series of video frame processing.

If the tracking system tracks the Vol in real-time successfully, the Vol will be located at either an intersection
or a road segment between two intersections at any specific time instant when it travels in the monitored area.
The tracking problem becomes rather trivial to resolve if only a few vehicles travel in the smart city. It means that
whenever the Vol appears at an intersection, it will be recognized by the object identification algorithms instantly
due to sufficient computing resources on the edge node. However, the practical scenario is always not the case.

Example 2. In Fig. 3, the Vol arrives at intersection I, at time instant #; and travels to I;. Assume that I; is a
crowded intersection. In this case, it takes a very long time to identify the Vol from dozens of cars traveling
through the intersection. The edge node at I may fail to complete the video analytics when the Vol arrives at I,
at t5. Then, the tracking system does not know which edge nodes should be activated afterward to carry on the
tracking task and the Vol is lost.

Identified issue. The computing capacity of an edge node depends on the computing platform used to implement
it, which is determined by the hardware manufacturer. For example, an Azure Data Box Edge [1] node is equipped
with 2 X 10 core CPUs for data processing. Thus, at the crowded intersections, the tracking system cannot identify
the Vol in real-time due to the limited computing capacity of the edge node and the “tracking loss” occurs.
Key idea of our proposed method. To resolve this “tracking loss” issue, we seek to develop a smart tracking
method to make up for the limited computing capacity of a single edge node. At a crowded intersection, since the
full-fledged object identification algorithm needs an unaffordable amount of time to precisely find the Vol, the
tracking system can use a “coarse” object identification algorithm to save time. Multiple suspected Vols may be
identified by the “coarse” algorithm and travel to different intersections. The tracking system can track all the
suspected VoIs simultaneously by utilizing the edge nodes at different intersections and identifying the Vol at the
uncrowded intersections. Intuitively, this idea is feasible, because we find that almost 95% of the intersections in
a smart city are uncrowded intersections (See the statistics in Sec. 9.1.2).

In order to implement the real-time tracking system, first we propose a dynamic Vehicle Re-Identification
(Re-ID) framework to realize the Re-ID algorithm at different granularity levels. Then we introduce a real-time
admission control module on each edge node to decide which Re-ID algorithm will be performed to identify the
VoI according to the number of vehicles detected at the corresponding intersection. Finally, we will discuss how
to obtain the active period for each edge node involved in a hit-and-run tracking event and how the proposed
tracking system, named WatchDog, works to track the Vol in real-time.
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4 VISION-BASED VEHICLE TRACKING

Tracking in WatchDog relies on computer vision-based machine learning algorithms. Query input is a target
vehicle (e.g., from an accident report) with information such as make, model, color, and plate number. Once
WatchDog receives a tracking query, the corresponding edge node starts running a video analytics pipeline to
analyze traffic videos in real-time. At a high level, the processing pipeline of each frame consists of two modules:
vehicle detection and vehicle re-identification.

4.1 Vehicle Detection

For each video frame, vehicle detection targets to find all vehicles and assign a class to each one of them.
Unlike classification networks, traditional vehicle detection networks [15, 27, 31, 47] have three components: a
CNN-based feature extractor, Region Proposal Network (RPN) and a classifier. They usually use a pre-trained
classification network (e.g., ResNet) as a feature extractor to a generate feature map of an input image. After
that, they utilize RPN [15] to generate all candidate bounding boxes of vehicles, and finally assign labels for
each bounding box. As those detectors extract all vehicles first and classify each bounding box later, they are
called two-stage vehicle detectors. Although two-stage vehicle detectors achieve superior performance on many
public benchmarks [2, 4, 39], the speed suffers. To trade-off performance and latency, researchers seek to design
efficient vehicle detectors [29, 30, 51, 55] which use one CNN network to solve localization and classification
simultaneously. Albeit marginal performance drop, one-stage detectors largely reduce latency, and hence have
been widely implemented on today’s edge nodes for real-time tracking systems.

4.2 Vehicle Re-identification

Vehicle re-identification (V-RelD) determines whether two bounding boxes belong to the same vehicle. The
most popular deep learning approach for V-ReID is to build a CNN-based feature extractor and differentiate
bounding boxes based on the similarity (e.g., cosine distance) between discriminative feature vectors. Unlike
person re-identification (P-ReID), V-RelD [22, 24, 43, 50, 57] often uses many CNN-based networks to extract
different features (e.g., global features, region features, key point features) and concatenate them for a reliable
comparison. For example, researchers often set features of a vehicle’s shape as a general feature and window
screen as a region feature. As a result, V-RelD models are often very large and the end-to-end compute process is
prohibitively costly, making them not amenable to real-time tasks. For example, V-ReID each one of a large set of
vehicle bounding boxes during the rush hours could end up causing “tracking loss” issue. Thus, a V-ReID method
that can dynamically trade-off accuracy with inference time in real-time is desired. To this end, in what follows
we propose a dynamic V-RelID framework called D-V-RelD.

4.3 D-V-RelD Pipeline

D-V-RelD adopts the idea of divisive clustering where V-ReID on each frame follows a multi-layer framework
where upper layers correspond to coarse but efficient classifications and lower layers are in charge of powerful
but complex detection. While we need to slightly modify the existing learning algorithm for the purpose of
real-time tracking, we do not intend to propose any new learning algorithm in this paper but focus on building a
flexible V-RelD pipeline. The cascaded pipeline we propose includes: color matching, model and make matching,
and the full-fledged deep feature-based re-identification.

4.3.1  Color Matching. As a basic filter, color matching measures similarity between bounding boxes by color
distribution in spaces such as RGB or HSI [16]. Given RGB or HSI features, we use K-Nearest Neighbors (KNN)
[12] to decide the similarity of two images. A car is classified by a majority vote of its neighbors, with the car
being assigned to the class which is most common amongst its k nearest neighbors. The complexity of the
inference process in this step is linear to the input frame size, and it can be further reduced by frame down-sizing,
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Less granular More granular

Color Model/Make Deep Feature

Input Bounding box |—> matching —> matching Based Matching

Fig. 4. Layered modules.

which provides a trade-off between matching quality and inference time where the inference time can be made
arbitrarily small. As the most coarse V-RelD step, a matching confirm result does not provide much confidence
that the target vehicle is detected because different vehicles may have similar color, but a matching reject serves
as strong evidence for the fact that the target vehicle is not in the current frame.

4.3.2  Model and Make Matching. Our second layer aims to detect if the vehicle in the bounding box has the same
model and make as the target vehicle. Model and make of a vehicle are more distinctive, and such information is
commonly used for vehicle identification in security systems such as amber alerts. Traditional matching algorithms
use Scale Invariant Feature Transform (SIFT) [37], SURF [20] and HOG [40] feature extraction techniques to
extract models’ features. Based on these features, Support Vector Machine [41, 44] and Random Forest [52]
can matching two cars accurately. But these methods assume that the input image has the whole shape of the
vehicle. In practical environments, many cars are occluded by other objects. To resolve this issue, many works
[13, 28] seek to use deep learning approaches to generate discriminative features because of the ability to extract
features automatically. Unlike general image classification or object detection, model and make matching on
vehicle is done by training a light convolutional neural network (ResNet50, MobileNet, ShuffleNet, EfficientNet
[19, 45, 49, 60]). For instance, we could adopt a subset of ResNet for such a purpose. The goal of model and make
matching in our framework is still to provide a fairly accurate V-RelD method with moderate inference overhead.

4.3.3  Full-fledged V-RelD. Deep feature-based V-RelD algorithm serves as the final layer in D-V-RelD. In light of
ensemble learning [9], start-of-the-art V-ReID methods [5, 14, 42, 50, 61] are designed with a set of convolutional
neural networks, and these neural networks are responsible for different feature extractions. To further improve
RelD accuracy, researchers assign unique lose functions [57] to different feature extractors and train them
independently. After pre-training, a unified loss function is utilized to train all feature extractors together. This
step is also called multi-task learning [14, 50, 56, 58]. In particular, these methods always classify features as
global, region and key-point features. The global feature is used to describe the overall appearance of the vehicle,
which is the linear transformation of the pooling feature of the last convolution module in global feature extractor.
Due to the limited discriminative ability of global features, many researchers seek to use multiple granularities
network [18] to extract features from the multiple semantic parts of vehicles. Inspired by [61], scientists use
another CNN network to predict several key points sit on key parts of the vehicle (e.g., the vehicle license plate),
and then extract features around those key parts with the assistance of a heat-map generated from key point
network. In our design, we combine features from color matching and model/make matching, and set it as the
global feature. The reason for doing so is to provide early exit and reuse computation from previous matchings.

4.4 D-V-RelD framework.

D-V-RelD framework is built upon three V-ReID algorithms with different granularity levels, which is illustrated
in Fig. 4. As discussed above, we set K-Nearest Neighbors classifier [12] as our color filter and the architecture
of model matching to MobileNetV2 [45]. In terms of the full-blown V-ReID, we adopt the best method [57] in
Al City Challenge 2019. They utilized three different convolution neural networks to extract features from the
same vehicle and concatenate them as the final feature. As discussed in Section 4.3.3, we combine features from
color matching and model/make matching as the global feature. To see the computation cost of region and
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Table 1. Cost of deep feature extractors (global, region and key-point features).

’ Global \ Region \ Key-point ‘

Flops 341.5M | 7868.4M 11392.M
Inference Time | 41.1ms | 96.7ms 172.3ms
CPU Usage 2.4% 9.8% 15.0%

Table 2. Cost of different modules (color matching, model matching and full-fledged V-RelD).

\ Color \ Model \ Full-fledged V-RelID

Flops / 341.5M 19602.3M
Inference Time | 0.5ms | 40.6ms 310.1ms
CPU Usage 0.3% 2.2% 27.3%

key-point feature extractors, we set their architectures to ResNet101 [19] and SE-ResNet152 [26], respectively.
After re-scaling each bounding box to 224 * 224, we report floating point operations per second (flops), inference
time and cpu usage on one bounding box of different feature extractors from deep feature based matching in
Table 1 and different modules in Table 2. The test environment is AMD Ryzen 7 3700x (CPU) with 4G memory.
Because K-Nearest Neighbors classifier is not a deep neural network, we don’t record the flops for it.

According to the real-time requirements of the tracking system, it could select the V-ReID modules with a
proper complexity to identify the Vol at specific intersections. Intuitively, in order to guarantee that the V-ReID
module can complete in real-time, a less granular module will be triggered if a large number of vehicles appear
at a crowded intersection. On the contrary, if the intersection is uncrowded, a more granular module will be
performed to identify Vol. Note that under our proposed D-V-RelID framework, if a more granular module is
selected, all the less granular modules are executed implicitly. It is evident that the granularity selection depends
on the number of vehicles captured on each video frame, the inference time of different V-ReID modules and the
computing capacity of the edge node. In next section, we introduce a real-time admission control method, which
is implemented on each edge node to select proper V-ReID modules for the tracking system in real-time.

5 REAL-TIME ADMISSION CONTROL

Before discussing the details of our design, we introduce some preliminary results on real-time admission control,
which determines the granularity level of the V-ReID modules selected to identify the Vol.

5.1 Real-Time Task Scheduling Framework

In this section, we will introduce a classic soft real-time schedulability test, which can be used to calculate
the completion time bounds for real-time tasks scheduled in the real-time system. Based on the completion
time-bound of each real-time task, we can perform admission control on each edge node.

5.1.1 Real-time Task Model. At an arbitrary intersection I, the surveillance camera captures frames from the
intersection periodically and the period, denoted by p, depends on the camera’s frequency. For example, if the
camera captures 24 frames every second, we would say the video is 24 fps and its period is 2—143. Usually, one or
more vehicles may be detected on each frame. The V-RelD machine learning algorithm is performed on all the
detected vehicles to identify the VoI and each identification process corresponds to a real-time machine learning
task. Let e; denote the processing time of task 7; performed on vehicle i. Tabel 2 gives the processing time for
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different V-ReID modules. Let €€, e™, e? denote the processing time for color matching module, model/make
a matching module, and Deep Feature-Based Matching module, respectively. Under our proposed D-V-RelD
pipeline framework, if a more granular module is selected, all the less granular modules has already been selected
implicitly. Thus, e; has three different options under the D-V-RelD framework: e; = e, e? = ¢} + e, e’ = e + ¢4,
As we discussed in Sec. 7.1, in order to avoid “tracking loss”, the Vol must be identified before it arrives at the
next intersection (it is illustrated by Example 2).

Definition 4. Let f, , denote the traveling time of the Vol between two neighbouring intersections (i.e., I
and I). I, may have multiple neighbouring intersections and we define the shortest ., ,, denoted by Dy, as the
relative deadline of the real-time tasks from the edge node deployed at .

Based on the above discussion, we use the periodic hard real-time task model to describe the execution
behaviors of real-time workloads in the tracking system on an edge node deployed at I.. We consider the problem
of scheduling n periodic real-time tasks on M processors. That means n vehicles are detected from each image and
the edge node has M processors (note that we use “processor” to denote the minimum schedulable processing unit).
A task 7; is characterized by two parameters - a processing requirement e; and a period p with the interpretation
that the task generates a job (i.e., the camera captures a frame) in every p time units and each such job 7; ; has a
processing requirement of e; execution units which should be met by a deadline d; ;. Let r; ; denote the generation
time of 7; ;, then d; ; = r; j + Dy. We further let u; denote the utilization of 7;, where u; = %, and the utilization
of the task system 7 is defined as Usym = )., u;. Successive jobs of the same task are required to execute in
sequence. We require u; < 1, and Ugy,, < M; otherwise, deadlines will be missed.

5.1.2  Real-time Scheduling Algorithm. If the number of tasks is no greater than the number of processors, each
identification task can be executed on a dedicated processor. In this case, the computing capacity on the edge
node is sufficient to execute the real-time tasks and the “tracking loss” issue will not happen. However, when
the traffic is heavy, the number of vehicles (corresponding to the real-time tasks) detected at the intersection
may be much larger than the number of processors on the edge node. The real-time tasks will compete for the
limited computing resources on the edge node and have inferences with each other, which may give rise to a huge
delay for frame processing and lead to deadline miss. In this case, a scheduling algorithm is needed to allocate
processor time to tasks, i.e., determines the execution-time intervals and processors for each job while taking any
restrictions, such as on concurrency, into account. In real-time systems, processor-allocation strategies are driven
by the need to meet timing constraints and in our real-time tracking system, we apply the First-in First-Out
(FIFO) policy to schedule the real-time tasks: processors execute jobs in the exact order of job arrival.

5.1.3 Completion Time Analysis. A given set of real-time tasks is said to be schedulable on a given system of
processors if the tasks can be scheduled on these processors in such a manner that all jobs of all the tasks always
complete by their deadlines. Physically, if all the tasks can complete by their deadlines, the “tracking loss” will not
happen. The schedulability can be verified by using standard schedulability analysis (Theorem 1) for calculating
the completion times of real-time tasks.

THEOREM 1. Considering that a real-time task system t of n periodic tasks are scheduled on M processors under
FIFO scheduling policy, the completion time bound for a task t; is
2t €E(r,M-1) €k — €i

Ri:p+e,~+

(1)

M= Y cu(e.m-1) Uj
where E(t, M — 1) denotes the set of at most (M-1) tasks with the highest execution costs from t and U(r, M — 1)
denotes the set of at most (M-1) tasks of highest utilization from the task set T [33] .

The proof of Theorem 1 is given in [33] and the same result can be derived from [11], because the periodic
task model is a special case of the stochastic task model discussed in [11]. In light of the real-time task model and
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the completion time analysis, a formal definition of “tracking loss” is that if the completion time bounds of the
real-time tracking tasks exceed their deadlines, the Vol is lost at some intersections.

5.1.4 Real-time Admission Control. Intuitively, if we can guarantee that the completion time bound R; for each
task 7; can be no greater than its deadline Dy, the “tracking loss” cannot happen. According to Theorem 1,
since p and M are fixed values when the hardware of the edge node is given, the completion time bound R; of
7; only depends on the execution times of the machine learning tasks and the number of vehicles detected at
the intersection. Therefore, we introduce the following programming to select proper V-ReID modules for the
tracking system in real-time.

n
maximize E e;
i=1

T1.€E(T - —¢€i 2
subject to Ri=p+ei+—2"E('M”ek€ @

< Dy,

o M=Yrjcu(r,m-1) U —
ei € le], e/}, j=1,2

where e; denotes the execution time of task i in the j*" iteration. According to Tabel 2, the processing time of
color matching module is 0.5 ms. We assume that the edge node has enough computing capacity to perform
color matching module on all detected vehicles even at the most crowded intersection. Thus, in the first iteration,
our objective is to maximize the number of tasks which will perform the model/make matching module. If all
the tasks can meet the deadline, then in the second iteration, we aim to maximize the number of tasks which
will perform the deep feature matching module. R; is the response time of task i, which is defined in Theorem 1,
and D, is the relative deadline of every real-time task from I, which is defined by Def. 7. We require that each
task must complete by its deadline. Since we do not have preferences for the tasks which will perform in the jt*
iteration, the time complexity for this programming is O(n) to achieve the optimal solution.

6 ACTIVE PERIODS OF EDGE NODES

In order to track the Vol in real-time, the tracking system should be able to know when the Vol will arrive at
which intersections in advance, then the corresponding edge nodes can be activated before the VoI’s arrival time
and identify the Vol when it appears. In other words, the active period of an involved edge node should cover the
time interval when the Vol travels though the corresponding intersection.

If all the intersections are uncrowded, this problem is trivial. For the example in Fig. 3, when the hit-and-run
accident is reported, the edge node at intersection I is activated to perform the most granular machine learning
algorithm on all detected vehicles and the Vol is identified at time instant ¢;. Based on the real-time video analytics,
the tracking system finds that the VoI departs from I, and travels to I5 at time instant ¢,. Then, the tracking system
activates the edge node at 5 instantly and at the same time stops the edge node at I,. If the tracking system
repeats the same operation on all involved edge nodes, the active period for each edge node can be obtained in
real-time.

However, when the Vol enters a crowded intersection, the problem becomes challenging. Assume that inter-
section I3 is a crowded intersection in Fig. 3 and the Vol (a Mercedes silver GLB SUV) is traveling from I, to I5.
The admission control module selects the color matching module to track all the silver vehicles traveling through
I5 based on the number of vehicles detected in the video frames. Multiple silver vehicles may appear in I3, but the
tracking system cannot confirm that whether or not the VoI has arrived at I5. Because the traveling time on the
road segment between I, and I is different for different vehicles. Fig. 5 shows the traveling time measurement at
different locations. On a road segment, the traveling time of vehicles varies within a range from 30 seconds to
50 seconds (Fig. 5.b). Thus, at a crowded intersection, in order to guarantee that Vol is included in the tracked
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Fig. 5. traveling time measurement at different locations. The x-axis denotes the traveling time and y-axis denotes the
number of vehicles traveling through this location.

vehicles (in the example, Vol is one of the tracked silver vehicles), the active period for the edge node is calculated
based on historical traffic information.

Definition 5. Let t, denote the traveling time taken by the Vol at intersection I, then t. < t, < t%, where t}
is the lowest value among all the vehicles’ traveling time at I, and t¥ is the largest value. Both values can be
obtained from historical traffic information (For example, Fig. 5.a).

Definition 6. Suppose I, and I, are neighbouring intersections. Let ¢, , denote the traveling time taken by the
VoI at road segment ey, ,, then ti,y < tyy < by, where tiyy is the lowest value among all the vehicles’ traveling
time at ey, y and ty , is the largest value. Both values can be obtained from historical traffic information (For

example, Fig. 5.b).

Definition 7. Note that according to Definition 4 and Definition 6, I, may have multiple neighbour intersections
and we use the shortest tlx’y as the relative deadline D, of the real-time tasks from the edge node deployed at .

Based on Definition 5, Definition 6 and Definition 7, we can calculate the active period [t, t{] for an involved
edge node at intersection Iy.

¢ Case 1: If the previous intersection I, on the VoI’s trajectory is an uncrowded intersection, then the Vol
is identified at I,. Let t, denote its departure time from I,. Then, the earliest time instant when the Vol
can arrive at I is 7 =, + tll,’x. Correspondingly, ¢} = 1, + t; . is the latest time instant when the Vol can
arrive at . Thus, the latest time instant when the Vol departs from I is t;, + t¥, which is the time instant
when the last video frame captured from I,, may contain the Vol. Thus, the edge node needs D, time units

to process the last frame and the edge node ends up processing video frames at t{ = ¢, + t¥ + Dj.
¢ Case 2: If the previous intersection I, is a crowded intersection and we assume that the active period of the
edge node at I, is [t;, t;]. According to the definition of active period, the earliest time when the Vol enters

Ip is no earlier than t;, then the earliest time when the Vol enters Iy is no earlier than t3 = t; + th+ tjl,’ P
the latest time when the Vol departs from I, is no later than t; — Dy, then the latest time when the Vol
departs from I, is no later than t; — D, + £y + t,, ... Again, the edge node needs Dy time units to process
the last frame and the edge node ends up processing video frames at £ = t; — Dy + t + 15 . + Dy.

In light of the above discussion, the active period for the edge node at intersection I, is calculated based on

the active period of the previous edge node. Thus, we need to define the active period for the first edge node
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Fig. 6. The architecture of WatchDog implemented on the edge node.

at intersection I, where the hit-and-run accident happens. Let ¢, denote the time instant when the accident
is reported. Then, whether or not I, is a crowded intersection, the active period of the edge node at I, is
[t0,to + t¥ + D,]. Based on I,,’s active period, the active periods for all the involved edge nodes can be calculated
one-by-one at run time.

7 WATCHDOG
In this section, we put all the proposed techniques together to build the real-time tracking system - WatchDog.

7.1 System Description

Fig 6 illustrates the architecture of WatchDog implemented on each edge node, which consists of four major
components: (i) a live video stream generated by the surveillance camera; (ii) D-V-RelD framework; (iii) the
Real-time admission control module; (iv) the Real-time Vehicle ReID program. On each edge node, each frame
of the real-time video stream is firstly processed by a vehicle detection module to detect the vehicles traveling
through this intersection, which is introduced in Sec. 4.1. A real-time RelD task will be performed on each detected
vehicle to identify whether or not the Vol appears. Suppose the system detected n vehicles at this intersection,
then the real-time task set contains n tasks. According to the D-V-RelD framework introduced in Sec. 4.2, each
task has several optional execution times, which correspond to different sub-modules, which is introduced in
Sec. 4.3. The longer a real-time task executes, the better ReID performance the real-time task can get. In order
to guarantee that each real-time task can complete by its deadline, the real-time admission control module is
performed to select the best combination of execution times for real-time tasks to ReID the Vol, according to the
optimal solution for the programming, which is given by Eq. 2. Intuitively, it is a trade-off between the RelD
performance and the schedulability of the real-time task system. When the modules of ReID program are chosen
for each real-time task, the real-time V-RelD starts performing on each frame to track the Vol.

In light of WatchDog’s architecture on each edge node, the tracking behavior of WatchDog can be described as
follows:

(1) When a hit-and-run accident is reported at time instant ¢ from intersection I,, WatchDog activates the
first edge node deployed at I, to track the Vol and its active period is [tJ, t¢]. According to the number
of vehicles detected at I,,, the proper machine learning modules are selected. By performing the real-time
machine learning tasks on the detected vehicles, all the suspected vehicles and the next intersections on
these vehicles’ trajectories are identified. If I, is an uncrowded intersection, the VoI and the next intersection
on the VoI’s trajectory are identified. Then WatchDog activates all the edge nodes at the next intersections
according to their active periods. Again, if I, is an uncrowded intersection, then only one next edge node
will be activated.

(2) The edge node deployed at I is activated to track the Vol if the Vol or some suspected vehicles are identified
at its neighboring intersection I_; and traveling to I. The edge node’s active period is [t{, t{], which is
calculated based on the active period of the previous edge node. The calculation method is introduced
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Fig. 7. An illustration example for tracking an Vol.

in Sec. 6. Again, similar to the first edge node, the proper machine learning modules are selected and
performed to track all suspected vehicles traveling through this intersection during its active period.
(3) Once the Vol is identified at any uncrowded intersection, all the suspected tracking branches are terminated.

Step 2 and Step 3 are repeated iteratively to track the Vol in real-time.

Example 3. We use a simple example to illustrate how the whole tracking system works in Fig. 7. Suppose a
Mercedes silver GLB SUV is reported to be involved in a hit-and-run accident at intersection I; at time instant ¢;.
The edge node at I; is activated to track the Vol. According to the number of vehicles detected from each frame,
the admission control algorithm selects the most granular algorithm for the real-time RelID tasks to track the
Vol and the Vol is found to travel to I,. Then the edge node at I is activated during to its active period. I, is an
uncrowded intersection and the Vol is found to travel to Iy. However, I; is a crowded intersection and according
to the number of vehicles detected from each frame, the admission control model selects color matching module
for the real-time RelD tasks to track all the silver vehicles traveling through Is. At I, some silver vehicles are
found to travel to I; and the others are found to travel to I;. Then, the edge nodes at I; and I are activated to
track all the silver vehicles. I is another crowded intersection and according to the number of vehicles detected
from each frame, the admission control model selects color matching and model/make matching for the ReID
tasks to track all suspected vehicles. Fortunately, I7 is an uncrowded intersection and the Vol is identified at I7,
then all the other suspected tracking branches are terminated. The following involved edge nodes are activated
in the same way to track the Vol in real-time. Note that a corner case is discussed in the captain of Fig. 11.

Based on the above discussion, WatchDog can guarantee 100% tracking coverage of the Vol without “tracking
loss”. We sacrifice the accuracy of RelD algorithms and track all the suspected vehicles at crowded intersections,
then identify the Vol by utilizing the computing resource on the edge nodes deployed at uncrowded intersections.
In a word, we develop a smart tracking method to make up for the limited computing capacity of a single edge
node.

8 EMPIRICAL STUDY

To evaluate the reliance of the proposed image processing methods in realistic scenarios, we conduct extensive
experiments based on real-world datasets. We drive a vehicle (Vo) running abnormally in the road network from
March 1 to March 30, 2022, then collect captured video information of all fixed video surveillance cameras at the
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Fig. 8. The edge node at I1; is activated to track the Vol by multiple edge nodes deployed at neighboring intersections I; and
I1p. Since the active period of an edge node is calculated based on the active period of its previous edge node, the edge node
at I11 may have multiple active periods. If these periods overlap with each other, then the edge node’s active period is a
union of them.

intersections during this month. Next, we filter and select 3000 trips, each of which contains 20-30 road segments,
to run our experiments.

We compare WatchDog with widely used baselines to evaluate the overall performance, which includes two
categories: model selection based baselines and non-model selection based baselines.
Model selection baesd baselines:

o Adadeep[35] This method leverages a DQN based strategy to effectively select a combination of compres-
sion techniques that balance user-specified performance goals and resource constraints.

o SkipRec-RL[8] This work proposes an adaptive model hidden layer selection framework for deep sequen-
tial recommender system, which learns to skip inactive hidden layers on a per-user basis.

o Greedy strategy A greedy strategy of selecting the most fine-grained model first under the time-bound,
based on some prior knowledge.

Non-model selection based baselines: On the other hand, in order to verify the effect of the adaptive model
selection method, we compare our model with the traditional static fine-grained model approach. Here we utilize
the last fine-grained model mentioned in Section 4.3.3 as the baseline: Full-fledged V-RelD.

Implementation Details and Ground Truths: Our proposed methods and baselines are implemented using
TensorFlow 1.14 and Python 3.6 on an edge server with AMD Ryzen 7 3700x (CPU) and one NVIDIA GeForce RTX
2080 Ti (GPU). We obtained the ground truth of the VoI’s trajectories through the uploaded GPS data collected by
onboard devices periodically.

8.1 Experimental results

Real-time Performance at different granularity levels. In this subsection, we evaluate the reliance of the
proposed object identification algorithms at different granularity levels (i.e., Color Matching, Model and Make
Matching, and Full-fledged V-ReID method). The experimental results are summarized in Fig. 9, where the X-axis
denotes some typical time slots of a day, and Y-axis is the average inference time of the object identification
algorithms. Based on the results, we found that the inference time of the Full-fledged V-ReID method is significantly
longer than the other two algorithms’ during a day, which follows the intuition in deriving the model selection
based D-V-RelD framework. In addition, the difference between them becomes larger during the rush hours (i.e.,
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Fig. 9. The average inference time at different granularity levels.
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Fig. 10. The average inference time of different tracking methods.

from 9 am to 11 am and from 4 pm to 6 pm). This is due to the fact that as more vehicles appear at the intersections
per unit time, the Full-fledged V-ReID method will introduce more real-time workload in the embedded computing
system and hence the contentions induced by the workload will exacerbate the algorithms’ execution time. It
suggested that during rush hours, WatchDog should start with the Color Matching module, especially at the busy
intersections. Please note our evaluation is based on the real-world datasets. In our setting, a regular vehicle’s
Color and Make can be accurately identified. However, the plates may be blocked by some other vehicles. We
have removed these imperfect data from our original datasets. In addition, we did not consider the night vision
and occlusion problems in vehicle detection based on cameras due to a lack of real-world data.

Real-time Performance of different tracking methods. In this subsection, we evaluate the performance of
our WatchDog solution and the Adadeep, SkipRec-RL, Greedy, Non-model selection strategies during different
time periods and traffic periods, and the results are illustrated in Fig. 10. In this figure, the dark blue bar with
diagonal stripes indicates the performance of our WatchDog solution, the grey bar with dotted diamond grid
corresponds to the result of the non-model selection strategy, the red bar with vertical stripes gives the result of the
Adadeep strategy, the orange bar with horizontal stripes represents the performance of the SkipRec-RL strategy,
and the black bar indicates the performance of the Greedy strategy. And again, in Fig. 10, rush periods include 9
am - 11 am and 4 pm - 6 pm, and normal periods are equal to the rest hours. From this figure, it is clear that our
WatchDog solution outperforms other alternative approaches. Moreover, we discover that the performance of
our solution increases a little bit with the increase of real-time traffic compared with the other methods. This is
because with the increase of road traffic, the travel speeds of the VoI decrease, thus their information is easier to
be captured by our system even if the number of vehicles showing at each intersection increases. Note that in
Fig. 10, the performance of the non-model selection method during 9 am - 11 am is obviously poor, the reason is
that during this period the number of vehicles showing at each intersection achieves its peak value, most plates
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Table 3. Statistics of Vehicle Network

Dataset Summary

Collection Period 6 Months
Collection Date 01/01/12-06/30/12
Number of Vehicles | 14,453

Total Live Mile 371,269,642 miles

Table 4. A GPS record.

’ plate ID \longitude\ latitude \ time \ speed ‘
[ TIDXXXX | 114.022901 | 22.532104 | 08:34:43 [ 22 km/h |

cannot be identified in real-time due to a lack of computing resources on-board, thus the information of Vols is
difficult to be obtained by the tracking system.

9 TRACE-DRIVEN EVALUATION

In addition to the empirical study, to evaluate the efficacy of WatchDog in a larger scale, we conducted extensive
experiments based on our accessible real-world GPS datasets.

9.1 Data Description and Time/Traffic Measurement

Table 3 summarizes statistics about vehicle networks studied in this work. To test WatchDog in a real-world
scenario, we utilize a real-world dataset of about 6 months of GPS traces of more than 14000 vehicles in Shenzhen,
a Chinese city with a 10 million population. The dataset is obtained by letting every vehicle upload its GPS records
(the format as in Table 4) to report its traces to a base station. Based on the dataset of GPS records, we obtain
location and time distributions of the vehicles traveling in Shenzhen, which are used to evaluate the performance
of WatchDog.

9.1.1 Measurement of traveling time. The GPS data is used to measure the traveling time of the Vol at specific
locations in the monitored areas, including intersections and road segments. Fig. 5.(a) shows an example of
traveling time taken by vehicles at an intersection. We can see that most of the vehicles take 5 seconds or 40
seconds to travel through this intersection. The reason is that if the traffic light at this intersection is red, the
traveling time of a vehicle should include the waiting time. Due to different traveling speeds, the shortest time to
travel through this intersection is 3 seconds and the longest time is 42 seconds according to Fig. 5.(a). Thus, we
assume that the traveling time taken by the Vol at this intersection falls into this time interval, which is from 3
seconds to 42 seconds. Similarly, according to Fig. 5.(b), the traveling time taken by the VoI at the road segment
belongs to a time interval, which is from 30 seconds to 50 seconds. By analyzing the GPS dataset, we can obtain
the traveling time for the Vol at all intersections and road segments.

9.1.2  Measurement of traffic condition. Based on the time and location information in each GPS record, the
datasets can be used to measure the traffic conditions in the monitored area. Figure 11 plots the percentage of
the number of vehicles traveling through different intersections in one frame/one minute. At almost 16% of
the intersections, only nine vehicles appear in one minute. And for more than 95% of the intersections, less
than 21 vehicles travel through these intersections in one minute. These observations show that at most of
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Fig. 11. The statistics of the number of vehicles traveling through an intersection in one minute/appearing on one video
frame.
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Fig. 12. The performance of Real-time tracking.

the intersections, the traffic is light and our proposed method can fully utilize the edge nodes deployed at the
uncrowded intersections to track the Vol in real-time.

9.2 Real-time Performance

The key performance metric for WatchDog is the video analytics delay to track the Vol in real-time. We evaluate
this metric every one hour time window of a day. In addition, we investigate the sensitivities of WatchDog’s
performance on three key parameters, i.e., the tracking delay, the number of involved edged nodes, as well as the
tracking cost.

In order to show the impacts of different traffic conditions on WatchDog, we evaluate the performance in
three typical areas in Shenzhen: Residential area, Industrial area and Commercial area, which are denoted by
“Residential”, “Industrial” and “Commercial” in Fig. 12, respectively. For each tracking experiment, we randomly
choose a running vehicle from the dataset as the VoI and measure the tracking delay and tracking cost according
to its driving circumstance at different intersections on its trajectory according to the GPS records. The ReID
modules are selected by each involved edge node automatically, based on the real-time admission control module
and the number of vehicles at the intersection. The execution time for each ReID module is given in Table 2.

Fig. 12a plots the average RelD delay during 24 hours of a day. During the rush hour, e.g., 06 : 00-10 : 00,
the ReID delay in three different areas reaches the maximal values. The reason is that the number of vehicles
traveling through each intersection achieves the maximal value during the rush hour through the whole day. An
interesting observation is that the peak of the Residential curve is earlier than the peak of the Industrial curve in
the morning rush hour and on the contrary in the evening. This is because the traffic flows from the residential
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Fig. 13. The performance of Multi-Object Real-time tracking.

area to industrial area in the morning and reversely in the evening. As seen in this figure; even during the rush
hour, the ReID delay is smaller than 4 minutes, confirming that WatchDog can track the Vol in real-time.

Fig. 12b plots the average number of edge nodes involved in tracking a Vol during 24 hours of a day. As seen
in this figure, the maximum number of edge nodes involved in tracking a Vol is smaller than 14 even during
the rush hour. This implies that through carefully selecting ReID modules for the edge nodes, WatchDog is able
to efficiently reduce the number of suspected Vols and limit the tracking range into a reasonably small area.
Moreover, compared with the residential area and industrial area, the number of involved edge nodes to track a Vol
in commercial area in the rush hour is much smaller. This is because the workplaces for residents are distributed
in the industrial area, thus the traffic in the commercial area is not as heavy as that in residential/industrial areas
during the rush hours.

We have also conducted a set of experiments evaluating the tracking cost in the three areas in terms of the total
tracking time of all involved edge nodes to ReID a VoI 24 hours a day. This metric can also be used to reflect the
effectiveness of WatchDog since a shorter total tracking time to ReID and localize a Vol often results in a lower
execution cost for the whole tracking system. Fig. 12¢ shows the result using this metric. As seen, WatchDog can
track the Vol with very few edge resources during non-rush hours and the cost for real-time tracking during the
rush hour is also reasonable.

9.3 Multi-Object Tracking

In this set of experiments, we evaluate the efficacy of WatchDog when handling the practical issue of multi-object
real-time tracking (i.e., multiple hit-and-run accidents occur at the same time). Fig. 13 shows the evaluation
results. We randomly choose multiple running vehicles (i.e., 3 and 5) as the Vols and track them simultaneously
according to the GPS datasets. We use the metric “RelD delay” (in seconds) to reflect the tracking latency of
WatchDog. Similarly, we use the metrics, “the number of involved edge nodes” and “Cost”, to show the total
execution time of the edge nodes consumed by WatchDog when tracking the multiple Vols in real-time.

Fig. 13 shows the results w.r.t. the multi-object real-time tracking. As seen in the figure, with increased number
of VoIs, all the measured parameters increase during all time intervals. This observation confirms the intuition that
as more Vols are involved in real-time tracking, a larger amount of edge resources is needed to track all the Vols
simultaneously. One interesting observation is that the amount of increased edge resources is not proportional to
the number of increased Vols. For example, in Fig. 13c, the cost for tracking 1 Vol achieves its maximum value at
around 8:00 AM, which is about 2000 seconds. However, the cost for tracking 5 VoIs at 8:00 AM is less than 8000
seconds. This implies that the intersections involved in tracking the 5 Vols have overlaps with each other and
the video frame processing results are reused to track different Vols. Another observation in Fig. 13a is that the
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RelD Delays for tracking different number of Vols are very close. The reason is that our proposed WatchDog is a
distributed real-time tracking system, which can perform the multi-object tacking simultaneously.

10 CONCLUSION

Recent technology advances in edge computing provide new opportunities to implement a real-time tracking
system in smart cities with edge nodes distributed at the intersections of the road network, which consists of
both surveillance cameras and embedded computing platforms. We propose a simple yet effective real-time
system for tracking hit-and-run vehicles in smart cities, which employs machine learning tasks with different
resource-accuracy trade-offs, and schedule tracking tasks across distributed edge nodes based on the number of
detected vehicles to maximize the execution time of tasks while ensuring a provable completion time-bound at
each edge node. WatchDog is also designed to be capable of addressing multi-object tracking problems to track
multiple Vols simultaneously in real-time.
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